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Adhesion force in fluids: Effects of fingering, wetting, and viscous normal stresses
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Probe-tack measurements evaluate the adhesion strength of viscous fluids confined between parallel plates.
This is done by recording the adhesion force that is required to lift the upper plate, while the lower plate is
kept at rest. During the lifting process, it is known that the interface separating the confined fluids is deformed,
causing the emergence of intricate interfacial fingering structures. Existing meticulous experiments and intensive
numerical simulations indicate that fingering formation affects the lifting force, causing a decrease in intensity.
In this work, we propose an analytical model that computes the lifting adhesion force by taking into account not
only the effect of interfacial fingering, but also the action of wetting and viscous normal stresses. The role played
by the system’s spatial confinement is also considered. We show that the incorporation of all these physical
ingredients is necessary to provide a better agreement between theoretical predictions and experiments.

DOI: 10.1103/PhysRevE.91.013003 PACS number(s): 47.20.Ma, 47.15.gp, 68.35.Np, 68.15.+e

I. INTRODUCTION

The study of the adhesion properties of viscous fluids has
been the object of a lot of research in recent years [1–16]. In
all these investigations a key factor is the precise evaluation
and characterization of the bond strength of spatially confined,
liquid thin films. This can be achieved through the employment
of an adhesion test, commonly known as the probe-tack test
[17,18]. In this test, a fluid sample is placed between two
closely spaced parallel flat plates, and then the upper plate
is lifted vertically at a prescribed rate. This happens while
the lower plate is held fixed. During this fluid-stretching
process the applied lifting force is recorded. The result of
such measurement is an adhesion force curve that quantifies
the adhesive response of the liquid sample as a function of the
upper plate displacement, or lifting time.

In addition to the assessment of the lifting adhesion force,
another aspect of the problem has also been intensively
investigated, both experimentally and theoretically [19–32].
It refers to the study of the appealing pattern formation
phenomenon that takes place at the interface separating the
lifted, more viscous fluid (e.g., oil), and the surrounding fluid
(for instance, air) during the lifting procedure. As the plates
separate, the outer less-viscous fluid enters the system, and the
more-viscous inner fluid moves inward. As a result, the fluid-
fluid interface deforms, assuming complex, visually striking
interfacial morphologies. The development of such interfacial
instabilities is reminiscent of the classic viscous fingering
instability [33], associated with the celebrated Saffman-Taylor
problem [34]. The lifting setup examined in Refs. [19–32] is
also known as the lifting Hele-Shaw cell problem.

One interesting aspect that connects the research performed
in Refs [1–18] (evaluation of the adhesion force) and that
of Refs. [19–32] (study of the emerging pattern-forming
structures) is the influence of fingering formation on the
determination of the adhesion force itself. This important issue
has been addressed via experiments and numerical simulations
in Refs. [2,3,9,14]. Initially, Derks et al. [2] have found a good
agreement between their theoretical expression for the lifting
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force (that considered the interface as a stable retracting circle)
and their experimental results. At that time, these authors
argued that the detailed shape of the interface should have
a very modest, or even no influence at all on the adhesive
force. However, by dealing with highly viscous oils and larger
lifting-plate velocities, the experiments performed by Poivet
et al. [3] have found that the fingering mechanism has indeed
an influence on the lifting force. Afterwards, the influence of
interfacial fingering on the adhesion force has been supported
by the intensive numerical simulations carried out in Ref. [9] by
Lindner and coworkers, and then confirmed by the meticulous
experimental investigation recently conducted in Ref. [14] by
Nase and collaborators. The main conclusion of these analyses
was that the fingering formation process is in fact responsible
for a decrease in the adhesion force.

