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Theory of the corrugation instability of a piston-driven shock wave
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We analyze the two-dimensional stability of a shock wave driven by a steadily moving corrugated piston in
an inviscid fluid with an arbitrary equation of state. For h � −1 or h > hc, where h is the D’yakov parameter
and hc is the Kontorovich limit, we find that small perturbations on the shock front are unstable and grow—at
first quadratically and later linearly—with time. Such instabilities are associated with nonequilibrium fluid states
and imply a nonunique solution to the hydrodynamic equations. The above criteria are consistent with instability
limits observed in shock-tube experiments involving ionizing and dissociating gases and may have important
implications for driven shocks in laser-fusion, astrophysical, and/or detonation studies.
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I. INTRODUCTION

A shock wave sustained by the steady motion of a planar
piston in a fluid-filled channel is a classical problem of
hydrodynamics. This system is also a familiar paradigm in
other areas of physics for analyzing shocks driven by a variety
of complex mechanisms, including solar flares [1], supernova
ejecta [2], ablation surfaces in inertial-confinement-fusion
targets [3], moving repulsive dipole beams in Bose-Einstein
condensates [4], and flame fronts in combustible fluid mixtures
[5]. Of central importance to the dynamics of this class of
shock waves is the issue of stability. It is well known that a
piston-driven shock in an ideal gas is unconditionally stable;
even in the absence of viscous damping, small disturbances
on the surface of the shock evanesce over time and the front
eventually acquires a planar shape [6]. For a fluid characterized
by a nonideal equation of state (EOS), however, stability is not
guaranteed and under certain circumstances perturbations to
the zero-order flow conditions can amplify over time and give
rise to the formation of turbulentlike states behind the shock
[7]. Such unstable phenomena have been observed in a number
of shock-tube experiments involving ionizing and dissociating
gases [8–10] and are seen almost universally in detonations
[11–19].

The determination of the precise conditions that an EOS
must satisfy to admit unstable shock behavior has been the
subject of numerous theoretical investigations over the last
60 years [20–25]. For the most part, those studies reach
the same conclusion regarding shock stability and do so by
adopting a common simplifying approximation known as the
“isolated wave model” in which a steadily propagating shock is
treated as a stand-alone discontinuity and conservation of mass
and momentum across the front constitute the sole boundary
conditions in the problem [26]. According to this approach,
linear corrugations on the shock front are unstable and grow
exponentially in time when either of the criteria

h < −1 or h > 1 + 2M1 (1)

is satisfied [27,28]. Here, the parameter M1 = (U − V )/a1

is a downstream Mach number satisfying 0 < M1 < 1 and
the symbols U , V , and a1 represent the shock, particle, and
compressed-fluid sound speeds, respectively, in the labora-
tory frame. The dimensionless quantity h that appears in
inequality (1) is known as the D’yakov parameter [20] and

is a measure of the inverse slope of the Hugoniot curve in
the plane of pressure P and mass density ρ ; it is defined
as h = −(U 2/η2) (dρ/dP )H , where η = ρ1/ρ0 > 1 is the
compression ratio across the front and subscripts “0” and
“1” denote upstream and downstream states, respectively.
In addition to the corrugation instability described above,
the isolated wave model also predicts a special category of
unstable shock behavior (known as the D’yakov-Kontorovich
instability) for values of h that lie in the range

hc < h < 1 + 2M1, (2)

where hc = (1 − M2
1 − η M2

1 )/(1 − M2
1 + η M2

1 ) is the so-
called Kontorovich limit [21]. For isolated shocks satisfying
inequality (2), linear perturbations on the front remain station-
ary over time and emit sound and entropy-vortex waves in the
downstream direction [27,28].

