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Electrocapillary drop actuation and fingering instability in a planar Hele-Shaw cell
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The electrically driven displacement of a viscous poorly conducting Newtonian fluid drop positioned between
conducting parallel plates is studied both theoretically and experimentally. A mathematical expression for the
average-steady velocity is developed by using Darcy flow analysis with an interface pressure that includes a
contribution from Maxwell stresses at the advancing gas-liquid boundary. Experiments were performed using
silicone oil at plate separation distances less than the capillary length for voltages ranging 250–750 V resulting
in a change in velocity of approximately one order of magnitude. This suggested that the driving force was
proportional to the square of the applied voltage, a feature that is common among fluid motion driven by
electrical phenomena. The trailing interface revealed a disturbance for large fluid displacements that is analogous
to a fingering instability. The channel widths were small such that we could predict the transition from a single
finger that grows linearly to a single finger that grows exponentially and to multiple fingers that grow exponentially,
all occurring within the range of voltages studied. The theory and experiments show good agreement with classic
interfacial linear stability analysis.
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I. INTRODUCTION

In this paper we investigate an efficient method to trans-
port a liquid drop over a relatively short distance in a
two-dimensional Hele-Shaw cell channel. The immediate
attractiveness of this actuation method will impact fields
where liquid transport in confined geometries driven by means
requiring no moving parts is desirable. The technique utilizes
electric-Maxwell stresses generated along the interface of a
nonaqueous dielectric liquid [1–3]. Poorly conducting fluids
such as oils, which tend to wet most surfaces, are examples
of dielectric liquids. Electrically driven actuation of an oil
is not generated by the pressure gradient resulting from a
change in local interface curvature that is typically associated
with electrowetting on dielectric (EWOD) surfaces [4–8].
Instead, dielectrophoretic (DEP) forces generate a net normal
component of the Maxwell stress. The net normal stress
produces an effect at the gas-liquid interface that is similar
to a capillary pressure or an electrocapillary pressure [9].
Furthermore, low power consumption is guaranteed when
actuating poorly conducting fluids. This is a direct result of oils
being very poor conductors with electrical conductivities that
are approximately five to seven orders of magnitude smaller
than most aqueous liquids. So a small but finite current will
yield a large value for the voltage, φ0, and subsequently even
larger values for the electric field, the square of which is used to
calculate values for the Maxwell stress [10–14]. Furthermore,
all analyses for the utilization of DEP for liquid actuation
result in velocities that are independent of the plate separation
distance [9,15]. This is a direct result of the electrocapillary
pressure being proportional to the inverse of the square of the
plate separation distance. Also consider that most oils possess
excellent thermal stability allowing them to operate under high
temperature conditions. This guarantees their stability against
evaporation and also opens up the possibility of utilizing
drop actuation in confined geometries for the purpose of heat
transfer [16].

Many recent developments in regard to liquid actuation
though have centered on developing devices based on the
electrowetting phenomenon, or more precisely electrowetting
on a dielectric (EWOD) surface [17–19]. But most of these
studies are performed by the utilization of thin-solid dielectric
coatings on the electrode surfaces in order to reduce the
harmful effects of the relatively large electrical currents
[O(1 mA) for EWOD versus O(1 μA) for DEP] that are
required when drop actuation is generated by electrowetting
[4–8]. Furthermore, the dielectric layer is hydrophobic causing
aqueous liquids to have larger contact angles than they would
on a bare-metal electrode surface. Neither transport method is
a new topic and both have a literature dating back to the late
1800s when Pellat [20] and Lippman [21] separately studied
dielectric and electrowetting behavior. For EWOD systems
determining the relationship between velocity and voltage is
not easy because the moving contact line heavily influences
stability [5,22,23]. This can lead to hysteric motion making
bistability impossible.

The direct mathematical analysis of drop motion when
governed by DEP exists because it is rather straightforward
to relate bulk fluid motion to a net normal stress acting along
a fluid-fluid interface. To demonstrate this fact consider a
parallel plate capacitor with gap dimension b that is much less
than the liquid capillary length �c, and a channel width a that is
much larger a/�c > 1. The system is one of the many electrical
analogs to a pump or gravity driven Hele-Shaw cell device
[8,24–26]. For this particular system the device is partially
filled with a drop of silicone oil, an amount just large enough
to cover a trench etched into one of the indium-tin-oxide (ITO)
electrode surfaces. The purpose of etching the trench is so that
the trailing interface (x = xT initially located at xT0 = 0) and
the top electrode of the device may be grounded while the ad-
vancing interface (x = xN ) of the drop can be held at constant
electric potential φ0 (see Fig. 1). The wetting properties of the
liquid and substrate are such that the contact angle and hence
the largest capillary pressures γ /b are initially the same at
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FIG. 1. (a) Side view of a horizontal parallel plate electrode Hele-Shaw cell. The substrate is glass coated with a thin layer of indium-tin-oxide
(ITO) metal. A laser is used to etch a trench in the center of the bottom channel so that a separate change may be applied to the left and bottom
halves. (b) Top view of Hele-Shaw cell apparatus. Here the channel width and other relevant quantities are displayed.

the leading and trailing interfaces. Electrowetting may reduce
the leading edge pressure but the surface tension (∼15 mN/m)
and contact angle α ∼ 0 are small so that any reduction in
these quantities will be negligible when compared to the
electrocapillary pressure [3].

The speed of the trailing interface’s finger tip for low voltage
is linear and can be determined using mass conservation similar
to the analysis of Fairbrother and Stubbs [27], i.e., uT ∝ ūN

where uT is the velocity at the finger’s tip. But for many of
the experiments performed we observed exponential growth
of the trailing interface’s finger tip position with respect to
time. This justifies employing Saffman-Taylor’s linear stability
analysis [28–32] to determine critical behavior in terms of the
applied voltage. In the analysis here we have set the wavelength
from Saffman-Taylor’s linear stability analysis equal to the
measured width of the finger generated by the penetrating
fluid. We justify setting the wavelength equal to the width
of the finger since the wavelength according to the Saffman-
Taylor analysis divided by the channel width is almost unity,
λ/a ∼ 1, for the range of voltage-generated velocities studied
here. Therefore, within the range of experimental parameters
studied exists the transition from a Fairbrother and Stubbs
type analysis (trailing interface velocity determined by mass
conservation) [27] to Saffman-Taylor type analysis (trailing
interface velocity determined by linear stability analysis)

[28–32]. If this is correct then we can double the value
of the measured wavelength and compare with the values
determined from the Saffman-Taylor analysis to predict the
onset of exponential growth of a single finger which we call
the first critical voltage, φ0λ/2 . Furthermore, we are able to
directly use the Saffman-Taylor analysis to predict the critical
voltage for the transition to tip splitting, called the second
critical voltage, φ0λ

.
Experiments were performed to test the validity of the

electrocapillary approximation limit that is based on an
electrohydrostatic model. The interest here was to test the
hypothesis of a voltage based velocity as the operating
parameter for flows driven by electrocapillary pressure. This
was done by providing elapsed time versus both advancing and
trailing interface positions for a range of voltages, resulting
in velocities that span a decade in value. An electrocapillary
linear stability analysis based on the Saffman-Taylor procedure
is presented in the next section. Following this section are the
experimental setup and procedure with some discussion of the
results. First, the advancing interface velocity is measured and
compared with theoretically predicted values. Then the trailing
interface’s finger tip velocity and interface morphologies are
observed and characterized as a function of the operating
parameters all in the context of the Saffman-Taylor stability
analysis. The experiments will be compared with the analytical
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results with a discussion of possible sources for the qualitative
and quantitative discrepancy between theory and experiments.
Finally, some concluding remarks and future experiments are
presented in the last section.