Despite all the useful information and valuable advances
obtained from the experimental and numerical studies per-
formed in Refs. [2,3,9,14] regarding the role of fingering
instabilities on the magnitude of the adhesion force, an
analytical model that properly describes such an effect is still
lacking. The existing analytical prediction based on a stable
retracting circle assumption, and on the sole action of viscous
forces, is not in satisfactory agreement with experimental
measurements [14]. In order to address this relevant matter,
in this work we present an analytical model that explicitly
incorporates the effects of fingering into the adhesion force
expression. As a matter of fact, in addition to fingering effects,
we show that a more accurate theoretical description should
also include the contributions coming from wetting effects
[35–37] and viscous normal stresses [38–40]. The action
of the plate-plate geometry confinement is also taken into
account. As we will see, the comparison of our analytical
results with careful laboratory measurements for the lifting
force performed in Ref. [14] shows an improved agreement
between theoretical predictions and experimental data.

II. DERIVATION OF THE LIFTING ADHESION FORCE

The physical system is illustrated in Fig. 1. We consider an
incompressible fluid of high viscosity η confined between two
narrowly spaced, parallel plates. The outer fluid has negligible
viscosity. The upper plate of the probe-tack apparatus is
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FIG. 1. (Color online) Representative sketch of the lifting flow
arrangement in a (plate-plate) probe-tack apparatus.

subjected to a pulling force F so that the plate-plate separation
evolves linearly in time according to b = b(t) = b0 + V t ,
where V is a constant lifting velocity, and b0 is the initial
plate-plate distance. The z axis is defined in a direction
perpendicular to the plates, and the lower plate is held fixed
at z = 0. The radius of the fluid-fluid unperturbed interface at
t = 0 is denoted by R0. The main goal in this section is to
calculate the pulling force F as a function of displacement b,
taking into account the viscous fingering instability, the effect
of a thin wetting film trailing behind the stretched fluid, and
viscous normal stress contributions.

We generalize the approach employed by Derks et al.
[2], where it is assumed that the fluid-fluid interface remains
circular during the entire lifting process. Our study is motivated
by the fact that the experiments showing fingering instabilities
in Refs. [2,3,9,14] are not very well described by theoretical
force-distance curves, which consider a stable retracting circle.
By considering the action of fingering, the perturbed two-fluid
interface is defined as

R(θ,t) = R(t) + ζ (θ,t), (1)

where

ζ (θ,t) =
+∞∑
n−∞

ζn(t) exp (inθ ) (2)

represents the net interfacial perturbation in polar coordinates
(r,θ ) with Fourier amplitudes ζn(t), and integer azimuthal
wave numbers n. R = R(t) is the time-dependent unperturbed
radius, which by volume conservation satisfies the relation
R2 b = R2

0 b0.
For the confined plate-plate geometry, inertial effects can

be neglected and the governing hydrodynamic equations are
Darcy’s law [14,19,20,27],

v = − b2

12η
∇p, (3)

and a modified incompressibility condition [19],

∇ · v = − ḃ

b
, (4)

where the overdot denotes a total time derivative. Remember
that in this work, as in most experiments, we take ḃ = V . In
these equations v = v(r,θ ) and p = p(r,θ ) are, respectively,
the gap-averaged velocity and pressure in the fluid.

From Eqs. (3) and (4) it can be readily verified that the
pressure field obeys the Poisson equation

∇2p = 12ηḃ

b3
, (5)

whose solution is

p(r,θ ) = 3ηḃ

b3
r2 +

∑
n�=0

pn(t)
( r

R

)|n|
einθ . (6)

Note that previous analytical calculations for the adhesion
force do not consider the role of fingering, so that the second
term of Eq. (6) is neglected.

To take into account the role of the Saffman-Taylor
instability, we have to find a relation between pn(t) and the
perturbation amplitude ζn(t). To obtain such a relation we
apply the kinematic boundary condition, which connects the
velocity of the lifted fluid with the motion of the interface itself
[33]:

∂R
∂t

=
[
vr − 1

r

∂R
∂θ

vθ

]
r=R

. (7)

Here vθ and vr are the azimuthal and radial components of the
fluid velocity, respectively. From this point on we employ a
perturbative approach by keeping terms up to second order in
ζ [32,41]. By expanding Eq. (7), and then Fourier transform,
we get

pn(t) = 12η

b2

{
− R

|n| ζ̇n(t) − ḃR

2b|n|ζn(t)