In reality, of course, steady shocks are never truly isolated
waveforms; the sustainment of the front requires the existence
of a uniform driving agent such as a piston behind it—the
removal of which leads to a decay of the shock into acoustic
waves [11]. It is perhaps not surprising, then, that instability
limits derived using the isolated wave model do not closely
match results from driven-shock experiments [8,29] and,
moreover, imply the existence of multivalued solutions to
projectile impact problems [30,31]. As suggested by Fowles
and Swan, these inconsistencies are almost certainly a conse-
quence of the failure of the theory to account for the influence
of the piston on the shock dynamics [31]. In this paper,
we perform a linear stability analysis of a two-dimensional
shock that takes into account its acoustic interaction with
the piston sustaining it. Perturbations are introduced through
small sinusoidal corrugations on the face of the piston, which
is assumed to move impulsively from rest into a stationary
inviscid fluid and thereafter maintain a constant speed V . The
principal conclusion of this study is that driven planar shocks
obey instability criteria that are somewhat different from the
widely known conditions appearing in inequalities (1) and (2).

The majority of our analysis has already been presented
in great detail in a previous publication [32]. In that work,
it was shown that a shock driven by a corrugated piston is
stable provided that the condition −1 < h < hc holds. For
values of h within that range, linear perturbations on the front
attenuate as t−3/2 asymptotically (or as t−1/2 as h → hc from
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below), where t denotes time. Here, we derive the solution
for all other values of h. For such cases, we find that unstable
shock behavior results from linear perturbation amplitudes
that grow algebraically in time (in contrast to the exponential
dependence predicted with the isolated wave model), which
occurs if

h � −1 or h > hc. (3)

Comparison of these expressions with inequality (1) shows
that the second inequality above is a less stringent condition for
the occurrence of the corrugation instability than that derived
using the isolated wave model. This finding is supported by
experimental observations reported in Ref. [8], where the
instability condition h > hc was postulated for strong driven
shocks in argon and carbon dioxide gases. It should also
be noted that in the present theory, the range of h values
in inequality (2) corresponds to a region of absolute growth
so that the D’yakov-Kontorovich instability evidently does
not occur for driven planar shocks perturbed at the piston
boundary.

These results may have important consequences for driven
shock fronts in fluids that are subject to extreme thermody-
namic conditions and thus not adequately described by ideal-
gas constitutive relations. Such conditions occur, for example,
in laser-fusion targets where perturbed strong shocks driven by
nonuniform ablation processes seed deleterious hydrodynamic
instabilities [33]. An understanding of how perturbed shock
fronts evolve in these targets, and the conditions for which
those fronts behave stably, are crucial considerations for
achieving high fuel compression and significant fusion-energy
gain. The theory developed in this paper may also provide
insight into certain magnetohydrodynamic and astrophysical
phenomena in which the corrugation instability of shock fronts
is thought to play a key role; these include the generation
of strong magnetic fields in relativistically hot plasmas [34],
“noise” effects in the accretion of compact stellar objects
[35], and the acceleration of high-energy particles in strongly
magnetized white-dwarf stars [36].

A third potentially important application of this work is in
the investigation of the deflagration-to-detonation transition
in combustible fluid mixtures [37–42]. In that process, a
flame front—which is analogous to the piston in the present
study—suddenly accelerates and drives a strong shock that
may result in detonation of the fuel [43]. Although this
phenomenon has yet to be fully elucidated, there is evidence to
suggest that it is linked to the development of turbulent states
in the downstream flow [38,44] and the occurrence of the
corrugation instability of shocks [15,31]. Thus, by providing
a hydrodynamic framework for modeling the flame-shock
system, the analysis presented in this paper may help to
clarify the role that shock instabilities play in triggering
detonations.

II. LINEAR STABILITY ANALYSIS

Our approach to analyzing the stability of a shock driven
by a corrugated piston consists of first solving an auxiliary
problem—that of a shock created by the motion of a wedge-
shaped piston [see Fig. 1(a)]—whose solution can then be
used to infer the result for a rippled driving surface [6]. We
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FIG. 1. The wedge-shaped piston with wedge angle δ (assumed
to be small here). Region 2 in (a) becomes the rectangle (to zero order)
in (b) with λ = 1

2 ln[(1 + M1)/(1 − M1)] after a change to canonical
field variables, a Busemann transformation, and a conformal map. In
the linear approximation, the solution to this problem can be used
to determine the evolution of a shock front driven by a piston with
sinusoidal corrugations on its surface.