II. ELECTROCAPILLARY LINEAR STABILITY ANALYSIS

A. Electrically driven Darcy flow

Consider the geometry shown in Fig. 1 of a parallel plate
electrode apparatus separated by a uniform distance b with
channel width a. The channel is filled with a silicone oil
drop of volume V . The liquid wets all of the channel wall
surfaces. A visible wetting layer of thickness δ extends from
the minimum spanwise meniscus xN0 , at the region containing
the side channel walls and fluid-fluid interface. The distance
between the plates is much less than the capillary length, or the
hydrostatic Bond number is small Bo = (b/�c)2 � 1 where
�c = √

�ρg/2γ . Here ρL (ρL � ρG) is the liquid phase
density density, g is the gravitation acceleration constant, and
γ is the surface tension. The relevant fluid electrical properties
are the conductivity σG, σL and the electric permittivity εGε0,
εLε0, respectively, where ε0 is the permittivity of free space.
Air has a conductivity that is typically assumed to be zero,
σG ≈ 0, while silicone oil has a value σL ≈ 10−13 S/m. The
electrode plates consist of indium-tin-oxide (ITO) metal coated
glass pieces. On the bottom plate a trench is etched along the
centerline spanning the y direction by removing the metallic
material with a laser until there is no electrical connection
between the two halves that contain ITO. The trench depth is
much smaller than the distance separating the parallel plates,
while the trench width is larger than the plate separation
distance b but much less than the channel width a. With this
configuration it is possible to apply a positive voltage to either
side of the bottom plate while grounding the other.

Silicone oil is a dielectric liquid that contains no free
charges so ∇2φ = 0, where φ is the electric potential [10,11].
The air-liquid interface also cannot generate free charges
even in the presence of strong electric fields except during
dielectric breakdown. The liquid volume is large enough such
that the liquid covers the trench but does not completely fill
the channel. The top plate is grounded, φ = 0, along with
the right half of the bottom electrode. Along the top and
bottom electrodes that overlap the advancing interface of the
drop, the electric potential is held constant at φ = φ0. In
the region away from the gas-liquid interface the potential
varies linearly like φ(x) = φ0z/a, and the electric field E =
−dφ(x)/dx = −φ0/a is uniform. The interface spanning the
distance separating the plates is treated as a rigid surface that
is not deformed by either the electric field or fluid motion. This
allows one to determine the electric field along the interface
by using electrical boundary conditions for poorly conducting
fluids [3]. Then with the electric field it is possible to determine
the electrical contribution to the interfacial pressure.

As the external voltage is applied to the other half of the
bottom electrode the advancing interface of the liquid drop
travels the distance of the unfilled portion of the channel after
a certain amount of elapsed time t . Given that the span and
length of the device are both much larger than b we conclude
that it is sufficient to describe the liquid pressure by using

the familiar Darcy flow equations. The equation are applicable

for the advancing liquid with uN = − b2

12μ

dPL
dx

. This equation

can be integrated once to yield PL(x) = − 12μuN

a
x + C0. The

constant is set equal to the reference pressure, or C0 = 0.
Explicit expressions for the pressure and velocity along the
advancing interface, x = xN , are discussed in Appendix A.
The analysis results in an expression for the average velocity of

ūN = �εε0φ
2
0

24μxN0

[
1 − δ

4xN0

]
, (1)

where the wetting layer length δ (see Fig. 1) appears in the
expression.

The electric Reynolds and electric capillary numbers, writ-
ten in terms of the average velocity, are ReE = ūN b

ν
and CaE =

ūNμ

γ
, respectively. Note that the electric capillary number [33]

with δ/xN0 → 0 is analogous to the electrohydrostatic Bond
number. Here, we seek to predict the first and second critical
voltages φ0λ/2 and φ0λ

corresponding to the appearance of a
single finger and multiple fingers at the trailing interface,
respectively, in terms of the capillary number. Expressions
for these values in terms of the advancing interface velocity,
physical properties, and device dimensions are developed in
the next section.

B. Saffman-Taylor instability analysis:
Trailing interface velocity

As mentioned in the Introduction the ability to move the
drop in a high aspect ratio geometry is a highly desirable
feature of the proposed liquid actuation method. But the
geometry also complicates the problem of stable and bistable
motion of the drop since the fluid wets the surfaces. For
wetting liquids the gas phase must penetrate the channel as the
trailing interface forms and expands with a concave meniscus
spanning the channel, called a finger. The stability of the
trailing interface has been studied in a similar context and we
apply the results of those analyses for this particular problem.
The goal is to determine the stability criteria in terms of applied
voltage φ0 that can be tested experimentally.

It should be noted that a single finger appears in the
stable case but with a steady velocity that is faster than the
advancing one [27,34]. The velocity of the trailing interface
for this special situation can be determined according to mass
conservation [27]. But that analysis is not developed in this
paper since it yields a stable (linear relationship) condition.
Instead we focus on developing expressions between the
applied voltage, physical properties, and device dimensions
for the condition where a larger voltage is applied. For larger
applied voltages the trailing interface finger narrows in some
cases, or splits in others, and then translates at an exponential
growth rate. The critical wavelength for this to occur will be
expressed in terms of the half and full wavelength values, or
first and second critical voltage, respectively, as mentioned in
the Introduction.