+
∑
n′ �=0

[
sgn(nn′) − 1

|n|
]

ζ̇n′ζn−n′

+ ḃ

2b

∑
n′ �=0

[
sgn(nn′) − 1

|n|
]

ζn′ζn−n′

}
. (8)

To include the contributions coming from surface tension,
viscous normal stresses, and wetting effects, we consider
a generalized Young-Laplace pressure boundary condition,
which expresses the pressure across the two-fluid interface
[15,16,35–38],

p|r=R =
{[

π

4
κ − 2

b

]
σ − 2Jσ

b
Caγ + 2η

∂vr

∂r

} ∣∣∣∣
r=R

, (9)

where, without loss of generality, we set the pressure of the
outer fluid to zero. The usual contribution related to surface
tension σ and the mean curvature of the fluid-fluid interface
is expressed in the first term on the right-hand side of Eq. (9),
where κ denotes the interfacial curvature in the plane of the
plates [33]. The factor π/4 is purely a capillary static effect,
coming from the z average of the mean interfacial curvature
[35,36]. Still in the first term, we have the contribution of the
constant curvature 2/b associated with the interface profile in
the direction perpendicular to the parallel plates.

In this work, we assume that the lifted viscous fluid
wets the plates. The second term on the right-hand side of
Eq. (9) considers the wetting phenomena [35–37], where
Ca = ηvn/σ is the capillary number, J = 3.8, and γ = 2/3.
Here vn represents the normal component of the interface
fluid velocity that can be written as vn = n̂ · v, where
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n̂ = ∇[r − R(θ,t)]/|∇[r − R(θ,t)]| denotes the unit normal
vector at the interface. Finally, the third term on the right-hand
side of Eq. (9) takes into account viscous normal stresses
[38–40]. Notice that vr and vn can be calculated by Eq. (6),
and by Darcy’s law, Eq. (3).

The force required to lift the probe-tack apparatus is
calculated by integrating the pressure difference above and
below the upper plate over the region occupied by the fluid.
Therefore, the adhesion force is given by [9]

F (t) = −
∫


(t)
pdA

= 1

2

∫

(t)

∇p · rdA − 1

2

∫
�(t)

pn̂ · Rr̂dl, (10)

where r is a position vector in the plane of the plates (x-y
plane). Note that in Eq. (10), we represent the force exerted
by the lifting machine on the upper plate by two contributions:
one comes from the bubble cross-section in x-y plane 
(t),
and another one from its time-dependent boundary �(t).

To obtain the final expression of the pulling force we have
to substitute the pressure field Eq. (6), and the fluid pressure
at the interface Eq. (9) into the first and second integrals in
Eq. (10), respectively. So, keeping terms up to second order in
ζ , we have

F (t) = f (t) + fs(t) + Jfw(t)

+
∑
n�=0

[g(t) + gs(t) + Jgw(t)]|ζn(t)|2, (11)

where

f (t) = 3πηḃ

2b3
R4, (12)

fs(t) = πηḃ

b
R2, (13)

fw(t) = 2πσ

b
R2

(
ηḃ

2σb
R

)γ

, (14)

g(t) = −12πη

b2
λ(n)R2, (15)

gs(t) = −2πη|n|(n − 1)

[
λ(n) + ḃ

2b

]
, (16)

and

gw(t) = γfw(t)

2R2

{
1 − n2 + λ(n)

2b

ḃ

[
(γ − 1)λ(n)

2b

ḃ
− 2

]}
.

(17)

In Eqs. (11)–(17) the subscripts s and w identify the terms
related to viscous normal stresses and wetting effects, respec-
tively.

