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Experimental study of the solid-liquid interface in a yield-stress fluid flow upstream of a step
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We present an experimental study investigating the transition zone between a liquid-like unyielded region
and a solid-like yielded region in a yield-stress fluid. The configuration consists of a rectangular closed-channel
flow disturbed by the presence of a step. Upstream of the step, a solid-liquid interface between a dead zone and
a flow zone appears. In this study, we use a model fluid, namely polymer micro-gel Carbopol, which exhibits
Herschel-Bulkley viscoplastic rheology. Exploiting the fluid transparency, the flow is monitored by particle image
velocimetry using an internal visualization technique. The main outcome of this study is to show that, except in
a thin transition layer close to the solid-liquid interface, the flow behaves as an apparent Poiseuille flow with an
apparent slip condition at the base. The slip frontier is found to be almost independent of the flow rate while the
corresponding slip velocity increases with the flow rate.
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I. INTRODUCTION

Yield-stress, or viscoplastic, fluids behave as solids below
a certain stress threshold, namely the yield stress, and as
viscous liquids above this threshold. Various familiar materials
exhibit this type of flow threshold. A nonexhaustive list could
include food and cosmetic creams, paints, blood, and slurries.
These materials are involved in a variety of industrial [1],
biophysical [2,3], and geophysical flows [4]. Even though the
first mathematical description of the viscoplastic rheological
behavior was formulated more than a century ago [5], some
important issues remain open. In particular, the so-called
solid-to-liquid transition, often compared to a jamming tran-
sition [6], is far from being fully understood [7–9].

In this paper, we intend to examine the close vicinity
of the interface between a flowing liquid-like domain and
an effective static solid-like domain in an homogeneous
yield-stress fluid. This configuration is particularly relevant
with regards to geophysical flows such as debris flows and
snow avalanches [4], in which the material forming the static
bed generally has mechanical properties similar to those
of the flowing material. These rapid gravity-driven flows
frequently induce massive bed erosion phenomena that remain
poorly understood [10,11]. The knowledge of the frontier
line between the substratum and the eroding flow is crucial
to predicting mass exchanges with the bed and the flow
dynamics [12,13]. The present experimental study proposes an
original approach to address this process in terms of solid-fluid
transition in a viscoplastic material.

The coexistence of solid and liquid behaviors in viscoplastic
fluids, or in other words between yielded and unyielded
regions, has been investigated in some recent studies on
contraction-expansion flows [14–19], extrusion flows [20],
and lid-driven cavity flows [21]. The shape and the extent
of each region have been thoroughly investigated, but few
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experimental studies have analyzed the detailed features
of the velocity profile at the solid-liquid interface [19,20].
Chevalier et al. [19], in particular, introduced the notion
of “frustrated” flow to describe the boundary layers created
close to solid-liquid interfaces in such yield stress materials.
The hydrodynamic configuration chosen in the present study
consists of a steady flow in a rectangular channel in which
an abrupt contraction is located. We focus on the specific
velocity profiles above the dead zone appearing upstream of the
contraction. Indeed, unlike Newtonian fluids for which sudden
cross-section changes cause internal flow separations [22],
viscoplastic fluids tends to smooth out the abrupt contraction
by creating a dead zone, without flow recirculations upstream
of the step, at least for sufficiently low Reynolds numbers and
sufficiently high Herschel-Bulkley numbers [14,15].

The present paper is organized as follows. The experimental
conditions and techniques, as well as the setup, are presented in
Sec. II. Section III focuses on the flow far from the step where a
classical Poiseuille flow configuration is recovered. Section IV
presents a description of the flow above the dead zone, based on
the detailed velocity profiles acquired. Section V demonstrates
the persistence, above the dead zone, of a Poiseuille-like flow
with an apparent slip boundary condition. Finally, a summary
and a final discussion are proposed in Sec. VI.

II. EXPERIMENTAL SETUP

A. Model yield-stress fluid

The fluid used in this experimental study is a solution of
polymer microgel Carbopol at a 0.1 wt% concentration. In the
literature, this material has been widely used as a model vis-
coplastic fluid in standard rheological measurements [23,24],
channel configurations [16,25,26], drag-force studies [27,28],
and more complex hydrodynamics such as gravity-driven
free-surface flows [29–31], fingering instabilities [32,33], and
drop impacts [34,35]. The choice for this yield-stress fluid is
often related to its ease of preparation and to the stability
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FIG. 1. Steady-state flow curves of the Carbopol solution used in
this study: shear stress τ versus shear rate γ̇ in log-log coordinates.
The data points correspond to the average of two rheometrical tests.
Error bars represent the variability between these tests. The dashed
line corresponds to the best adjustment of the Herschel-Bulkley model
given by Eq. (1) with τc = 1.36 Pa, K = 1.84 Pa sn, and n = 0.43.

of its rheological properties over time (i.e., no significant
thixotropy).

Carbopol solution rheology is thoroughly described by the
Herschel-Bulkley (HB) model, which relates, in simple shear,
shear stress τ to shear rate γ̇ according to Refs. [36,37]:

γ̇ = 0 for τ � τc,

τ = τc + Kγ̇ n for τ > τc,
(1)

where τc is the fluid yield stress, K is the fluid consistency,
and n is the flow index. The preparation adopted in the
present study follows a three-stage dispersing technique. First,
6 g of Carbopol powder (ETD 2623) are dissolved in 6 l
of deionized water, under continuous and strong stirring at
1600 rpm for 3 h. Then the neutralization of the dispersion
and the gelification require the addition of 14 ml of sodium

hydroxide at 0.5 mol l−1. This volume has to be carefully
injected at different regions of the solution using a pipette,
avoiding any trapping of bubbles and stirring very slowly at
60 rpm, in order to ensure good homogenization. Finally, a
post-mixing period under medium stirring at 800 rpm for 3 h
gives a transparent gel.