According to the Saffman-Taylor stability analysis the
trailing interface velocity is determined by considering per-
turbation to the trailing interface of the form

xT = Cβeiny+βkt . (2)
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Here n = 2π/λ is the wave number, Cβ is a scaling constant,
and βk is the growth rate. The variable i is an imaginary
number so the equation suggests that positive values for the
growth rate produce harmonic disturbance along the interface
in the y direction. The channel of width b is on the order of
a single finger’s width. An instability of one full wavelength
represents both a peak and a trough while a single finger is only
a peak. Therefore we use the half, k = λ/2, and full, k = λ,
wavelengths to denote the onset of the exponential growth rate
for single and multiple fingers, respectively. The velocity of the
trailing interface uT = ūN + Cββke

iny+βkt is determined from
continuity similar to the analysis of Fairbrother and Stubb [27]
but with the perturbations to the interface described above. The
stability analysis is performed by inserting the pressure from
the curvature spanning the channel κa = d2xT

dy2 into the Darcy
flow solution for the velocity [28,29]. Plugging in the terms
for the velocity we see that β = 0 for critical wavelengths
λcrit � πbCa−1/2

E , i.e., there will be no exponential growth
rate of the single finger that forms. For πbCa−1/2

E < λcrit <

2πbCa−1/2
E a single finger will form and grow at an exponential

rate. Likewise for λcrit � 2πbCa−1/2
E the interface will grow

exponentially but with multiple fingers.
The critical stability according to the Saffman-Taylor

analysis leads to the critical voltages φ0k
:

πb

a

(
6γ xN0

�εε0
[
1 − δ

4xN0

]
)1/2

< φ0λ/2 <
2πb

a

(
6γ xN0

�εε0
[
1 − δ

4xN0

]
)1/2

(3)

for the first critical voltage associated with the exponential
growth rate of a single finger and

φ0λ
� 2πb

a

(
6γ xN0

�εε0
[
1 − δ

4xN0

]
)1/2

, (4)

for the second critical voltage associated with the exponential
growth of multiple fingers. According to these two expressions
a larger value for the wetting layer length relative to the
minimum drop length δ/xN0 tends to increase the critical
voltages.

A dimensionless relationship between the product of the
growth rate and instability wavelength βλ can be written as a
function of the capillary number and a term involving the plate
separation distance and λ or

Nβλ/2 = βλμ

πγ
= CaE − 1

12

(
bπ

λ

)2

(5)

for the growth rate of a single finger and

Nβλ
= βλμ

2πγ
= CaE − 1

3

(
bπ

λ

)2

(6)

for the growth rate of a multiple ones. In the following sections
experiments that were performed to test the main hypothesis
for leading edge velocity, instability wavelength, and growth
rate are discussed.

III. EXPERIMENTS: MATERIALS AND PROCEDURE

The parallel plate electrodes each consisted of a (75 ×
50 mm2) piece of ITO (indium-tin-oxide) coated glass (Delta
Technologies). The metal coated surfaces had a roughness
of < 0.02 μm per 5-mm peak to peak distance making them
extremely flat and smooth reducing the possibility of contact
line effects [22]. The distance between the plates b was fixed at
either 50, 100, or 150 μm using precision spacers (Accutrex)
and paper clamps. Spacers were placed apart at either a = 15
or 30 mm for a given experimental setup. Wires for the power
supply and ground connections were attached to each piece of
glass using alligator clips. This apparatus was placed on a small
stand with black paper in the background that helped enhance
image contrast (see Fig. 2 for the setup). The electric potential
was applied using a low power Spellman high-voltage unit
capable of 2 kV maximum output at 0.5 mA.

Three different oil viscosities were used in the experiments:
5, 10, and 100 centistokes silicone oils or equivalently
μ = 0.0048, 0.0096, and 0.096 Pa s, each with density of
approximately 960 kg/m3. The electric permittivity constant
was measured previously to be εL = 2.9 for the silicone
oil (εG ≈ 1 for air) and is independent of viscosity. ε0 =
8.854 × 10−12 N V−2 for the permittivity of free space. The
surface tension was approximately 16–20 mN/m, for silicone
oil on ITO based on previous studies [3]. Voltages ranged
250–750 V when possible and in 125-V increments. For the
smallest plate separation distance of 50 μm it was not possible
to generate dc voltages at the two highest voltage values of 625
and 750 V due to dielectric breakdown of the air that partially
fills the gap. Liquid volumes were either 30 and 60 μl for the
50-μm gap, 40 and 80 μl for the 100-μm gap, or 50 and 100 μl
for the 150-μm gap with 15- or 30-mm spacer separation,
respectively. This translates into initial average drop length
values of x̄N0 of 40, 26, or 22 mm.

The experimental procedure began with a thorough cleaning
of the glass slides and the plastic gap spacers. The purpose was
to ensure that there was no residue-fluid left on the surfaces. All
pieces were then dried using compressed air. It was important
not to use a cloth or towel when drying the glass since it could
scratch the surface and reduce transparency or cause pinning
of the liquid. Then it was necessary to identify the side of the
etched piece of glass that contained the trench and to place this
side up. The plastic spacers were placed perpendicular to the
trench along the side of the glass slide containing the etched
trench. The nonetched piece of glass, ITO side down, was then
placed on top of the assembly. This was followed by careful
positioning of the plastic spacers at the desired channel width
to ensure that the channel was parallel. The channel width was
then measured using calipers. The next step was to attach the
output voltage clip to one side of the etched glass, and ground
the other side and the nonetched piece of glass. Finally, fluid
was added to the grounded side of the channel using a pipette.
Capillary pressure due to the narrow gap moved the fluid such
that it covered the etched trench. Then the high voltage unit was
turned on to a prescribed voltage and the air-liquid interface
position was recorded using a charge-coupled device (CCD)
camera (Pixelink) at five to ten frames per second and a high
resolution CCD lens (Pentax). The fluid displacement was
measured by taking an average of the interface position, x̄N ,
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FIG. 2. (Color online) Top view of experimental setup. Image after approximately 1 s of elapsed time. The relevant parameters are
a = 15 mm, b = 100 μm with φ0 = 750 V.

from each image of a movie corresponding to an experiment.
The measurements were performed using a front tracking
algorithm written using MATLAB. Information for the trailing
interface xT was determined by measuring the tip of the fastest
growing finger.

The range of dimensionless parameters CaE , Boa , Bob, and
ReE may be estimated with knowledge of the physical prop-
erties. The Bond numbers for the interface spanning the gap b

were in the range 0.001 < Bob < 0.01 for b = 50–150 μm
and physical parameters as listed. The Bond numbers for
the interface spanning a are estimated to be 0.1 < Boa < 10
using the same surface tension value. The electric Reynolds
and capillary numbers were in the range 0.004 < ReE < 15
and 6 × 10−5 < CaE < 0.001, respectively. With such low
capillary number we concluded that any film formation at
the trailing interface was negligible [34]. Values for δ/xN0

were also measured. The values were approximately 0.1–0.2
for a = 15 mm and larger, 0.25–0.4, for a = 30 mm. The
values did not change much with plate separation distance
with no values measured for b = 50 μm due to poor visibility.
The predicted critical voltage φ0λ

for multiple fingering in the
experiments with 100-μm plate separation distances are 269
and 538 V for the 30 and 15 mm channel widths, respectively.
For the 150-μm plate separation distance experiments the
values are larger at 371 and 742 V for the 30- and 15-mm
channel widths, respectively.

