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Generalized Lyapunov exponent as a unified characterization of dynamical instabilities
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The Lyapunov exponent characterizes an exponential growth rate of the difference of nearby orbits. A
positive Lyapunov exponent (exponential dynamical instability) is a manifestation of chaos. Here, we propose
the Lyapunov pair, which is based on the generalized Lyapunov exponent, as a unified characterization of
nonexponential and exponential dynamical instabilities in one-dimensional maps. Chaos is classified into three
different types, i.e., superexponential, exponential, and subexponential chaos. Using one-dimensional maps, we
demonstrate superexponential and subexponential chaos and quantify the dynamical instabilities by the Lyapunov
pair. In subexponential chaos, we show superweak chaos, which means that the growth of the difference of nearby
orbits is slower than a stretched exponential growth. The scaling of the growth is analytically studied by a recently
developed theory of a continuous accumulation process, which is related to infinite ergodic theory.
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I. INTRODUCTION

Phenomenological laws such as Ohm’s law and equations
of state are average laws because the variables they deal
with, such as pressure, temperature, and electrical current,
are averaged quantities [1]. Averaging microscopic variables,
we can derive the phenomenological laws or equations from
the underlying dynamical systems. Chaos plays an important
role in such an averaging procedure. In other words, chaos
guarantees to change from a deterministic description to
a probabilistic one [2]. One of the most useful tools to
characterize chaos in dynamical systems is the Lyapunov
exponent. Positive Lyapunov exponents imply chaos, which
means that nearby orbits separate exponentially with time
(exponential dynamical instability).

Chaos plays a central role not only in equilibrium but also
in nonequilibrium statistical mechanics [3–5]. In particular,
a chaotic hypothesis, which is a stronger hypothesis than
a positive Lyapunov exponent, establishes the fluctuation
theorem in nonequilibrium stationary states [3]. Moreover,
the role of chaos in nonequilibrium nonstationary phenomena
such as anomalous diffusions has been studied [6–8], where
infinite invariant measure and the Lyapunov exponent play
an important role in characterizing transport coefficients such
as diffusion coefficients and drift [6,7]. Prominent features in
such dynamical systems with infinite invariant measures are
distributional limit theorems, that is, time-averaged observ-
ables do not converge to a constant but become random [9–15].
Recently, infinite densities have become important in physics
of anomalous transports [16,17].

Exponential separation of nearby orbits, i.e., exponential
dynamical instability, is clearly indicated by the Lyapunov
exponent. On the other hand, dynamical systems may show
nonexponential dynamical instabilities while they have a
sensitive dependence on initial conditions. It is well known
that the separation of nearby orbits in Pomeau-Manniville
maps [18] with infinite invariant measures is characterized
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as a subexponential growth (subexponential dynamical insta-
bility) [19–21]. More precisely, the average of the logarithm
of the separation of nearby orbits grows sublinearly with
time, which indicates the zero Lyapunov exponent, while the
system has a sensitive dependence on initial conditions. Since
subexponential dynamical instability implies infinite invariant
measure [21], characterization of nonexponential dynamical
instability will be important in physics with infinite densities.

Another characterization of dynamical instability is a
mixing property. A concept of mixing in dynamical systems
with infinite invariant measures was introduced by Krengel
and Sucheston [22]. The typical example of such dynamical
systems is a Pomeau-Manneville map with an infinite invariant
measure [23]. We note that the Lyapunov exponent converges
to zero even though there is a mixing property. Recently,
indicators characterizing subexponential dynamical instability
have been developed [20,21,24,25]. However, to our knowl-
edge, there are no unified quantities to characterize dynamical
instabilities such as superexponential and subexponential
instabilities. In this paper, we propose the Lyapunov pair as a
unified indicator characterizing various types of chaos.

II. DYNAMICAL INSTABILITY IN
ONE-DIMENSIONAL MAPS

Dynamical instability is defined by the sensitive depen-
dence on initial points. In particular, the exponential growth
of nearby orbits, i.e.,∣∣∣∣�x(n)

�x(0)

∣∣∣∣ ∼ eλn,�x(0) → 0 and n → ∞, (1)

is characterized by the Lyapunov exponent λ, where �x(n) is
the difference between two orbits at time n. Positive exponent
λ > 0 implies the exponential dynamical instability. Let T be a
transformation on a one-dimensional interval I ; the Lyapunov
exponent can be given by

λ = lim
n→∞

1

n

n−1∑
k=0

ln |T ′(xk))|, (2)

where xk = T k(x0).
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When the separation of nearby orbits grows subexponen-
tially with time, i.e.,∣∣∣∣�x(n)

�x(0)

∣∣∣∣ ∼ eλαnα

, �x(0) → 0 and n → ∞, (3)

where 0 < α < 1, the growth rate λα cannot be determined
uniquely. This is because there does not exist a sequence
an ∝ nα such that λα(an) = 1

an

∑n−1
k=0 ln |T ′(xk)| converges to

a nontrivial constant as n → ∞ in a conservative, ergodic,
measure-preserving transformation [10,21]. In other words,
the exponent λα remains a random variable even when the
time goes to infinity. In a previous study [21], we investigated
the generalized Lyapunov exponent to characterize the subex-
ponential dynamical instability.