Bulk rheological measurements of the fluid were carried out
with a laboratory rheometer (Bohlin-CVOR), with a parallel
plate geometry 60 mm in diameter. The tool surfaces have
a roughness of around 400–500 μm in order to avoid wall
slip [38,39]. Figure 1 shows the steady-state flow curve
obtained with the Carbopol solution used in this study. Good
agreement with the HB model is indeed observed, which
provides the following rheological parameters: τc = 1.36 Pa,
K = 1.84 Pa sn, and n = 0.43. As detailed in Ref. [31], the
typical errors associated with these rheometrical measure-
ments result in uncertainties on the order of 10% for τc and
K , and less than 2% for n. The density of the Carbopol
solutions is considered to be the same as the density of water:
ρ = 1000 kg m−3.

B. Setup and optical techniques

The experimental setup is illustrated in Fig. 2(a). This
device consists of a closed-loop channel-flow facility, in
which the flow rate is controlled by a gear pump (Verder
VG 330.10, maximum flow rate of 288 l h−1). To create a
solid-liquid interface in the yield-stress fluid, a step 1.5 cm
high is positioned inside the channel. Upstream of the step,
the rectangular channel section is 6.9 cm high and 8 cm wide.
To restrict slip, both the step and the bottom of the rectangular
channel are made of mechanically abraded plexiglas surfaces
characterized by a micron-size roughness. Top and lateral sides
have been left smooth and transparent, to avoid disturbing the
laser illumination and the flow visualization, but at the top wall
it has been checked that slip nevertheless remains negligible,
as discussed later. Roughening the plexiglas was therefore not
necessary to prevent slip in these experiments.
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FIG. 2. (a) Schematic diagram of the experimental setup. The rectangular closed channel (6.9 × 8 × 30 cm3), which contains a step
(1.5 × 8 × 14 cm3), is connected in input to a pump and in output to a tank, itself connected to the pump to form a closed loop. The laser
system is fixed at half-width of the channel and illuminates the area upstream of the step. (b) Picture showing the flow of the yield-stress fluid at
a flow rate Qp = 33.4 cm3 s−1. Visualization of the streamlines and the dead zone results from the calculation of the pixel gray level standard
deviation over 2723 images acquired at 50 Hz. The image resolution is 250 pix cm−1. The classical Poiseuille velocity profiles recovered far
upstream and downstream of the step are illustrated. The dead-zone basal extent is denoted LDZ and the distance from the step, upstream of
which the flow is uniform, is denoted LU.
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The principle of the experiment is to study the flow
upstream of the step, by taking advantage of the transparent
character of the Carbopol solutions that allows flow visu-
alization. The solutions are seeded with micron-size glass
hollow spheres (Aldrich, particle diameters, 9–13 μm; density,
1100 kg m−3), which are assumed to follow the streamlines as
passive tracers and promote light reflection when the fluid is
illuminated by a laser sheet. The position of the laser plane is
set vertically at planar half-width of the channel. Pictures are
taken using a monochrome digital camera at 50 Hz (Photron
Fastcam SA3, 1024 × 1024 pixels) with a macrolens (Sigma
180 mm F3.5 DG macro). To investigate the flow dynamics, we
compute 2D velocity fields using a particle image velocimetry
(PIV) algorithm. In this study, we are only interested in
steady-state flows. Measurements are triggered at least 15 min
after starting the pump, to ensure that the steady-state regime
is fully developed. Velocity fields are averaged over a 1-min
sequence in steady state. The PIV post-processing is performed
by the free software DPIVsoft running in MATLAB [40].

Figure 2(b) displays the standard deviation of pixel gray
levels over a 1-min sequence for a typical experiment. In this
image, we can observe the streamlines and distinguish the
interface between a yielded flow zone and an unyielded, and
truly static, dead zone upstream of the step. The position of
this interface, measured as the points where velocity profiles
depart from zero, will be denoted yint in the following. Two
characteristic lengths are also indicated in Fig. 2(b): LDZ is the
basal extent of the dead zone and LU denotes the distance from
the step upstream of which the flow is uniform. Downstream
of the step, uniform flows are almost immediately recovered.
With the step height D = 1.5 cm, the order of magnitude of
these lengths is LDZ ∼ 3D and LU ∼ 5.5D for all the pump
flow rates studied. It should be noted that these typical lengths
tend to slightly decrease when the flow rate increases, which
indicates a progressive erosion of the dead zone. Along the
channel, we can therefore distinguish two zones of uniform
flow (far upstream of the step, at a distance greater than
LU, and downstream of the step) and a domain in between,
where the flow is nonuniform due to the presence of the dead
zone.

Table I gives a summary of the different experiments
conducted for this study. From the rheological HB parameters
τc, K , n, the pump flow rate Qp, the channel width W and the
flow height H (H = 6.9 cm upstream of the step and H =
5.4 cm downstream), we can compute the Herschel-Bulkley

TABLE I. Summary of the experiments carried out in this study:
Qp is the volumetric flow rate imposed by the pump, U is the
mean velocity calculated by numerical integration of the experimental
velocity profiles, Hb is the Herschel-Bulkley number, and Re is the
generalized Reynolds number, calculated upstream and downstream
of the step.

Qp U up. U down.
(cm3 s−1) (cm s−1) (cm s−1) Hb up. Hb down. Re up. Re down.