IV. EXPERIMENTS: RESULTS

A. Interface and fingering instability

Figure 3 shows images of drops with 5-centistoke (cS) fluid
viscosity being displaced in a 15-mm channel in Figs. 3(a)–
3(f), and 100 -cS fluid viscosity in a 30-mm channel distance
in Figs. 3(g)–3(l). The voltages are held constant at 250 V,
Figs. 3(a)– 3(c), 750 V , Figs. 3(d)– 3(f) and Figs. 3(j)–3(l), and
625 V , Figs. 3(g)–3(i). The parallel plate separation distance
is constant at 150 μm for all experimental images in Fig. 3.
Images are shown just prior to the application of the voltage
potential for the 5-cS fluid. For the 100-cS fluids images are
shown at a few seconds immediately after the application of the
voltage potential. This is due to the fact that the higher viscosity

liquids require a greater elapsed time to travel the channel
distance. So it required a few seconds to begin image capture
in order to record the full displacement for each voltage. The
final frame, just before the finger tip at the trailing interface
reaches the trench, is shown in the right hand column of Fig. 3.
Examples for the length estimates used to determine these
finger widths are denoted with λ in the last column for each
set of experiments.

The advancing interfaces for the two 15-mm channel gap
experiments, Figs. 3(a) and 3(d), show similarities. The visual
similarities in these two experiments appear until the end of
the experiments shown in Figs. 3(c) and 3(f). The time scales
though are very different with the higher voltage experiment
reaching the final frame, Fig. 3(c), in approximately one-tenth
the time required to reach the final frame in the 250-V
experiment shown in Fig. 3(f). The advancing interfaces also
look similar for the two 100-cS viscosity fluid experiments
shown in Figs. 3(g) and 3(j). The time scale between the first
and last frame are similar for these two sets of experiments.
The trailing interface morphologies though do not appear
to be similar. The trailing interface for the higher voltage
experiment, Fig. 3(l), produces two fingers rather than the
one finger shown for the lower voltage experiment in Fig. 3(i).
Even though the initial trailing interfaces do not appear to be
the same the reader should recall that image capture begins
a few seconds after the voltages are applied for the higher
viscosity experiments.

B. x̄N and xT vs time

Figure 4 shows a sampling of curves for the measured
average advancing interface x̄N and trailing interface xT versus
elapsed time t for the same experiments shown in the previous
Fig. 3. The trailing interface finger always travels an equal or
greater distance in a shorter time in each graph. Figure 4(a)
shows results for the 5-cS fluid, corresponding to Figs. 3(a)–
3(f). The advancing interface for the 750-V experiments travel
approximately the same distance as the interface in the 250-V
experiments shown in Fig. 4(a). But the time required to
travel that distance is approximately ten times greater for the
interfaces in the 250-V experiments, regardless of considering
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FIG. 3. (Color online) Images of liquid transport in parallel plate electrode Hele-Shaw cell device. Images (a)–(c) show images for a
5-centistoke (cS) fluid in a 15-mm channel with 250 V applied. The images are taken at times of approximately 0, 30, and 60 s respectively.
Images (d)–(f) show images for a 5-cS fluid in a 15-mm channel with 750 V applied. The images are taken at times of approximately 0, 8,
and 16 s respectively. Images (g)–(f) show images for a 100-cS fluid in a 30-mm channel with 625 V applied. The images are taken at times
of approximately 0, 85, and 170 s respectively. Images (g)–(f) show images for a 100-cS fluid in a 30-mm channel with 750 V applied. The
images are taken at times of approximately 0, 42, and 84 s respectively. The plate separation distance is 150 μm in all of the images.

the advancing or trailing interface information. The shape of
each curve appears linear for both sets of experiments shown
in Fig. 4(a) with slight curvature shown for the advancing
interface average position versus time 250-V case. Although
these curves appear linear they will be measured precisely to
determine any exponential growth behavior. This is discussed
further in the following sections.

Figure 4(b) shows results that are similar to those in
Fig. 4(a). The difference between the two data sets is the
fluid viscosity which is 100 cS in Fig. 4(b). The time scale is
much larger for the higher viscosity fluids data even though the
voltages are relatively large at 625 and 750 V. In these plots the
difference between the shape of the curve for the advancing
and trailing interfaces’ positions versus time are clearly
seen. For the 625-V experiments the curve for the leading
edge is relatively linear compared to the curve for the trailing
interface data at the same voltage. The same trend holds true
for the 750-V experiments except the shape for the curve for
the advancing interface appears to be slightly logarithmic.

C. ūN and uT vs voltage

Figure 5 shows the results for the product of the measured
velocities and fluid viscosity versus the square of the applied
voltage potential φ2

0 . There are two figures for the advancing
interface, Fig. 5(a), and trailing interface, Fig. 5(b), data. Also

plotted are solid lines for the theoretically determined velocity
versus voltage values. These are plotted using the minimum
and maximum values for the drop lengths x̄N0 = 0.040 and
0.022 m, respectively. We also chose a single value for the
corner wetting layer length of δ/x̄N0 = 0.4, the maximum
recorded value from all of the experiments. The voltage values
vary between 250 and 750 V, or by approximately an order of
magnitude when squared. This is reflected in the values for the
velocities which also span an order of magnitude, 0.2–2 Pa m.
Also plotted are the velocities for a given voltage averaged over
all the channel widths, plate separation distances, voltages,
and volumes. Error bars are shown to represent the standard
deviation for the averaged values. For the advancing interface
data shown in Fig. 5(a) it appears that the average values fall
between the two lines indicating the theoretical velocity versus
voltage values. The same though is not true for the trailing
interface data shown in Fig. 5(b). Here the average trailing
interface data are consistently above the theoretical values, as
expected. The magnitude of the standard deviation appears to
increase up to 625 V where it then decreases.

D. Wavelength λ vs CaE

Figure 6 shows the estimates for the instability wavelength
normalized by the channel width versus the electric capillary
numbers based on the measured velocities. The symbols
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FIG. 4. Plots of leading and trailing interface displacements
�x̄N and �xT vs time for same voltages, channel widths, and
plate separation distance as shown in Fig. 3 with (a) 5-cS and
(b) 100-cS fluid viscosities.

represent the fluid viscosity used for a particular experiment.
The data are organized according to plate separation distance
b and channel width a. No data are shown for the smallest
plate separation distance of 50 μm due to poor resolution
of the trailing air-liquid interface. Also plotted in each graph
is the predicted wavelength that leads to exponential growth
(instability) as determined by Saffman-Taylor’s analysis (solid
line λcrit = πbCa1/2

E ) [28,29,32]. The two solid lines shown
in each plot correspond to critical wavelengths associated
with the full λ and half λ/2 measured values. The lines
were drawn to separate regions [see Fig. 6(d)] where different
trailing interface motion is observed: single finger width with
no exponential growth, single finger width with exponential
growth, and tip splitting of the finger with exponential growth.