In addition, in Eqs. (15)–(17), λ(n) denotes the time-
dependent, linear growth rate of the amplitudes ζn(t), which is

given by [31,32]

λ(n) = 1

s(n) + w(n)

{
ḃ

2b
[|n|−s(n)]− πσb2

48ηR3
|n|(n2 − 1)

}
,

(18)

where

s(n) = 1 + b2

6R2
|n|(|n| − 1) (19)

is associated to the effects of the viscous normal stresses, and

w(n) = γ |n|J b

6R

(
2bσ

ḃηR

)1−γ

(20)

is related to the wetting film contribution. It is worthwhile
to note that, consistent with experimental findings, we have
verified that for the strongly confined very viscous fluids used
here and in Refs. [2,3,9,14], the contribution of capillary
effects [terms between square brackets in Eq. (9)] to the
adhesion force Eq. (11) is very small and can be neglected.
However, capillary effects are of relevance for the calculation
of the interfacial perturbation amplitudes ζn(t), and for the
terms connected to them in Eq. (11) [g(t), gs(t), and gw(t)].

The adhesion force Eq. (11) is our central analytical result.
In the equation, f (t) corresponds to the traditional theoretical
model (hereafter referred to as the “simplest model”) of
the adhesion force, which only includes the contributions of
viscous effects [2,3,9,14]. All the remaining terms of Eq. (11)
are associated with the additional physical contributions we
consider in our current theoretical model. Observe from
Eq. (11) that the functions g(t), gs(t), and gw(t) couple with the
fingering term |ζn(t)|2. Finally, note that to obtain the complete
dependence of the force on time, we have to know the evolution
of the perturbations amplitudes ζn(t). The dynamics of these
disturbances has been recently studied in Refs. [31,32], where
Darcy’s law, Eq. (3), incompressibility Eq. (4), and boundary
condition Eqs. (7) and (9) are used to obtain a differential
equation for the evolution of the perturbation amplitudes
ζ̇n(t) = λ(n)ζn(t) + O(ζ 2), yielding

ζn(t) = ζn(0) exp

[∫ t

0
λ(n)dt ′

]
. (21)

III. DISCUSSION AND COMPARISON WITH
EXPERIMENTS

In this section we contrast the experimental data obtained in
the paper by Nase et al. [14] for the lifting adhesion force with
the theoretical predictions of the analytical model we have
developed in this work [Eq. (11)]. These set of data are
also compared to the simplest model of the adhesion force
[Eq. (12)] [2,3,9,14], which only includes the contributions
of viscous effects, and neglects fingering, viscous normal
stresses, and wetting effects. To facilitate the comparison of our
model with the experimental findings presented in Ref. [14],
we define the dimensionless quantities

t ′ = V

b0
t, τ0 = σb3

0

12ηV R3
0

, and q = R0

b0
, (22)

where t ′ is a reduced time, τ0 is a surface tension parameter,
and q is the initial aspect ratio (measure of the system’s
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FIG. 2. (Color online) Lifting adhesion force F plotted as a
function of the reduced time t ′ for aspect ratio q = 54.5, and surface
tension parameter τ0 = 3.0 × 10−5. Here at t = 0, nc = 145. The
dashed curve represents the results obtained by the simplest model
[2,3,9,14]. The experimental points (•) are from Nase et al. [14]. The
three solid curves all refer to the situation described by the analytical
model we develop in this work, gradually including the various
physical effects we took under consideration: first, only fingering,
then fingering plus viscous normal stress, and finally fingering plus
stress, plus wetting.

confinement). These are the parameters utilized in the experi-
mental investigation carried out in Ref. [14].

We begin our discussion by examining the representative
Fig. 2, which depicts how the adhesion force F (measured in
Newtons) varies as a function of the dimensionless reduced
time t ′. We stress that this is exactly the way the experimental
data has been presented in Nase et al. [14] (see their Fig. 14).
Throughout this section, the characteristic physical parameters
we used are precisely those utilized in Ref. [14], namely: η =
100 Pa s, σ = 0.02 N/m, and R0 = 3.0 mm. The same is true
for values we consider for the aspect ratio q. In Fig. 2 we take
q = 54.5 and surface tension parameter τ0 = 3.0 × 10−5. All
initial perturbation amplitudes ζn(0) we used are of the order
of 10−7–10−6 m. In our calculations, the participating wave
numbers are 0 � n � nc, where nc is the critical mode at t = 0.
This critical mode is obtained by setting λ(n = nc) = 0 [see
Eq. (18)], establishing the width of the band of unstable modes.