14.8 0.17 0.22 2.70 2.15 0.006 0.008
33.4 0.59 0.74 1.57 1.29 0.040 0.052
52.0 1.01 1.25 1.25 1.03 0.094 0.118

number Hb and the generalized Reynolds number Re. The Hb
number is defined as the ratio of the yield stress τc to a nominal
shear stress K( U

H/2 )n, where U is the mean velocity obtained by
integrating the experimental velocity profile along the vertical
direction y. Note that, due to 3D effects (see Appendix),
the above characteristic velocity is slightly different from
the Qp/(HW ) value that would be derived directly from the
pump flow rate. The Re number generalized to HB rheology is
defined as the ratio of the hydrodynamic pressure ρU 2 to the
nominal shear stress.

In this study, the Hb and Re numbers investigated range
from 1 to 2.7, and from 0.006 to 0.118, respectively. According
to previous numerical studies on similar flows [14,15], the
values are too low to generate any recirculation flow in the
corner upstream of the step, which is consistent with our
observations [Fig. 2(b)].

III. POISEUILLE FLOW OF A
HERSCHEL-BULKLEY FLUID

We first examine the flow in the domains undisturbed by the
step, i.e., far upstream and downstream of the step, to validate
the relevance of the fluid’s rheological description.

Without the influence of the step, the flow of the viscoplastic
fluid is purely longitudinal. The velocity profile, u = u(y),
is almost symmetric with respect to the half-height of the
channel. Figure 3 represents all the velocity half-profiles,
for 0 � y � H/2, upstream (H = 6.9 cm) and downstream
(H = 5.4 cm) of the step. Velocity u is equal to zero at
the boundaries (where the shear stress is maximum) and
reaches a constant value in the central zone where the shear
stress falls below the fluid yield stress, resulting in a plug
flow in this central domain of the channel. Note that similar
no-slip boundary conditions are recovered at the bottom and
top walls, respectively, with and without surface roughening.
Accordingly, no-slip boundary conditions are expected to
hold at the lateral smooth walls. However, we show in the
Appendix that the velocity profiles remain invariant in a
large enough portion of the channel width to assume that
velocity measurements at the center are unaffected by side
effects.

We therefore assume that, far enough from the lateral walls,
the flow can be described using the classical 2D Poiseuille
equation:

0 = −∂xp + ∂yτ (y), (2)

where the shear stress τ is given by the HB law [Eq. (1)],
γ̇ = ∂u/∂y. To solve this equation, we consider the pressure
gradient ∂xp as constant, a condition imposed by symmetry in
a longitudinal flow. However, we found, as expected, different
values of this gradient far upstream and downstream of the step,
due to the channel height change and the subsequent section
reduction. It is important to note that, according to Eqs. (1)
and (2), a constant pressure gradient is equivalent to a linear
evolution of γ̇ n with y. Equation (2) can then be integrated
with the following boundary conditions: ∂yu(yplug) = 0 and
u(0) = 0, where yplug denotes the position of the plug onset
and y = 0 is the channel (upstream) or the step (downstream)
bottom boundary.
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FIG. 3. (a) Velocity half-profiles far upstream (open symbols) and downstream (solid symbols) of the step for the three imposed flow rates
Qp = 14.8 cm3 s−1 (squares), Qp = 33.4 cm3 s−1 (circles), Qp = 52.0 cm3 s−1 (triangles). Dashed lines represent the theoretical predictions
with no adjustable parameter (see text for greater detail). The error bar corresponds to an uncertainty of ±1 pixel in the length calibration.
(b) Dimensionless velocity half-profiles to the power n/(n + 1) as a function of dimensionless positions. The line indicates the theoretical
relationship given by Eq. (4). Inset: dimensionless plug positions obtained by linear adjustments of Eq. (4), as a function of the Herschel-Bulkley
number. The dashed line corresponds to the numerical solution of Eq. (5). Uncertainties represent the 95% confidence bounds of the fits.

The analytical expression for this Poiseuille flow of a
Herschel-Bulkley fluid (PHB) can be written as

u =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n
n+1

(− 1
K

∂xp
) 1

n
[
y

n+1
n

plug − (yplug − y)
n+1
n

]
,

for 0 � y � yplug,

n
n+1

(− 1
K

∂xp
) 1

n y
n+1
n

plug = uplug,

for yplug � y � H
2 .

(3)

Outside of the plug zone, Eq. (3) can be rewritten as

(
uplug − u

uplug

) n
n+1

= 1 − y

yplug
. (4)

The plug velocity uplug is acquired from the experimental data
[Fig. 3(a)] by averaging velocity values over the plateau-like
domain. Given the rheological parameter n = 0.43, we can
then use Eq. (4) to determine the onset position of the plug yplug

through a linear fit. Figure 3(b) shows a satisfactory agreement
with the theoretical linear prediction, confirming the overall
validity of the Poiseuille flow description.

To validate the values of yplug inferred from the previous
approach, we compared them to the independent theoretical
predictions derived from the values of the fluid rheological
parameters. Since the pressure gradient is constant, and
acknowledging that the shear stress drops to zero at the
center of the channel by symmetry, we can write −∂xp =
τc/(H

2 − yplug). Hence, by integrating the velocity profile given
in Eq. (3), we obtain the following theoretical relationship

between yplug and the Herschel-Bulkley number Hb:

1 = n

n + 1

(
Hb

1 − 2yplug

H

) 1
n
(

2yplug

H

) n+1
n

(
1 − n

2n + 1

2yplug

H

)
.

(5)

The comparison between the two estimates of yplug is repre-
sented in the inset of Fig. 3(b). We observe that the yplug/H

ratio directly deduced from the velocity profiles follows the
general trend predicted by Eq. (5), but that the data are
systematically slightly above the theoretical line. As suggested
in a recent study [31], this discrepancy probably arises from
the uncertainty on Carbopol rheological properties τc and K .