The normalized measured wavelength values range from
approximately 0.4–1 in each graph. The capillary numbers
range 10−4 − 10−3, or approximately one order of magni-
tude. The graphs also show that the normalized measured
wavelengths cross each of the predicted instability wavelength
lines for some value of the capillary number. The degree of
fingering (single or multiple) as determined by the graphs
varies according to the channel width. For example in Figs. 6(a)
and 6(c), the predicted instability wavelength occurs at

)m (Pa Tu

)(V 22
0

(A) interface

advancing

(T) interface

trailing

m 040.0x
0N

m 022.0x
0N

m 022.0x
0N

m 040.0x
0N

)(V 22
0

)m (Pa Nu

(a)

(b)

FIG. 5. Plots of the product of measured velocities and viscosities
for the (a) leading μūN and (b) trailing μuT edges of the drops
versus the square of the applied voltage φ2

0 . The values for velocity
are determined by linear fit through advancing and trailing interface
displacement vs time data, respectively. Theoretical values for x̄N0 =
0.022 and 0.04 m with δ/xN0 = 0.4 are also plotted.

relatively large normalized wavelength values. The result is
that in total only two of the measured experimental data points
lie in the region where tip splitting is predicted. An image
for one of these two points is shown in Fig. 2. Meanwhile
a doubling of the channel width produces a richer variety of
trailing interface motion and morphology as seen in Figs. 6(b)
and 6(d). In Fig. 6(b) only one data point lies in the region
where no exponential finger growth is predicted with similar
results shown in Fig. 6(d).

E. Growth rate β analysis

The information used to produce the graphs shown in Fig. 4
can be further analyzed to produce estimates for the instability
growth rates β. This is done by first estimating the velocity
using a difference scheme, i.e., uT ≈ �x/�t where �x is
the difference in measured tip location and over the time
interval �t . Since the value for the change in velocity is
never zero according to Eq. (6), then the change in velocity
with time �u the velocity difference over time interval �t

can be approximated using �u ≈ CT (eβt − 1) where CT is a
constant. To apply this equation to the data the initial trailing
interface velocity (first nonzero value) is subtracted from the
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mm 15a

m 100b

mm 03a

m 100b

mm 15a
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mm 03a

m 150b

a

a

a

a

2
crit

crit

 tip splitting (exp. growth)

single finger (exp. growth) 

single finger (linear growth) 

ECa ECa

ECaECa

FIG. 6. Plots of the measured values for the finger wavelength normalized by the channel width λ/a vs capillary number. The solid
lines are the predicted instability wavelength based on the full and half wavelengths λcrit and λcrit/2 determined using the Saffman-Taylor
(λcrit = πbCa1/2

E ) analysis. The corresponding channel width and plate separation distances are (a) 15 mm and 100 μm, (b) 30 mm and 100 μm,
(c) 15 mm and 150 μm, and (d) 30 mm and 150 μm. In (d) the regions where single finger constant, single finger exponential, and multiple
finger exponential growth are denoted. The viscosities are denoted with � 5 cS, © 10 cS, and × 100 cS in each graph.

total velocity data set for a given experiment. The final velocity
value �u(tend) can be matched directly to the approximate
equation using β = ln |1 + �u(tend)

CT
|/tend. So the only unknown

parameter is the constant CT . The value for CT is modified to
minimize the error between the curves for the measured �u

data and the values determined by the approximate equation.
The same process was used in [35] to determine the area
expansion rate of a gas injected into a Hele-Shaw cell at
constant pressure.

Figure 7 shows the normalized growth rates versus capillary
number. Each growth rate β is normalized according to
Eqs. (10) and (11). The change in values for the vertical axis
occurs mainly due to the product of the measured growth
rate and viscosity βμ since the λ values lie within a narrow
range and the surface tension is constant. This scaling yields
a one-to-one relationship between β and the capillary number
minus a term involving the square of the plate separation
distance [Eqs. (10) and (11)]. There are two plots showing
the results for wavelength of 2λ in Fig. 7(a) and λ in Fig. 7(b).
Symbols are used to denote the fluid viscosity of 5, 10, or
100 cS. Only values for β > 0 are shown in these graphs and
no 50-μm parallel plate separation distance data are shown
due to the poor resolution of the trailing interfaces.

Figure 7(b) shows data utilizing the raw normalized mea-
sured λ values versus capillary number minus the additional

term. Most of the data points lie well below the dotted line
denoting the one-to-one relationship between the two values.
The data appear to fit the line better for smaller values of the
growth rate and for the 100-cS fluids. When using twice the
value of the measured wavelength 2λ the data appear to follow
the one-to-one relationship more closely as shown in Fig. 7(a).
Here there are several data points that lie above the line but
more still lie below. Even though most of the points lie below
the line there is still good agreement in the trends where most
of the 5- and 100-cS data tend to increase for increasing value
along the horizontal axis.

V. DISCUSSION

We should address two important assumptions used to
develop expressions for the leading and trailing interface
velocities. First, a thick residual film would produce an
additional capillary pressure that opposes the leading edge
velocity motion. The measured capillary numbers are CaE <

10−3 suggesting thin residual films based on calculations using
any of the relevant existing power law relationships for the
steady velocities produced by the advancing interface [34].
Second, notice that even though the trailing interface increases
in area (the length of the interface when viewed from above)
there does not appear to be any decrease in the drag from this
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FIG. 7. (Color online) Plots of the dimensionless instability
growth rate (a) Nβλ/2 and (b) Nβλ

vs capillary, CaE minus square of the
dimensionless plate separation distance (πb/λ)2. In (a) the value for
twice the wavelength is used representing the first critical voltage
while in (b) the measured instability wavelength λ is compared
directly to the growth rate representing the second critical voltage.

according to the x̄N vs time plots shown in Figs. 4(g)–4(l).
If the trailing edge capillary pressure were to decrease then
the 625-V case [Figs. 4(g)–(i)] would have the same slightly
transient velocity as the 750-V case [Figs. 4(j)–4(l)]. So the
assumption of δ/a leading to negligible additional drag appears
to have been correct (see Appendix A). But the analysis that
has been presented does not predict the transient behavior that
is observed in the plots shown in Fig. 4. These are more likely
due to the small offset (deviation from parallel) in the spacers
used to form the channel walls of the Hele-Shaw cell device.
A brief analysis for this situation is presented in Appendix B
for the case of flat advancing and trailing interfaces.

In Figs. 5(a) and 5(b) the predicted velocities agree well
with the experimental data. In particular the slope of the
theoretically predicted lines shown in Fig. 5 provide an upper
and lower bound for the experimental data averaged at each
voltage value. Recall that the value for the slopes are directly
proportional to the difference in electric permittivity �εε0 and
inversely proportional to the product 24xN0 . The fact that the

slopes agree well when using the constant of 24 is reassuring
since there have been other predicted values in the literature
[9]. The trailing interface velocity though does not appear to
agree with the same velocity scaling used for the advancing
interface [Fig. 5(b)]. This is not surprising since there is
always some liquid which lines the channel walls in the x

direction, i.e., a finger always forms. Therefore simple volume
conservation would predict a faster moving trailing interface.
But according to the data shown in Fig. 4 an exponential
increase is sometimes observed for the trailing interface
data.