Figure 2 presents the experimental data points taken from
Ref. [14] (represented by the symbol •) and four theoretical
curves. A typical experimental curve as the one represented
by the data points in Fig. 2 starts with a sharp increase of the
adhesion force once the probe is pulled apart. The force quickly
reaches its maximum and then drops asymptotically to zero
as the plate-plate separation is increased. It has been shown
[1–4,8] that the formation of a sharp peak is due to the
compliance of the lifting apparatus. Here, as in Refs. [2,3,9,14],
without loss of generality, we consider an infinitely rigid
machine, where the force starts at a finite value and eventually
tends to zero as the plate separation increases (as represented
by the four theoretical curves in Fig. 2).

Regarding the theoretical curves illustrated in Fig. 2, the
dashed curve is related to the results obtained by the simplest
model [2,3,9,14], while the three solid curves are related to the
results acquired from our analytical model for the adhesion
force, progressively including the relevant physical ingredients

(fingering, normal stresses, and wetting). The first solid curve
just adds the contribution of fingering, the second considers
the action of fingering and viscous normal stress, and finally
the third one takes into account the joined effects of fingering,
viscous normal stress, and wetting. This is done to illustrate
the contribution of each physical ingredient in shaping the
ultimate form of the adhesion force curve.

By examining Fig. 2 we notice that there is a clear dis-
crepancy between the dashed curve (representing the simplest
model) and the experimental data. In order to get a better fit,
we start adding the new ingredients considered by our model.
First, we add just the effect coming from fingering to the
simplest model: as one can verify from Fig. 2 the addition of
fingering approaches the theoretical curve to the experimental
data for intermediate values of t ′ (0.4 < t ′ < 0.6). However,
the solid curve associated to the fingering contribution presents
a bump for larger values of t ′ (t ′ > 0.6). This bump is not in
agreement with the experimental points. This indicates that by
perturbatively adding just the action of fingering, one does
not get a good fitting with the experimental data, at least
for larger reduced times. The unphysical overshoot observed
in Fig. 2 when only fingering is considered reinforces the
importance of the coupling between fingering, normal stresses,
and wetting expressed in Eq. (11). If just fingering is taken
into account, the adhesion force is overestimated for larger
times. In a recent work [31], two of us have shown that the
predictions for the number of fingers in the lifting Hele-Shaw
cell improve significantly when one takes into account the role
played by viscous normal stresses and by wetting film effects.
These stresses are related to normal velocity gradients at the
fluid-fluid interface [38–40]. On the other hand, it is known
the thin layer of oil (inner fluid) left on the plates [35–37]
could explain the fact that the adhesion force is smaller than
predicted from the simplest model theory [14]. It is precisely
the stabilizing role of both normal stresses and wetting that
prevents the mentioned unphysical overshoot behavior when
all these effects (fingering, normal stresses, and wetting) act
simultaneously.

Motivated by these findings [14,31,35–40], first we decided
to consider the combined effect of fingering and stress (see
Fig. 2). One effect we see is that the normal viscous stresses
tend to lower the intensity of the nonphysical bump that arises
at larger t ′ values. However, a smaller bump still persists. At
this point, a logical alternative would be to consider the effect
of the wetting film left behind during the lifting process. This
is represented by the solid curve in Fig. 2 that implements
our model, now taking into account the role of fingering,
viscous normal effects, and wetting. By inspecting Fig. 2 it
is evident that the inclusion of all these ingredients make
the unphysical bump disappear, leading to a much better fit
between experimental data and our theoretical model. We
emphasize that the general findings and conclusions presented
above for the illustrative case depicted in Fig. 2 have also been
observed in all other cases considered in this work, which
assumed different values of τ0 and q. In order to substantiate
the effectiveness and greater accuracy of our analytical model
for the lifting adhesion force (as illustrated by Fig. 2), below
we present a series of results for other values of the aspect
ratio q, and two characteristic values of the surface tension
parameter τ0.
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FIG. 3. (Color online) Adhesion force F as a function of the reduced time t ′, for several values of the aspect ratio q, and two values of
the surface tension parameter τ0 : 3.0 × 10−5 [(a)–(c)], and 4.5 × 10−6 [(d)–(f)]. In panels (a)–(c), nc = 145 at t = 0, while in panels (d)–(f),
nc = 360 at t = 0. The theoretical curves refer to the adhesion force calculated from the simplest model used in Refs. [2,3,9,14] (dashed
curves), and from our current model that takes into consideration the combined influence of fingering, wetting, and viscous normal stresses
(solid curves). The experimental points (•) are from Fig. 14 in Nase et al. [14].