assume that the wedge angle δ is small and choose a co-moving
system of coordinates (X,Y ) in which the origin is at the vertex
of the piston. In front of the piston, a slightly bowed shock
wave forms that propagates into a fluid with mass density
ρ0 and pressure P0. At large distances on either side of the
origin, the front is straight and moves with constant speed
U − V in a direction perpendicular to the piston’s surface.
Behind the shock, a circular acoustic wave with speed a1

emanates from the vertex and separates the downstream fluid
into two regions. Region 1 is the area of compressed fluid
ahead of the acoustic wave with uniform mass density ρ1 and
pressure P1. This region is bordered on each side of the X axis
by the straight section of the shock across which mass and
momentum conservation give the relations V = U (1 − ρ0/ρ1)
and P1 = P0 + ρ0U

2(1 − ρ0/ρ1). To first order in δ, the fluid
has a velocity given by (0, ± V δ), where the plus and minus
sign correspond to Y > 0 and Y < 0, respectively.

Region 2 is defined as the area behind the acoustic wave
that is bounded by the piston and the shock front. In this
region, the perturbed fluid-velocity vector can be expressed
as q2 = V (u,v), where u and v are dimensionless and of
order δ. By linearizing the Euler equations, one can then
show that P2 satisfies the wave equation. In terms of the
conical-field variables x = X/(a1t) and y = Y/(a1t), that
equation becomes(

x
∂

∂x
+ y

∂

∂y
+ 1

) (
x

∂p

∂x
+ y

∂p

∂y

)
= ∇2p, (4)

where we have introduced the dimensionless quantity
p = (P2 − P1)/(a1Vρ1). We now look for a solution to Eq. (4)
in region 2 subject to the following boundary conditions. On
the surface of the piston, where x = 0 approximately, the
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normal fluid velocity must be the same as that of the piston
itself; using the linearized momentum equation, this implies
∂p/∂x = 0 when x = 0. On the boundary with region 1, the
pressure must be continuous, so that P2 = P1 and p = 0 for
x2 + y2 = 1. The other condition to be specified is that on
the part of the shock bounded by the circular acoustic waves,
which can be described by the equation XS = (U − V ) t + ξ ,
where ξ = a1t f (y) is the deflection of the front from the plane
and f is of order δ. The condition that p satisfies there (i.e.,
x = M1, approximately) is [32](

1 − M2
1

)∂p

∂x
= (

yM1 + yβ − 	 M2
1 y−1)∂p

∂y
, (5)

where

β = 1 − h

2M1
and 	 = (1 + h)η

2M1
. (6)

It should be noted that the calculation in Ref. [32] also
yields the conditions u = β p, y (∂v/∂y) = M1	(∂p/∂y), and
∂ξ/∂t = a1M1	 p on the surface x = M1.

Following Refs. [45,46], the solution to Eq. (4) is obtained
by enlisting the following procedure. First, a Busemann
transformation [47] to the coordinates (r,θ ) is made using
the relations x = 2r cos θ/(1 + r2) and y = 2r sin θ/(1 + r2),
which transforms Eq. (4) to Laplace’s equation. Second, a
conformal map in the form z1 = x1 + i y1 = log [(1 + ζ )/
(1 − ζ )] + i π/2, where ζ = r exp(iθ ), is employed. The
result is that region 2 becomes, approximately, the rectangle
shown in Fig. 1(b) with 0 � x1 � λ and 0 � y1 � π , where
λ = 1

2 ln[(1 + M1)/(1 − M1)]. In the z1 plane, the shock front
ABC corresponds to the side of the rectangle given by
x1 = λ, 0 � y1 � π , the piston’s surface FED becomes the
segment x1 = 0, 0 � y1 � π , and the arcs DC and FA map
to the edges 0 � x1 � λ, y1 = π and 0 � x1 � λ, y1 = 0,
respectively. The forms of the boundary conditions on the
latter three surfaces are not affected by the transformation to
the new coordinate system so that ∂ p/∂x1 = 0 on FED and
p = 0 on FA and DC. Furthermore, we have the additional
condition that ∂p/∂y1 must vanish on the midline EB due to
the symmetry of the problem.