The Saffman-Taylor linear stability analysis of the trailing
interface does provide some insight into the characteristic
speeds for the trailing interface. In order to utilize the linear
stability analysis performed by Saffman-Taylor, data were
provided in Fig. 6 for the trailing interface finger wavelength.
In general wider channels (larger a) result in a greater chance
of observing multiple fingers generated by tip splitting at
the higher end of the range of voltages used to actuate drop
motion. The analysis was extremely accurate in determining
regions of λ/a versus CaE used for predicting the occurrence
of the different types of fingering events. The visual data
shown in Fig. 3 clearly confirm the computed stability limit
for the 150-μm experiments with 30-mm channel widths
where a value of 625 V produces a single finger while at
750 V tip splitting occurs. Unfortunately the measured growth
rates, Fig. 7, did not agree well with the predictions except
for the lower viscosity cases. This is probably due to the
fact that the slower moving fluid provided transient velocity
data with better temporal resolution. But nearly all of the
capillary number and gap spacing values predicted to produce
exponential growth according to Fig. 6 (38 total points with 8
close to linear boundary) were measured to have exponential
growth in Fig. 7 (27 total points).

In regard to the suitability of this actuation method for
reversible flow that yields bistable motion [36], one would
have to successfully switch the voltages in the two halves of
the device. This would then cause the leading and trailing
interfaces to alternate. Clearly for the situations where the
leading and trailing edge velocities are constant (below the
first critical voltage) bistability would be readily achieved.
But given the overall small velocities (2 mm/s at the largest
voltages and lowest viscosity fluid) then it would be more
desirable to operate at the largest possible voltage. But above
the second critical voltage multiple fingers appear. These can
lead to nonlinear fingering and thus introduce the possibility of
entrainment of the gas phase into the liquid thereby reducing
the efficiency of the device. So the most optimal range would
be below the second critical voltage but above the first, so that
a single finger forms with exponential growth. Then it should
be possible to successfully switch between the two states by
correctly tuning the size of the device to ensure that the trailing
interface position does not exceed the trench location.

VI. CONCLUSION

The problem of the two-dimensional flow of a Newtonian
poorly conducting fluid driven by electricity is presented. The
solution for the interface position as a function of elapsed
time in the Darcy flow limit is determined. In this problem
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the geometry is a two-dimensional parallel plate capacitor
with plate separation distance smaller than the capillary
length. The fluid displacement and flow characteristics can
be parametrized using the electric Reynolds and capillary
numbers.

The velocities, used to determine the dimensionless pa-
rameters, are derived by considering the normal component
of the Maxwell stress acting on one of the two-dimensional
fluid interfaces. The parameters have the usual nonlinear
dependence on the electric potential. But the velocity and
hence the dimensionless parameters are independent of the
plate separation distance. This suggests that high velocities
may be achieved even in microscale geometries with this
pumping method.

The experiments were performed using silicone oils of
5-, 10-, and 100-cS viscosities. Since the fluids are poorly
conducting it is possible to generate large voltages (>100 V)
with relatively low current (<50 μA) supplied by a high
voltage unit, so the system is efficient at pumping viscous
fluid using low power (∼10−4 W). The leading edge position
versus elapsed time almost always appeared linear; while
the finger tip generated at the trailing interface showed
exponential displacement for certain values of the voltage.
To study this feature the typical linear stability analysis
performed by Saffman-Taylor was employed. The analysis
yielded an expression for the minimum critical voltage to
observe exponential finger growth. Both the leading and
trailing interface data were in good agreement with their
respective theoretical predictions.

In the future is will be beneficial to consider even higher
voltages. In order to generate higher voltages it will be
necessary to consider ac rather than dc applied voltages.
The effect of ac voltages on both the leading and trailing
interfaces velocities and interface morphologies would be of
interest. Along with considering leading edge motion under
ac conditions, it may be possible to generate bistable motion
by alternating the voltage for both the leading and trailing
interfaces.
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APPENDIX A: ADVANCING INTERFACE VELOCITY

In this Appendix we develop the analytical expression
for the advancing interface velocity. To begin we develop
an expression for the electric field, and subsequently the
normal component of the interfacial stress. The expression
is determined by applying boundary conditions for poorly
conducting fluid interfaces to the Maxwell stress equation
which is included in the overall interface stress balance. The
resulting expression then can be used to determine the static
pressure P along the interface.

The poorly conducting fluid boundary conditions are (1) the
magnitude of the tangential components to the electric field are
equal along the interface ||E|| · t = 0, (2) zero free charge
along the interface ε0||εE|| · n = 0, and (3) conservation
of electric current ||σE|| · n = 0 [3]. Here ||d|| = dG − dL

denotes a jump in the variable bi across the interface. The con-
ditions differ from a leaky-dielectric liquid by the assumption
of zero net charge accumulation along the interface.

The dimensional interface stress balance for a gas-liquid
interface at x = xN in electric field is given by [3]

|| − P (xN )I + τE || · n = n(γaκa + γbκb). (A1)

For the trailing interface at x = 0 it is

|| − P (0)I|| · n = nγbκb, (A2)

which is initially uniform in the xy plane. Here the interface
curvature is denoted using κ . The variable n is used to denote
the outward pointing normal along the gas-liquid interface
in the xz plane. The subscripts for the surface tension and
curvature denote the direction spanning the interface, i.e.,
either the plate separation distance (b) or channel width
(a). The electrical component of the stress is given by the
Maxwell stress relationship τE = εε0(EiEi − 1

2 |Ei |2I). We
have neglected writing the viscous stress τH in the interfacial
stress balance. For the normal stress component this is a
reasonable assumption since the fluid velocity in the Hele-
Shaw cell is steady and fully developed [37]. In regard to the
tangential component recall that there are no free charges in
the bulk or along the interface. Therefore, there is no jump
in charge displacement across the interface and the tangent
component of the electric field must be conserved on either
side of the interface. So we must have t · ||τE || · n = 0 where
t is the interface tangent vector. Furthermore the divergence of
the Maxwell stress is exactly zero, ∇ · τE = 0, with no free
charges in each bulk fluid [10,11,14].

Then the only stress component of concern is in the
direction normal to the advancing interface which is n · || −
P (xN )I + τE || · n = γaκa + γbκb. We assume a small hydro-
static Bond number for the interface spanning the gap which
allows one to neglect gravitational effects at the gas-liquid
interface. Then by using the Young-Laplace approximation
the curvatures can be written as κa = 2 cos α

a
and κb = 2 cos α

b
.

This should be valid for dielectric fluid interfaces subjected to
large electric fields since the Maxwell stresses yield negligible
modification of the contact angle [3]. We will ignore the
curvature from the interface spanning the channel in Eq. (1)
since the curvatures vary inversely with their characteristic
lengths where b/a � 1, and the surface tensions are of similar
order, i.e., γbκb > γaκa . The subscripts used to denote the
surface tension and curvature spanning the gap will be dropped
from here on.

In regard to developing an expression for the electric field
recall that air has a negligible conductivity or equivalently
σG ≈ 0. So the conservation of current across the interface
suggests that there is no normal component of the electric
field in the liquid phase along the interface or equivalently
EL · n = (σG/σL)EG · n ≈ 0. The normal component of the
electric field on the gas phase side of the interface is also
zero since εLEL · n = εGEG · n ≈ 0, since there is zero net
accumulation of free charges. A general result of this analysis
is that the electric field is always tangent to the interface
spanning the gap in the xz plane for dielectric liquids in
air or EL · n = EG · n = 0 and |Ei | = Ei · t. Including the
continuity of the electric field across the interface yields a
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second generalization, that the electric field magnitude and
direction are equal on either side of the interface or EL = EG.