We proceed our discussion by analyzing Fig. 3, which plots
the adhesion force F in terms of the reduced time t ′. The dashed
curves refer to the simplest model utilized in Refs. [2,3,9,14],
while the solid curves are obtained from our model. Once
again, the experimental data have been taken from Nase et al.
[14] (more precisely from their Fig. 14) and are represented
by the solid black circles (•). Figures 3(a)–3(c) consider
an effective surface tension parameter τ0 = 3.0 × 10−5 and
increasingly larger values for the aspect ratios (a) q = 25, (b)
q = 30, and (c) q = 40. These are precisely the values of τ0

and q used in Fig. 14(a) of Ref. [14]. On the other hand,
Figs. 3(d)–3(f) take a smaller value for τ0 (τ0 = 4.5 × 10−6)
and aspect ratios (d) q = 30, (e) q = 40, and (f) q = 60. Now,
the values of τ0 and q utilized in Figs. 3(d)–3(f) are exactly
the ones used in Fig. 14(b) of Ref. [14].

First, we inspect Figs. 3(a)–3(c). As verified by the experi-
ments performed in Ref. [14], larger values of τ0 are associated
to a less destabilized interface, resulting in patterns presenting
a smaller number of fingers. So, in principle, the effects of
fingering should not be dramatic in Figs. 3(a)–3(c). Moreover,
as also experimentally observed in Ref. [14], larger values of
q (larger confinement) lead to greater interface destabilization
and consequently to the production of more fingers. Therefore,
for a fixed τ0 the role of fingering on adhesion should become
more relevant as q assumes larger values.

By examining Figs. 3(a)–3(c) we see that the experimental
results lie below the dashed curve that is calculated from the
simplest model. On the other hand, it is also evident that the

solid curve obtained from our model presents regions where
one finds an improved fit with the experimental data, notably
where t ′ is not very small. This is indicative of the fact that
our analytical modeling for the adhesion force, where the
contributions of fingering, wetting, and viscous normal stresses
are of relevance, provides a better agreement with existing
experimental measurements.

At early reduced times, note that both curves (dashed and
solid) overlap and are situated considerably above the first few
experimental points. Nevertheless, this is not really surprising.
As we mentioned earlier, it is known that at the initial time
regime the peak behavior shown by the experimental data is
attributed to the compliance (or, stretching) of the probe-tack
apparatus [1–3,9,14]. The effect of the apparatus’ compliance
is not considered in either theoretical models (simplest or ours),
so this can at least partially justify the mismatch between both
theories and the experimental data for small t ′. It is worth
noting that as q is increased the dashed curve tends to get
away from the data points, while the solid curve stick close to
them, supporting the relevance of the various effects included
in our model to better describe the experiments.