We compare the experimental velocity profiles to the
theoretical predictions obtained with the value of yplug deduced
through Eq. (5). Indeed, recalling that −∂xp = τc/(H

2 − yplug),
the expression of velocity in Eq. (3) is now completely explicit.
As shown in Fig. 3(a), we find rather good agreement between
the experimental and theoretical profiles, given once again
the uncertainty on Carbopol rheological properties [36,37]. To
conclude, the various analyses presented in this section confirm
that the channel flow far upstream and downstream of the step
is consistent with a 2D Poiseuille flow description coupled
to HB rheology. In particular, it appears that the velocities
measured in the center of channel can indeed be regarded as
unaffected by 3D side effects.

IV. FLOW ABOVE THE DEAD ZONE

In this section, we describe the velocity profiles measured
in the vicinity of the step, above the solid-liquid interface.
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FIG. 4. (a) Reference frame (x, y) tilted by an angle θ from the
horizontal, with an x axis parallel to the reference streamline indicated
in (b). The velocity profiles are acquired along the dotted straight lines
(from a to r).

A. Reference frame

Unlike for the longitudinal flow considered in the previous
section, the presence of the step deviates the streamlines from
the horizontal direction towards the center of the channel
[Fig. 2(b)]. Nevertheless, we note that these streamlines remain
almost parallel, at least far enough from the step corner and
far enough above the dead zone. For greater insight into
the flow behavior in this region, we chose to project the
velocity profiles in a reference frame tilted by an angle θ

which corresponds to the direction of the parallel streamlines
(Fig. 4). Note that we keep the notation (x, y) for the sake
of simplicity. The origin of the axes is fixed at the left
edge of the dead zone and at the channel bottom boundary
[Fig. 4(a)]. Figure 5 shows the longitudinal and transverse
velocities u and v, projected in this tilted reference frame,
for an imposed flow rate of Qp = 33.4 cm3 s−1. The different
profiles correspond to successive longitudinal positions a to r ,
indicated in Fig. 4. We observe that v exhibits maxima that do
not exceed 0.06 cm s−1 for mean velocities varying between
0.6 cm s−1 and 0.7 cm s−1. It therefore appears acceptable to
consider v as second-order compared to u. In the following, we
consequently assume, as a first approximation, that the flow in
the tilted reference frame is purely longitudinal, and we focus
on the analysis of the u velocity profiles along the x axis.

Looking at Fig. 5, it clearly appears that the position yint

where the velocity u departs from zero increases as we get
closer to the step. The solid-liquid interface yint defined from
the velocity profiles matches the dead-zone border observed
on the time-averaged picture (Fig. 5, inset). Far enough from
the lateral walls, we check that this solid-liquid interface
is invariant with respect to the transverse direction (see
Appendix).

Far from the bottom boundary, a constant velocity plateau
can be observed, indicating the presence of a plug, whose value
increases when approaching the step. As will be explained
in the next section, this velocity increase is related to the
progressively diminishing flow section due to the presence of
the dead zone.

In between the solid-liquid interface yint and the plug-zone
onset, a particular point of coordinates (ys, us) can be observed,

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

from a to r

y (cm)

ve
lo

ci
tie

s (
cm

 s-1
)

u= x-component
v= y-component

(ys , us)

from a to r x

r

y

bottom

ys
x

yint

x

slip line

0

FIG. 5. Longitudinal and transverse velocity components u and
v in the tilted reference frame for a flow rate Qp = 33.4 cm3 s−1.
The velocity profiles are acquired along the horizontal positions a

to r . The particular point at which all u profiles intersect lies at the
position ys = 1.42 ± 0.03 cm and corresponds to a velocity us =
0.56 ± 0.02 cm s−1. Inset: image showing the slip line (dashed) y =
ys and the solid-liquid interface y = yint acquired from the velocity
profiles (symbols).

at which all u profiles intersect. This notable feature indicates
that, in the tilted reference frame, there exists a line y = ys

along which all velocity profiles have a constant value:
u(ys) = us (Fig. 5, inset). This line will be called slip line
in the following.

B. Different flow layers

Unlike for the Poiseuille flow, the velocity profiles shown
in Fig. 5 exhibit a change in curvature. To highlight this
inflexion point, Fig. 6 shows the shear-rate profiles, computed
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FIG. 6. Profiles of approximated shear rate γ̇ , calculated by
numerical differentiation of u with respect to y, for the positions
a to r (see Fig. 4). Inset: comparison between γ̇ (symbols) and the
complete shear rate �̇ (dashed lines), for profiles a, k, and r .
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FIG. 7. At position k (see Fig. 4) for a pump-flow rate Qp =
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for the eye), (b) corresponding velocity profile u, with two close-ups at
the dead zone and plug borders, and (c) ratio (uplug − u)/(uplug − us)
to the power n/(n + 1). More details on the different parameters
indicated are provided in the text.

as ∂u/∂y, for the different positions along the x axis. Before
going further, let us discuss this approximation of the shear
rate. In the inset of Fig. 6, we compare the approximated

value γ̇ = ∂yu, to the complete shear rate defined as, in
2D, �̇ = √

4(∂xu)2 + (∂yu + ∂xv)2. Only minute differences
are observed between the two quantities, and hence only γ̇

will be considered in the following. This result implies that
|∂xu| � |∂yu|, which is consistent with our assumption of a
quasiparallel flow in the tilted reference frame.