The remaining boundary condition is that on ABC, for
which y = −(1 − M2

1 )1/2 cos y1. The form of Eq. (5) suggests
it is useful to introduce the complex function

w(z1) = ∂p

∂x1
− i

∂p

∂y1
(7)

and look for a solution in terms of this quantity rather than
p directly. Note that w is imaginary on EFA and EDC, and
vanishes at E . On ABC, Eq. (5) implies [32,46]

arg w = tan−1 (μ+ tan y1) + tan−1 (μ− tan y1) , (8)

where

μ± = 1 ±
√

1 − 4(	/α2)(β − 	/α2)

2(β − 	/α2)
(9)

and we have introduced the additional EOS parameter

α2 = 1 − M2
1

M2
1

. (10)

hh+h−

μ±

+(1 + α2/η)−1/2

−(1 + α2/η)−1/2

hc−1

FIG. 2. Qualitative plots of μ− (gray line) and μ+ (black line)
versus h. For −1 < h < hc, the shock front is stable and μ± are
either both real and positive or they are complex conjugates of each
other with positive real parts; see Ref. [32]. Outside of this range,
the coefficients μ± have opposite signs, which results in an unstable
solution. The parameters h± in this figure denote the roots of the
discriminant in Eq. (9).

For −1 < h < hc, the coefficients μ± are either both real
and positive, or both complex with positive real parts (see
Fig. 2). The solutions for those cases have already been given in
Ref. [32] and correspond to stable shock behavior. For h < −1
or h > hc, the coefficients μ± are purely real, but with opposite
signs and this leads to a different class of solutions, as we now
demonstrate.

Let us first consider the case μ+ > 0 and μ− < 0 (i.e.,
h<−1). For these conditions, Eq. (8) can be written [48]

arg w(λ + iy1) = −
∞∑

n=1

(b−n − an) n−1 sin 2ny1, (11)

where a = (μ+ − 1)/(μ+ + 1) and b = (μ− − 1)/(μ− + 1).
We see that as y1 → 0 or π , the above expression tends to zero.
On FA and DC, however, the function w is purely imaginary.
Thus, arg w is discontinuous at the points A and C, which
implies that w must have a zero or a pole at each of those
points. In what follows, a solution is found that is regular inside
the rectangle in Fig. 1(b) with simple zeros at the points A, C,
and E . It must be the only regular solution with zeros at these
points, because if there were another with higher-order zeros,
w̃(z1) say, then the ratio w̃(z1)/w(z1) would be purely real on
the boundary and thus equal to a constant [49], which, as shown
below, can have only one determination in this problem. Note
also that the assumption of zeros at A and C requires arg w to
be π/2 on EFA and 3π/2 on EDC [50].

An analytic function that satisfies all of the boundary
conditions stated above is

w(z1) = iK
θ2(−iz1,q) θ4(−iz1,q)

θ 2
3 (−iz1,q)

× exp

{
−

∞∑
n=1

(b−n − an) cosh 2nz1

n sinh 2nλ

}
, (12)

where θ2, θ3, and θ4 denote Jacobi theta functions [51] with
q = exp (−2λ). Note that this function is regular inside the
rectangular boundary of Fig. 1(b) and has an integrable,
second-order pole at B. The constant K is determined by the

013014-3



J. W. BATES PHYSICAL REVIEW E 91, 013014 (2015)

fact that the change in velocity V
∫

(∂v/∂y) dy along the shock
is 2V δ, or equivalently

(b − a) K

2 δ q1/4
= α

	

[∫ π

0
tan2 y1 G(y1) dy1

]−1

, (13)

where

G(y1) =
∞∏

m=0

(1 − 2 b−1q2m+2 cos 2y1 + b−2 q4m+4)

(1 − 2 a q2m cos 2y1 + a2 q4m)

× (1 − 2 q2m+2 cos 2y1 + q4m+4)