With these simplifying approximations the total electric
field (with no magnetic field) E is tangent to the interface.
Even though the meniscus forming the interface spanning the
electrode plates is curved, the electric field there must be equal
to the value in the gas phase which is φ0

b
[38]. Mathematically

this has been shown previously by forming a closed domain
that includes the top and bottom electrode walls that are held at
constant potential, the meniscus interface, and the electric field
in the gas phase. The electric field must be conserved around
this domain according to conservation of charge [10,11]. But
the potential is held constant on the top and bottom plates so the
tangential components of their electric fields are locally zero.
So the two portions, the interface and the constant field away
from the interface, must be equivalent. Then the magnitude of
the electric field along the interface is approximately

|EG| = φ0

b
, (A3)

where |EL| = |EG| since Ei · n = 0. The equation above
suggests that the curved interface spanning the top and bottom
plates has negligible effect on the electric field. This is an
approximation for poorly conducting fluids [1,3] which are
distinctly different from leaky-dielectric liquids where in the
latter the liquid conductivity can be large enough to accumulate
net charges that have been shown to produce tangential fluid
motion [13,14].

The expression for the gas phase pressure along the
advancing interface is then

PG(xN ) = −2γ cos α

b
− �εε0φ

2
0

2b2
+ PL(xN ). (A4)

A similar expression that does not include the electrical term
exists for the trailing interface pressure,

PG(0) = −2γ cos α

b
+ PL(0). (A5)

The net force in the x direction (with no external forcing,∑
Fx = 0) that drives fluid motion is determined by integrat-

ing the interface stress components − ∫∫
[PG(xN )ex · nN −

PG(0)ex · nT ]dA = ∑
Fx = 0 in the flow direction over the

differential area dA = dydz. For the trailing interface we will
assume that it is initially flat or nT = ex . This value will
certainly change with time but is impossible to predict without
an expression for the advancing interface velocity. In any case
we find that it is a reasonable assumption to use the initial value
for the elapsed time during which the liquid was displaced.

The advancing interface shape may be approximated by
an even termed power series expansion in y written as
xN (y) = xN0 + δ

a2 y
2 + O( δ2

a4 ) + · · · . Then the dot product
of the normal and basis vector in the flow direction is ex ·
nN = 1√

1+4(δy/a)2
. The pressure though over the nonuniform

interface is independent of y so it is more convenient to replace
it by an average value P̄G(xN ) = CpPG(xN ) [39] where
Cp = ∫

ex · nNdy/a is an interfacial pressure coefficient.
After integrating we find that the expression for the coefficient
is Cp = a

δ
ln | δ

a
[1 +

√
1 + (a/δ)2]| representing a reduction

in the pressure due to the meniscus spanning the channel

a. Locally the advancing interface pressure is reduced by
approximately 10% for a/δ = 1. There is nearly no reduc-
tion for a/δ = 2 which typically occurs in the experiments
described here [40–42]. Furthermore, the capillary pressures
for the advancing and trailing interfaces are initially nearly
opposite and equal so we eliminate the capillary pressure terms
from the force balance.

Continuing to work with the force balance we recall that the
liquid phase pressures are PL(xN ) = − 12μuN

a
xN and PL(0) =

0 at the advancing and trailing interfaces, respectively. After
combining the remaining terms in the balance equation, we
find that the expression for the leading edge velocity is

uN = �εε0φ
2
0

24μxN
. The velocity varies inversely with xN which is

not uniform in the y direction. To remove the dependence
we find an average velocity by integrating over the area, i.e.,

ūN = ∫∫
udA/

∫∫
dA = �εε0φ

2
0

12μ
√

δxN0

tan−1 1
2

√
δ

xN0
. It is more

convenient though to expand the inverse tangent function about
the corner wetting layer length δ yielding

ūN = �εε0φ
2
0

24μxN0

[
1 − δ

4xN0

+ O(δ2) + · · ·
]

(A6)

for the first two terms. Note that the average velocity is
independent of the plate separation distance [9,15]. In general
the advancing interface meniscus reduces the average velocity
by a percentage that is equal to a quarter of δ/xN0 from the
case of a drop with a uniform xN .

APPENDIX B: VELOCITY IN CONVERGING
OR DIVERGING CHANNELS

The solution for the velocity in converging or diverging
channels of a Hele-Shaw cell is developed in this appendix.
Consider the image shown in Fig. 8(a) of a drop in a channel of
uniform gap b and bounded at the top and bottom by spacers
that are not parallel to each other or the x axis. The advancing
and trailing interfaces are both assumed flat in the xy plane so
that xN �= f (y) and xT �= g(y). Let L = xN − xT be the length
of the drop with volume V . The angles α1 and α2 are used to
denote the top and bottom deviation in degrees, respectively,
from a uniform channel width of a0. Then tan α1 and tan α2

are the slopes of the spacers relative to the horizontal forming
the nonuniform channel. With a positive x direction pointing
to the left then the slope for the top spacer is negative in
the example shown in Fig. 8(a). The slope for the bottom
piece can be rotated about the x axis for the purposes of
determining the velocity. It is straightforward to integrate then
sum the profiles y1(x) = m1x + a0

2 and y2(x) = m2x + a0
2 to

determine the analytical expression for the drops area,

A = m1 + m2

2

[
x2

N − x2
T

] + a0b [xN − xT ] , (B1)

where m1 = tan α1 and m2 = tan α2 are the slopes. The sum
m1 + m2 determines whether or not the drop flows through a
contraction (m1 + m2 > 0) or an expansion (m1 + m2 < 0).

The total volume, V = Ab, is

V = (m1 + m2)b

2
[2LxN − L2] + a0bL, (B2)
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FIG. 8. (a) Schematic for system described in Appendix B.
The advancing and trailing interfaces are both assumed uniform
(independent of y) while the channel walls are not parallel. The
angle of the top and bottom walls with respect to the horizontal are
m1 = tan α1 and m2 = tan α2. (b) Results for the displacement of the
advancing interface vs scaled elapsed time. The values for the channel
slopes are shown in the plot.

where we have taken advantage of xT = xN − L. This expres-
sion is quadratic in terms of the length L(xN ) with general
solution

L(xN ) = 1

m1 + m2
[B −

√
B2 − C], (B3)

where

B = xN (m1 + m2) + a0 (B4)

and

C = 2V

b
(m1 + m2). (B5)

Let uN = dxN

dt
= �εε0φ

2
0

24μL(xN ) . In order to integrate this ex-

pression we must have B > 0 and also B2 > C. Then the
expression for the elapsed time with respect to xN after
integration yields

t = 12μ

�εε0φ
2
0

[B2 − B
√

B2 − C

+C ln |B +
√

B2 − C|] − C0. (B6)
Here

C0 = 12μ

�εε0φ
2
0

[
B2

0 − B0

√
B2

0 − C

+C ln
∣∣B0 +

√
B2

0 − C
∣∣], (B7)

where

B0 = xN0 (m1 + m2) + a0 (B8)

with

xN0 = − a0

m1 + m2
±

√(
a0

m1 + m2

)2

+ 2V

(m1 + m2)b
. (B9)

The sign for the discriminant changes depending upon
whether the drop passes though a contraction or an expansion.
If the sum m1 + m2 > 0 then the discriminant is added in the
equation above, and subtracted if m1 + m2 < 0.