All shear-rate profiles in Fig. 6 display an initial increase,
starting at the solid-liquid interface, up to a maximal value
corresponding to the velocity inflexion point and denoted by
yi in the following. The shear rate then presents a fluctuating
plateau before decreasing toward the plug zone, where it
reaches zero. The γ̇ maxima, which are systematically located
below the slip point ys, show values that increase from
positions a to r . Advancing toward the step, the growth-phase
slope also gets slightly steeper and the plateau-like transition
zone narrows. This gradual disappearance of the γ̇ increasing
and fluctuating phases, which leads to a purely decreasing
phase, is consistent with the recovery of a pure Poiseuille-like
behavior after the step.

Figure 7(a) shows profiles of γ̇ n (with n = 0.43), which,
according to the HB constitutive law [Eq. (1)], is a quantity
proportional to the shear stress τ . As expected, the shear stress
is minimal, equal to τc, at the solid-liquid interface and in
the central plug zone. Accordingly, the shear stress grows
from the dead-zone border before decreasing to reach the
central-plug zone, with a maximum at yi. On one side, we call
the region lying between yint and yi, the stress-increase (SI)
zone. On the other side, beyond the slip position ys, we
observe that γ̇ n decreases linearly toward the plug zone. This
behavior is reminiscent of the Poiseuille law [Eq. (2)], which
predicts a constant derivative dτ/dy. Consequently, the flow
layer between ys and the plug onset position yplug will be
named the PHB zone. The next section will be devoted to
properly demonstrating that the flow in this zone can indeed
be described with the PHB theory, including an apparent basal
slip. Last, the narrow layer lying between the inflexion point ys

and the slip point ys, is called the transition zone.
Figure 8(a) shows a visualization of these different flow

layers for Qp = 33.4 cm3 s−1. It can be noted that the
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solid-liquid interface is far from parallel to the x axis. This
implies our assumption of a uniform flow in the tilted reference
frame only applied far above the dead zone, typically beyond
the transition zone. Figure 8(b) represents the SI and PHB
zone borders for the three flow-rate values used in this study.
Several interesting features emerge. First, it is observed that
the slip lines almost coincide regardless of the flow rate.
Similarly, leaving aside dispersion of the data, the SI zone
ending positions also seem to be nearly superimposed. As a
result, the transition zone is found to have the same width
for the three flow-rate values. We also note a superposition of
dead-zone borders and plug onset positions for the two highest
flow rates, which possibly suggests a saturation phenomenon
above a certain flow rate. On the contrary, the zone is wider
for the lowest flow rate, the corresponding SI zone is smaller,
and the plug onset position is lower.

V. SLIP LINE

The objective of this section is to demonstrate that, in the
region located above the slip line, flow can be described by
the PHB theory (presented in Sec. III) taking into account an
apparent basal slip.

A. Poiseuille flow with a slip condition

Accounting for the existence of an apparent slip velocity us

at the effective boundary condition y = ys , Eq. (4) becomes
(for ys < y < yplug)

(
uplug − u

uplug − us

) n
n+1

= 1 − y − ys

yplug − ys
. (6)

Figure 7(b) displays a typical velocity profile where the slip
point (ys,us) is indicated. Following the approach presented in
Sec. III, the plug velocity uplug can be obtained by averaging
velocity values over the plateau-like domain. Knowing the
quantities us and ys, and given the rheological parameter n =
0.43, we then obtain the onset position yplug through a linear
fit using Eq. (6) [Fig. 7(c)]. Figure 9 shows the values of
(uplug − u)/(uplug − us) as a function of (y − ys)/(yplug − ys)
obtained for all the velocity profiles and the three flow rates
investigated. In the PHB zone, for y > ys, a clear collapse of
all the data into a single trend is observed. The master curve
follows the linear trend predicted by Eq. (6) (thick dashed line)
almost perfectly. This good agreement reflects the relevance of
using PHB theory with a slip condition to describe this upper
part of the flow above the dead zone.

B. Evolution of the plug velocity

Figure 8(b) shows that the plug onset position measured
in the PHB zone above the solid-liquid interface seems
to connect smoothly with the plug positions obtained far
upstream and downstream of the step. Moreover, as already
noted from Fig. 5, plug velocity uplug regularly and almost
linearly increases while advancing toward the step, here again
smoothly connecting the plug velocity values obtained far
upstream and downstream of the step. To rationalize this
behavior, we propose an approach based on the 2D mass
balance along the channel. Disregarding possible 3D effects
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FIG. 9. Scaling obtained by plotting dimensionless velocities
(uplug − u)/(uplug − us) to the power n/(n + 1) as a function of
dimensionless positions (y − ys)/(yplug − ys), for different pump flow
rates: Qp = 14.8 cm3 s−1 (squares), Qp = 33.4 cm3 s−1 (circles), and
Qp = 52.0 cm3 s−1 (triangles). The thick dashed line represents the
theoretical prediction of Eq. (6).

(see Appendix), the flow rate Qp can be written as

Qp = W

∫ H

0
u(y)dy, (7)

where u is defined in Eq. (4), W is the channel width, and H

is the flow height. For a uniform Poiseuille flow (far upstream
and downstream of the step), we obtain the following relation
between plug velocity uplug and flow rate Qp:

uplug = Qp

WH
(
1 − 2n

2n+1
yplug

H

) . (8)

Hence, whereas for a Newtonian fluid the maximum velocity
would simply be half the mean velocity, in the present case, the
relationship between the maximum velocity, i.e., uplug, and the
mean velocity defined by Qp/WH depends on the rheological
parameter n and the yplug/H ratio.