(1 + 2 q2m+2 cos 2y1 + q4m+4)2

×(1 + 2 q2m+1 cos 2y1 + q4m+2) . (14)

Since q < 1, the infinite product above converges rapidly.
Following Refs. [6,32], we can now deduce the shape of a

shock launched by a corrugated piston with profile ε exp(iωY ),
where ω is a spatial frequency and the amplitude ε is small
compared to ω−1. Consider a point on the piston Y = Y ′ and
another a distance dY ′ away. The change in slope between
these two points is −ε ω2 exp(iωY ′) dY ′. Thus, if we replace
2δ by this quantity in the above analysis, we can write an
expression for the contribution to ∂p/∂Y on the shock from
an infinitesimal section of the piston:(

∂p

∂Y

)Y ′+ dY ′

Y ′
= K1 ε ω2 e iωY ′

tan y1 G(y1)

a1t
(
1 − M2

1

)1/2 dY ′, (15)

where the constant K1 is given by the right-hand side
of Eq. (13). Using Y − Y ′ = −a1t (1 − M2

1 )1/2 cos y1, three
integrations can be performed on Eq. (15). The first is over
the infinite surface of the piston, the second is with respect to
the variable Y , and the third is over time [6,32]; the resulting
expression for the shock-ripple amplitude is

ξ

εeiωY
=

∫ 1
−1 e−iτz z−2(1 − z2)1/2 F (z) dz∫ 1

−1 z−2(1 − z2)1/2 F (z) dz
, (16)

where

F (z) = G[cos−1(−z)]

=
∞∏

m=0

(1 − 2 b−1q2m+2(2z2 − 1) + b−2 q4m+4)

(1 − 2 a q2m(2z2 − 1) + a2 q4m)

× (1 − 2 q2m+2(2z2 − 1) + q4m+4)

(1 + 2 q2m+2(2z2 − 1) + q4m+4)2

× (1 + 2 q2m+1(2z2 − 1) + q4m+2) (17)

and τ = ω a1t (1 − M2
1 )1/2 is a dimensionless time. At τ = 0,

we see that the shock has the shape of the piston, as it should.
Moreover, one can show that in the limit h → −1, Eq. (16) and
the solution derived in Ref. [32] yield the same expression—as
they must since μ− changes sign continuously there; see Fig. 2.
The solution for μ+ < 0 and μ− > 0 (i.e., h > hc) is obtained
by interchanging the parameters a and b in the above formulas.

The evolution of the shock-ripple amplitude ξ with time can
be determined by integrating the right-hand side of Eq. (16) by
parts and then evaluating the resulting expressions numerically
for particular values of the parameters η, M1, and h. Figure 3
shows a plot of the real part of ξ /(ε eiωY ) obtained by
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FIG. 3. Plot of the real part of the normalized shock-ripple
amplitude in Eq. (16) versus dimensionless time τ for η = 3,
M1 = 0.5, and h = −1.1 (solid line). At late times, the growth is
essentially linear with τ . A stable solution is also shown (dashed
line) for η = 2.197, M1 = 0.4782, h = −0.1647, and hc = 0.2111;
see Ref. [32] for the derivation of that class of solutions.

following this procedure for η = 3, M1 = 0.5, and h = −1.1.
From this figure, we see that in the linear approximation, the
shock-ripple amplitude grows (approximately) quadratically
with τ initially and then switches over to a linear dependence
at later times. Note that this behavior is considerably different
from the exponential growth predicted for unstable, isolated
shock fronts [20–25]. For comparison, Fig. 3 also contains
an example of a stable solution satisfying the condition
−1 < h < hc, which decays asymptotically as τ−3/2. That
class of driven shock waves was discussed in detail in Ref. [32]
and is not considered here, but, in passing, we note that the
stable branch of the solution has the form of Eq. (16) with F (z)
replaced by

∞∏
m=0

[1 − 2q2m+2(2z2 − 1) + q4m+4]

[1 − 2aq2m(2z2 − 1) + a2q4m]

× [1 + 2q2m+1(2z2 − 1) + q4m+2]

[1 − 2bq2m(2z2 − 1) + b2q4m]

and the factors of z−2 omitted from the integrands. One can
show that at the upper limit of the stable regime (i.e., as h →
hc from below), the asymptotic behavior changes to a τ−1/2

dependence due to the appearance of a term (1 − z2) in the
denominator of the infinite product above [52].