At this point, we turn to the analysis of Figs. 3(d)–3(f). Re-
call that now we are considering growing aspect ratios q under
a lower value of τ0 as compared to the one utilized in Figs. 3(a)–
3(c). Thus, a greater number of longer fingers should arise
at the fluid-fluid interface [14]. In these circumstances, one
should expect that the effect of fingering on the adhesion force
should be even more important. In fact, this is what one verifies
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by examining Figs. 3(d)–3(f): the distance found between the
experimental data points and the computed forces (for both
models, simplest and ours) tend to increase as q is increased.
Nonetheless, as in Figs. 3(a)–3(c) we see that the the solid
curves still provide a better match with the data. This is partic-
ularly true when the aspect ratio q = 30 and 40. However, the
agreement is not so good for q = 60. This can be explained
by the fact that our analytical model is based on a perturbative
approach, which is valid only for small interfacial perturbation
amplitudes. Higher values of q quickly produce fingers with
sizable amplitudes, a situation that is beyond the validity of
our analytical model. Despite this limitation, our theoretical
results still offer a better agreement with the experiments.

We close this section by providing a more quantitative
basis to the improved agreement of our model with the
experimental data, as contrasted with the simplest model
employed in Refs. [2,3,9,14]. In order to do that we utilized
the Kolmogorov-Smirnov test [42,43] using the data plotted
in Fig. 3. Since both our model and the simplest model do
not consider the compliance of the probe-tack apparatus, we
have excluded all data points appearing prior to the force peak.
This statistical test is very common in the fields of science and
engineering, and is quite useful when one wishes to compare
two sets of measurements. For a comprehensive treatment
about this test, see, e.g., Ref. [44]; for computational details,
see Refs. [44,45].

Consider two theoretical models for which the hypothesis
“the theoretical model fits the experimental data” cannot be
rejected. For the two cases, the so-called p value obtained
by a goodness-of-fit test (as the Kolmogorof-Smirnov test)
is greater than a previous to test chosen significance level α

(a usual choice is α = 0.05, to have a test with a confidence
level equal to 95%). In this context, we should select as the
best model, that model associated with the larger p value.
The results obtained for the calculated p values (by applying
the Kolmogorov-Smirnov test) to verify the goodness of fit
with the experimental data from Ref. [14] [as plotted in
Figs. 3(a)–3(f)] are presented in Table I. First, we show the
p values applying the test for the experimental data [14], and
the corresponding data obtained from our model (Exp., ours).
In the following row of the table, we display the p values
associated with the test used by considering the experimental
data, and the corresponding data extracted from the simplest
model [2,3,9,14] (Exp., simplest). Within the scope of the
Kolmogorov-Smirnov test the results displayed in Table I
indicate that our analytical model does provide a better fit
with experimental data.

TABLE I. p values associated with the data contained in
Figs. 3(a)–3(f). Significance level of the Kolmogorov-Smirnov test:
α = 0.05. The best model is the one associated with the largest p

value.

p values
Fig. 3 (a) (b) (c) (d) (e) (f)

Exp., ours 0.5713 0.9180 0.9821 0.9999 0.9971 0.9205
Exp., simplest 0.5713 0.0887 0.1340 0.9627 0.4792 0.1549

IV. CONCLUDING REMARKS

Sophisticated numerical simulations and careful experi-
mental measurements indicate that the lifting adhesion force
obtained for probe-tack tests with fluids is influenced by
the fingering instabilities that develop at the contracting
two-fluid interface. Traditional analytical modeling of the
situation (the simplest model) does not take into consideration
the effect of the fingering patterns on the adhesion force
strength. Consequently, there exists a mismatch between
existing analytical predictions for adhesion force and actual
experimental data.

In this work, we proposed an enhanced analytical descrip-
tion for the adhesion force that adds to the simplest model
not only the effects of fingering but also the influence of
viscous normal stresses and the action of the wetting film left
behind on the plates of the lifting apparatus. By comparing
our analytical results with existing experimental data, we
showed that the successive addition of these three contributions
(fingering, normal stresses, and wetting) leads to increasingly
improved theoretical predictions for the adhesion force. Such
comparisons have been performed for two values of the
surface tension parameter, and several values of the plate-plate
confinement (aspect ratio q of the system). Employment of the
Kolmogorov-Smirnov statistical test supports the idea that our
analytical model does work better than the simplest model in
describing the actual behavior of the system as expressed by
experiments.
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