To extend the above relation to the solid-liquid inter-
face domain, we suggest simplifying the velocity profile
by considering the portion below the slip position ys as
approximately linear, as illustrated in Fig. 10(a). Three typical
lengths can then be defined: H ′ = H − yint, δplug = yplug − ys,
and δs = ys − yint. The velocity profile can be integrated by
assuming, moreover, that the flow rate in the bottom half of
the flow region, namely 0 < y − yint < H ′/2, is exactly half
of the total flow rate Qp. The resulting flow rate is composed
of a Poiseuille-type part for u > us and a part for u < us,
which reads usW (H ′/2 − δs) + usWδs/2 = usW (H ′ − δs)/2.
By introducing the flow rate Qeff = Qp − usW (H ′ − δs), we
can finally write the following generalized relationship for
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uplug, which takes into account the apparent slip us:

uplug = us + Qeff

W (H ′ − 2δs)
(
1 − 2n

2n+1
δplug

H ′−2δs

) . (9)

Note that far upstream and downstream of the step, where
us = 0 and ys = yint = 0, Eq. (8) is obviously recovered.
Figure 10(b) represents uplug as a function of the quantity us +
Qeff/Seff , where Seff = W (H ′ − 2δs)(1 − 2n

2n+1
δplug

H ′−2δs
), for all

the measured velocity profiles with the three flow rates studied.
All the data are quite satisfactorily gathered onto the tendency
predicted by Eq. (9). Focusing first on the far upstream and
downstream of the step zones, the discrepancy between the
experimental data and the 2D prediction of Eq. (8) is less
than 30%. This quantitative discrepancy can be attributed to
the 3D effects that are not accounted for in the previous flow
rate estimates (see Appendix). Regarding the data obtained
above the solid-liquid interface, good agreement with the
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theoretical prediction confirms that, except for a thin transition
layer, the flow in this region can be described as a Poiseuille
flow in a channel with varying cross sections, provided an
apparent slip velocity is accounted for. Interestingly, this
approach allows us to rationalize, within the same framework,
the evolution of uplug with Qp for all of the flow along the
channel.

C. Evolution of the slip line with flow parameters

Figure 11(a) shows the flow above the dead zone, including
the slip line that marks the transition between the PHB flow
zone above and the transition and SI zones below. We already
mentioned (Sec. IV B) that the position of this slip line appears
almost independent of the flow rate Qp. Here, we characterize
this line by different geometrical parameters, whose evolution
with Qp is studied in greater detail. As shown in Figs. 11(c)–
11(e), none of these geometrical parameters, namely the
inclination angle θ of the slip line, i.e., the inclination of
the tilted reference frame, the height hs extrapolated from
the slip line at the edge of the step, and the horizontal length
Ls = hs/tanθ , appear to depend significantly on Qp within
the range studied. It should also be noted that despite the lack
of measurements further upstream of the step, we expect that
the slip line cannot remain straight at the approach of the
bottom boundary where velocity is equal to zero. Once again,
we emphasize that this notion of slip, and more generally the
tilted reference frame validity, are only relevant in the scope of
a local-scale study above the dead zone and far enough from
the step.

VI. SUMMARY AND FINAL DISCUSSION

The present study was carried out to investigate the
coexistence between solid-like and liquid-like regions in a
yield-stress fluid flow. Experiments involving the flow of
Carbopol solutions in a rectangular channel with a step were
conducted. In the conditions of this study, with Hb numbers
on the order of 1 and Re numbers varying between 0.01
and 0.1, a static domain forms upstream of the step, without
any recirculation flow [14,15]. Using optical monitoring, we
gained insight into the internal flow dynamics through PIV
measurements. The main work in this paper concerned the
detailed measurements of the velocity profiles above the
dead zone. We demonstrated that Poiseuille hydrodynamics,
including Herschel-Bulkley rheology (PHB), describe the flow
from the plug almost to the solid-liquid interface, consistently
with the flow far upstream and downstream of the step.
However, the existence of an apparent slip line needs to be
considered. Above this frontier, velocity profiles acquired in
a tilted reference frame parallel to the streamlines increase
from a constant value (assimilated to the slip velocity) and
are well-adjusted by the PHB prediction. It was also found
that flow rate only influences the value of the slip velocity
but does not change the location of the slip line. Finally,
we also qualitatively described the flow in between the slip
line and the dead-zone border. Unlike the classical Poiseuille
flow whose maximum shear rate occurs at the boundary, we
observed that the shear rate at the static domain border was
zero and increased up to a maximum in the vicinity of the slip

line. This specific stress-increase zone connects the boundary
condition imposed by the dead zone (τ = τc and γ̇ = 0) to the
Poiseuille-like flow above.

One could wonder to what extent the slip line concept
proposed in this paper could be generalized to other flow
configurations involving the formation of a solid-liquid in-
terface in yield-stress fluids. In Ref. [20] the authors report
on velocity profiles in an extrusion flow and in particular in
the vicinity of the die entrance, where a dead zone forms.
Unfortunately, the spatial resolution of velocity measurements
in this study appears too low to identify a potential slip
line. More recently, another experimental study on frustrated
viscoplastic flows [19] reports on velocity profiles that present
similarities with those observed in the present study. In this
paper, the velocity profiles in the boundary layer separating
two unyielded regions is described as almost linear. Our
experiments, with a higher spatial resolution, reveal more
complex hydrodynamics in this boundary layer. We actually
observe a zone where the shear rate is approximately constant
but is not directly connected to the dead-zone border. In the
vicinity of the solid-liquid interface, the plateau-like shear rate
layer zone is preceded by a zone in which the shear rate rapidly
increases, thus fulfilling the condition τ = τc on the interface.
On the other side, connection with the central plug zone where
τ = τc again occurs through a Poiseuille-like layer. Similar
to Ref. [19], we found that the total size of this boundary
layer (i.e., from yint to yplug) tends to decrease as the flow rate
decreases [Fig. 8(b)].