A typical plot of the results is shown in Fig. 8(b) for
m1 + m2 both positive and negative. The horizontal axis is

the elapsed time multiplied by the factor �εε0φ
2
0

12μ
which has

dimensions of length squared per unit time.

[1] T. B. Jones, J. Appl. Phys. 43, 4400 (1972).
[2] S. G. Jennings, Phys. Educ. 12, 40 (1977).
[3] T. Ward, J. Electrostat. 64, 817 (2006).
[4] S. K. Cho, H. Moon, and C.-J. Kim, J. Microelectromech. Syst.

12, 70 (2003).
[5] K.-L. Wang and T. B. Jones, Langmuir 21, 4211 (2005).
[6] D. Chatterjee, B. Hetayothin, A. R. Wheeler, D. J. King, and

R. L. Garrell, Lab Chip 6, 199 (2006).
[7] D. Klarman and D. Andelman, Langmuir 27, 6031

(2011).
[8] D. Mampallil, H. Burak Eral, A. Staicu, F. Mugele, and D. van

den Ende, Phys. Rev. E 88, 053015 (2013).
[9] E. S. Baird and K. Mohseni, Nanoscale Microscale Thermophys.

Eng. 11, 109 (2007).

[10] J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley
& Sons, New York, 1999).

[11] D. J. Griffiths, Introduction to Electrodynamics, 3rd ed.
(Prentice-Hall, Upper Saddle River, NJ, 1999).

[12] D. A. Saville, Annu. Rev. Fluid Mech. 29, 27 (1997).
[13] G. I. Taylor, Proc. R. Soc. A 291, 159 (1966).
[14] J. R. Melcher and G. I. Taylor, Annu. Rev. Fluid Mech. 1, 111

(1969).
[15] T. Ward, Langmuir 24, 3611 (2008).
[16] M. Chakraborty, A. Ghosh, and S. DasGupta, RSC Adv. 4, 1074

(2014).
[17] R. A. Hayes and B. J. Feenstra, Nature (London) 425, 383

(2003).
[18] G. Beni and M. A. Tenan, J. Appl. Phys. 52, 6011 (1981).

013012-12

http://dx.doi.org/10.1063/1.1660934
http://dx.doi.org/10.1063/1.1660934
http://dx.doi.org/10.1063/1.1660934
http://dx.doi.org/10.1063/1.1660934
http://dx.doi.org/10.1088/0031-9120/12/1/003
http://dx.doi.org/10.1088/0031-9120/12/1/003
http://dx.doi.org/10.1088/0031-9120/12/1/003
http://dx.doi.org/10.1088/0031-9120/12/1/003
http://dx.doi.org/10.1016/j.elstat.2006.02.002
http://dx.doi.org/10.1016/j.elstat.2006.02.002
http://dx.doi.org/10.1016/j.elstat.2006.02.002
http://dx.doi.org/10.1016/j.elstat.2006.02.002
http://dx.doi.org/10.1109/JMEMS.2002.807467
http://dx.doi.org/10.1109/JMEMS.2002.807467
http://dx.doi.org/10.1109/JMEMS.2002.807467
http://dx.doi.org/10.1109/JMEMS.2002.807467
http://dx.doi.org/10.1021/la0468702
http://dx.doi.org/10.1021/la0468702
http://dx.doi.org/10.1021/la0468702
http://dx.doi.org/10.1021/la0468702
http://dx.doi.org/10.1039/b515566e
http://dx.doi.org/10.1039/b515566e
http://dx.doi.org/10.1039/b515566e
http://dx.doi.org/10.1039/b515566e
http://dx.doi.org/10.1021/la2004326
http://dx.doi.org/10.1021/la2004326
http://dx.doi.org/10.1021/la2004326
http://dx.doi.org/10.1021/la2004326
http://dx.doi.org/10.1103/PhysRevE.88.053015
http://dx.doi.org/10.1103/PhysRevE.88.053015
http://dx.doi.org/10.1103/PhysRevE.88.053015
http://dx.doi.org/10.1103/PhysRevE.88.053015
http://dx.doi.org/10.1080/15567260701337514
http://dx.doi.org/10.1080/15567260701337514
http://dx.doi.org/10.1080/15567260701337514
http://dx.doi.org/10.1080/15567260701337514
http://dx.doi.org/10.1146/annurev.fluid.29.1.27
http://dx.doi.org/10.1146/annurev.fluid.29.1.27
http://dx.doi.org/10.1146/annurev.fluid.29.1.27
http://dx.doi.org/10.1146/annurev.fluid.29.1.27
http://dx.doi.org/10.1098/rspa.1966.0086
http://dx.doi.org/10.1098/rspa.1966.0086
http://dx.doi.org/10.1098/rspa.1966.0086
http://dx.doi.org/10.1098/rspa.1966.0086
http://dx.doi.org/10.1146/annurev.fl.01.010169.000551
http://dx.doi.org/10.1146/annurev.fl.01.010169.000551
http://dx.doi.org/10.1146/annurev.fl.01.010169.000551
http://dx.doi.org/10.1146/annurev.fl.01.010169.000551
http://dx.doi.org/10.1021/la702916v
http://dx.doi.org/10.1021/la702916v
http://dx.doi.org/10.1021/la702916v
http://dx.doi.org/10.1021/la702916v
http://dx.doi.org/10.1039/c3ra46401f
http://dx.doi.org/10.1039/c3ra46401f
http://dx.doi.org/10.1039/c3ra46401f
http://dx.doi.org/10.1039/c3ra46401f
http://dx.doi.org/10.1038/nature01988
http://dx.doi.org/10.1038/nature01988
http://dx.doi.org/10.1038/nature01988
http://dx.doi.org/10.1038/nature01988
http://dx.doi.org/10.1063/1.329822
http://dx.doi.org/10.1063/1.329822
http://dx.doi.org/10.1063/1.329822
http://dx.doi.org/10.1063/1.329822


ELECTROCAPILLARY DROP ACTUATION AND FINGERING . . . PHYSICAL REVIEW E 91, 013012 (2015)

[19] S. Chevalliot, J. Heikenfeld, L. Clapp, A. Milarcik, and S. Vilner,
J. Disp. Technol. 7, 649 (2011).

[20] H. Pellat, C. R. Seances Acad. Sci. (Paris) 119, 675 (1894).
[21] G. Lippman, Ann. Chim. Phys., cinquième série 5, 494 (1875).
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