III. THERMODYNAMIC CONSIDERATIONS

We now demonstrate that the instability criteria derived in
this paper are associated with shocked fluid states that are
not in thermodynamic equilibrium. Much of the basis for
this conclusion has already been provided by Fowles [31],
who analyzed the shock stability problem using a principle
of irreversible thermodynamics that says the approach to
equilibrium of two disparate systems is characterized by the
conditions dS � 0 and dE′ � 0, where S and E′ denote
entropy and reduced internal energy, respectively, with dE′ =
dE − P0 dρ/ρ2. (The quantity E here is the conventional
internal energy of the fluid.) According to this principle, a
shock transition from an initial state to a given final state is
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thermodynamically unstable if there exists an alternative point
on the Hugoniot curve for which the entropy is larger, or the
reduced internal energy is smaller, than that given state. Fowles
showed that the former situation arises whenever h < −1,
which is also a condition that ultimately leads to the splitting
of the front into a double shock-wave structure with a greater
net increase in entropy [53,54].

It is straightforward to see that satisfaction of the condition
h > hc also implies the existence of a nonequilibrium fluid
state from the equivalent inequality [55](

∂E′

∂S

)
H

= T
[
1 − M2

1 (η − 1)(1 + γ )
]

< 0, (18)

where γ is the Grüneisen parameter and H and T denote
enthalpy and temperature, respectively. Note that for a shock in
an ideal gas, the left-hand side of the above inequality reduces
to T P0/P , which is strictly positive. For nonideal fluids,
however, it is possible that (∂E′/∂S)H is negative at sufficiently
high shock compression. The instability that develops in such
a case effects a transition to an alternate (and likely turbulent)
solution of the hydrodynamic equations in which the reduced
internal energy and particle velocity of the compressed fluid
are minimized [31]. We speculate that detonations are related
to corrugation instabilities of this variety.

IV. SUMMARY AND CONCLUSIONS

In summary, we have solved the problem of a two-
dimensional, planar shock front created, sustained, and per-
turbed by a piston moving in a stationary inviscid fluid with
an arbitrary EOS. Our theory predicts both stable and unstable
behavior, depending on the value of h. For −1 < h < hc, we
find that linear perturbation amplitudes on the shock front
attenuate asymptotically as t−3/2 (or as t−1/2 as h → hc from

below). Outside of this range, they grow—at first quadratically
and later linearly—with time. It is important to notice that
the upper stability limit found in this study is smaller than
that derived using the isolated wave model and cited in
standard fluid-dynamics textbooks (e.g., see Ref. [27]) but
agrees precisely with observations in driven-shock exper-
iments involving ionizing and dissociating gases [8]. We
should also remark that the D’yakov-Kontorovich instability
of isolated shocks—which shares the same threshold condition
h > hc but is characterized by a solution with stationary
perturbations [56–60]—evidently does not occur for fronts
sustained and perturbed by a moving piston. (Note that
an earlier study by Wouchuk and Cavada [61] reached a
different conclusion regarding the occurrence of the D’yakov-
Kontorovich instability for shocks driven by a corrugated
piston; this is perhaps not too surprising, though, since their
analysis neglected the homogenous solution to the functional
equation for the Laplace transform of the first-order pressure
and, moreover, only considered values of h in the limited range
hc < h < 1 − 2M2

1 .) We have further shown in this work that
corrugation instabilities are associated with shock-compressed
fluid states not in thermodynamic equilibrium—a condition
that implies the existence of a nonunique solution to the
hydrodynamic equations. In practice, the occurrence of such
instabilities signals a transition to an alternate, post-shock fluid
state in which the entropy is larger, or the reduced internal
energy is smaller, than the original.
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