Further understanding of the flow behavior above the dead
zone will require a closer investigation of velocity profiles
evolution between the solid-liquid interface and the slip line.
In Fig. 9, it can already be noted that the collapse predicted by
the PHB model is no longer achieved for y < ys. This indicates
that important ingredients are missing in this model to des-
cribe the full velocity profile in a single framework. In
particular, the assumption of a purely longitudinal flow in the
tilted reference frame, cannot be applied in the SI zone where
the transverse velocity components become nonnegligible.
More refined analyses will be necessary to focus specifically
on this stress-increase zone.
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APPENDIX: 3D VELOCITY PROFILE

To evaluate the 3D effects involved in this experiment, we
carried out a specific study to measure velocity fields outside
of the channel midplane, for both the Poiseuille flow domains
far upstream of the step and the flow above the dead zone. The
laser was mounted on a translation stage, allowing us to scan
the entire channel width. PIV measurements were acquired
every 1 cm along the z axis. Note that the fluid used in these
experiments has slightly different rheological parameters than
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FIG. 12. (Color online) (a) 3D longitudinal velocity mapping in the uniform flow far upstream of the step, and (b) 3D mapping of the
solid-liquid interface, for a Carbopol solution at 0.1 wt% whose HB parameters are: τc = 0.83 Pa, K = 1.42 Pa sn, and n = 0.44, for a flow
rate Qp = 31.1 cm3 s−1.

for the rest of our results (Fig. 12). Figure 12(a) shows the 3D
velocity map obtained by linear interpolation of the PIV data.
We observe a well-defined central plug zone whose extension
along the z axis occupies approximately 40% of the width. The
2D analysis performed in this paper is based on the existence
of this large zone invariant with z in the center of the channel.
Lateral boundaries therefore seem to induce similar shearing
as the top and bottom boundaries.

We also investigated how the lateral boundaries and corners
affect the shape of the solid-liquid interface [Fig. 10(b)].
We note that, in a first approximation, this interface can be
considered to be independent of z except close to the lateral
boundaries, where a slight excavation can be noted, probably
due to the additional shearing undergone by the fluid in this
zone. Thus, once again, a 2D description of the velocity profiles
appears sufficient far enough from the lateral walls.
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transitional and turbulent flow of yield stress fluid in a pipe,
J. Non-Newtonian Fluid Mech. 128, 172 (2005).

[26] B. Guzel, T. Burghelea, I. A. Frigaard, and D. M.
Martinez, Observation of laminar–turbulent transition of a yield
stress fluid in Hagen–Poiseuille flow, J. Fluid Mech. 627, 97
(2009).

[27] D. D. Atapattu, R. P. Chhabra, and P. H. T. Uhlherr,
Creeping sphere motion in Herschel-Bulkley fluids: Flow
field and drag, J. Non-Newtonian Fluid Mech. 59, 245
(1995).

[28] H. Tabuteau, P. Coussot, and J. R. de Bruyn, Drag force on a
sphere in steady motion through a yield-stress fluid, J. Rheol.
51, 125 (2007).

[29] G. Chambon, A. Ghemmour, and D. Laigle, Gravity-driven
surges of a viscoplastic fluid: An experimental study, J. Non-
Newtonian Fluid Mech. 158, 54 (2009).

[30] C. Ancey and S. Cochard, The dam-break problem for
Herschel–Bulkley viscoplastic fluids down steep flumes,
J. Non-Newtonian Fluid Mech. 158, 18 (2009).

[31] G. Chambon, A. Ghemmour, and M. Naaim, Experimental
investigation of viscoplastic free-surface flows in a steady
uniform regime, J. Fluid Mech. 754, 332 (2014).

[32] A. Lindner, P. Coussot, and D. Bonn, Viscous fingering in a
yield stress fluid, Phys. Rev. Lett. 85, 314 (2000).

[33] K. E. Holloway, H. Tabuteau, and J. R. de Bruyn, Spreading and
fingering in a yield-stress fluid during spin coating, Rheol. Acta
49, 245 (2010).

[34] L. H. Luu and Y. Forterre, Drop impact of yield-stress fluids,
J. Fluid Mech. 632, 301 (2009).

[35] L. H. Luu and Y. Forterre, Giant drag reduction in complex fluid
drops on rough hydrophobic surfaces, Phys. Rev. Lett. 110,
184501 (2013).

[36] F. K. Oppong, L. Rubatat, B. J. Frisken, A. E. Bailey, and J. R.
de Bruyn, Microrheology and structure of a yield-stress polymer
gel, Phys. Rev. E 73, 041405 (2006).

[37] J. M. Piau, Carbopol gels: Elastoviscoplastic and slippery
glasses made of individual swollen sponges: Meso- and macro-
scopic properties, constitutive equations and scaling laws,
J. Non-Newtonian Fluid Mech. 66, 051305 (2007).

[38] A. Magnin and J. M. Piau, Cone-and-plate rheometry of yield
stress fluids. Study of an aqueous gel, J. Non-Newtonian Fluid
Mech. 23, 91 (1987).

[39] H. A. Barnes, A review of the slip (wall depletion) of polymer
solutions, emulsions and particle suspensions in viscometers: Its
cause, character, and cure, J. Non-Newtonian Fluid Mech. 56,
221 (1995).

[40] Open-source software developed by P. Meunier and T. Leweke
at the IRPHE laboratory in Marseille, France.

013013-11

http://dx.doi.org/10.1016/j.jnnfm.2011.01.009
http://dx.doi.org/10.1016/j.jnnfm.2011.01.009
http://dx.doi.org/10.1016/j.jnnfm.2011.01.009
http://dx.doi.org/10.1016/j.jnnfm.2011.01.009
http://dx.doi.org/10.1016/j.jnnfm.2013.07.002
http://dx.doi.org/10.1016/j.jnnfm.2013.07.002
http://dx.doi.org/10.1016/j.jnnfm.2013.07.002
http://dx.doi.org/10.1016/j.jnnfm.2013.07.002
http://dx.doi.org/10.1209/0295-5075/102/48002
http://dx.doi.org/10.1209/0295-5075/102/48002
http://dx.doi.org/10.1209/0295-5075/102/48002
http://dx.doi.org/10.1209/0295-5075/102/48002
http://dx.doi.org/10.1016/j.jnnfm.2010.01.015
http://dx.doi.org/10.1016/j.jnnfm.2010.01.015
http://dx.doi.org/10.1016/j.jnnfm.2010.01.015
http://dx.doi.org/10.1016/j.jnnfm.2010.01.015
http://dx.doi.org/10.1016/j.jnnfm.2011.03.004
http://dx.doi.org/10.1016/j.jnnfm.2011.03.004
http://dx.doi.org/10.1016/j.jnnfm.2011.03.004
http://dx.doi.org/10.1016/j.jnnfm.2011.03.004
http://dx.doi.org/10.1017/S0022112083002839
http://dx.doi.org/10.1017/S0022112083002839
http://dx.doi.org/10.1017/S0022112083002839
http://dx.doi.org/10.1017/S0022112083002839
http://dx.doi.org/10.1016/0377-0257(90)85005-J
http://dx.doi.org/10.1016/0377-0257(90)85005-J
http://dx.doi.org/10.1016/0377-0257(90)85005-J
http://dx.doi.org/10.1016/0377-0257(90)85005-J
http://dx.doi.org/10.1103/PhysRevLett.104.208301
http://dx.doi.org/10.1103/PhysRevLett.104.208301
http://dx.doi.org/10.1103/PhysRevLett.104.208301
http://dx.doi.org/10.1103/PhysRevLett.104.208301
http://dx.doi.org/10.1016/j.jnnfm.2005.03.008
http://dx.doi.org/10.1016/j.jnnfm.2005.03.008
http://dx.doi.org/10.1016/j.jnnfm.2005.03.008
http://dx.doi.org/10.1016/j.jnnfm.2005.03.008
http://dx.doi.org/10.1017/S0022112009005813
http://dx.doi.org/10.1017/S0022112009005813
http://dx.doi.org/10.1017/S0022112009005813
http://dx.doi.org/10.1017/S0022112009005813
http://dx.doi.org/10.1016/0377-0257(95)01373-4
http://dx.doi.org/10.1016/0377-0257(95)01373-4
http://dx.doi.org/10.1016/0377-0257(95)01373-4
http://dx.doi.org/10.1016/0377-0257(95)01373-4
http://dx.doi.org/10.1122/1.2401614
http://dx.doi.org/10.1122/1.2401614
http://dx.doi.org/10.1122/1.2401614
http://dx.doi.org/10.1122/1.2401614
http://dx.doi.org/10.1016/j.jnnfm.2008.08.006
http://dx.doi.org/10.1016/j.jnnfm.2008.08.006
http://dx.doi.org/10.1016/j.jnnfm.2008.08.006
http://dx.doi.org/10.1016/j.jnnfm.2008.08.006
http://dx.doi.org/10.1016/j.jnnfm.2008.08.008
http://dx.doi.org/10.1016/j.jnnfm.2008.08.008
http://dx.doi.org/10.1016/j.jnnfm.2008.08.008
http://dx.doi.org/10.1016/j.jnnfm.2008.08.008
http://dx.doi.org/10.1017/jfm.2014.378
http://dx.doi.org/10.1017/jfm.2014.378
http://dx.doi.org/10.1017/jfm.2014.378
http://dx.doi.org/10.1017/jfm.2014.378
http://dx.doi.org/10.1103/PhysRevLett.85.314
http://dx.doi.org/10.1103/PhysRevLett.85.314
http://dx.doi.org/10.1103/PhysRevLett.85.314
http://dx.doi.org/10.1103/PhysRevLett.85.314
http://dx.doi.org/10.1007/s00397-009-0409-1
http://dx.doi.org/10.1007/s00397-009-0409-1
http://dx.doi.org/10.1007/s00397-009-0409-1
http://dx.doi.org/10.1007/s00397-009-0409-1
http://dx.doi.org/10.1017/S0022112009007198
http://dx.doi.org/10.1017/S0022112009007198
http://dx.doi.org/10.1017/S0022112009007198
http://dx.doi.org/10.1017/S0022112009007198
http://dx.doi.org/10.1103/PhysRevLett.110.184501
http://dx.doi.org/10.1103/PhysRevLett.110.184501
http://dx.doi.org/10.1103/PhysRevLett.110.184501
http://dx.doi.org/10.1103/PhysRevLett.110.184501
http://dx.doi.org/10.1103/PhysRevE.73.041405
http://dx.doi.org/10.1103/PhysRevE.73.041405
http://dx.doi.org/10.1103/PhysRevE.73.041405
http://dx.doi.org/10.1103/PhysRevE.73.041405
http://dx.doi.org/10.1016/0377-0257(87)80012-5
http://dx.doi.org/10.1016/0377-0257(87)80012-5
http://dx.doi.org/10.1016/0377-0257(87)80012-5
http://dx.doi.org/10.1016/0377-0257(87)80012-5
http://dx.doi.org/10.1016/0377-0257(94)01282-M
http://dx.doi.org/10.1016/0377-0257(94)01282-M
http://dx.doi.org/10.1016/0377-0257(94)01282-M
http://dx.doi.org/10.1016/0377-0257(94)01282-M