Here we use the generalized Lyapunov exponent to charac-
terize chaos with nonexponential dynamical instabilities. The
generalized Lyapunov exponent is defined by

�α ≡
〈

1

nαL(n)

n−1∑
k=0

ln |T ′(xk)|
〉

, (4)

where the sequence L(n) is slowly varying at ∞, 〈.〉 represents
the average with respect to an initial ensemble being Riemann
integrable and 〈ln |T ′(x)|〉 < ∞ [15,20,21]. We note that
dynamical systems with infinite invariant measures shows
aging [15,26]. In particular, the generalized Lyapunov ex-
ponent depends on the aging ratio, Ta ≡ ta/t , i.e., the ratio
between the measurement time t and the time ta when the
system started [15]. Here we set Ta = 0 because we do not
consider the aging effect. If L(n) is constant, we set L(n) ≡ 1.
In this definition, dynamical instability can be represented by
the average of the logarithm of the separation of nearby orbits:〈

ln
�x(n)

�x(0)

〉
∼ �αnαL(n), �x(0) → 0 and n → ∞.

(5)
We call (nαL(n),�α) the Lyapunov pair when 0 < �α < ∞
holds. If the average of the logarithm of the separation
of nearby orbits cannot be represented by Eq. (5), e.g.,
〈ln �x(n)

�x(0) 〉 ∝ en, we set α = ∞. In the case where there
does not exist a sequence such that 0 < �α < ∞, we write
the Lyapunov pair (nαL(n),∞) if

∑n−1
k=0 ln |T ′(xk)|/nαL(n)

converges in distribution (does not converges to 0 nor ∞) and
the ensemble average diverges. We call the sequence nαL(n)
in the Lyapunov pair the dynamical instability sequence.

Using the dynamical instability sequence nαL(n), we
classify a type of chaos into superexponential chaos, exponen-
tial chaos, and subexponential chaos if nαL(n)/n diverges,
converges to constant, and 0 as n → ∞, respectively. In other
words, a dynamical system with a large α has a high dynamical
instability. Because the generalized Lyapunov exponent gives
an averaged growth rate when the separation growth of nearby
orbits is given by the form (5), a degree of the dynamical
instability cannot be quantified by the generalized Lyapunov
exponent only. The generalized Lyapunov exponent represents
a degree of the dynamical instability when the dynamical
instability sequence is fixed. We note that the dynamical
instability sequence of ordinary chaos is n, i.e., �α = λ.

III. DIFFERENT TYPES OF CHAOS
IN ONE-DIMENSIONAL MAPS

A. Super-exponential chaos

Here we give two examples for superexponential chaos.
One example is the infinite Bernoulli scheme:

B

⎛
⎜⎜⎝1

2
,
1

4
,

1

16
,

1

16
, . . . ,

1

22n , . . . ,
1

22n︸ ︷︷ ︸
22n−n−1t imes

, . . .

⎞
⎟⎟⎠ . (6)

The transformation T (x) is shown in Fig. 1(a). The trans-
formation has uniform invariant measure on [0,1] [27]. By
Birkhoff’s ergodic theorem [28], the Lyapunov exponent is
given by the ensemble average with respect to the uniform
invariant measure:

λ =
∫ 1

0
dx log |T ′(x)| =

∞∑
k=1

22k−k−1

22k
log 22k = ∞. (7)

Let X be the logarithm of the slope of the infinite Bernoulli
scheme, then

Pr
{
X = log 22n} = pn ≡ 2−n−1. (8)

Therefore,

Pr{X � x} =
∞∑

k=n

pk = 2−n ∼ log 2

x
(x → ∞), (9)

where x = log 22n

. From the generalized central limit the-
orem [29],

∑n−1
k=0 ln |T ′(xk)|/n ln n converges to a stable

distribution with exponent one. Because the mean does not
exist (diverge) in the stable distribution, the Lyapunov pair is
given as (n ln n,∞).

The other example is the ant-lion map [30]. The ant-lion
map TAL : [0,1] → [0,1] is an infinite-modal map defined by

TAL(x) = x + Ax sin(π/x), (10)

where A < 1 [see Fig. 1(b)]. Fixed points are given by x = 1/n

(n = 1,2, . . . ). As shown in Fig. 2(b), the Lebesgue measure
where orbits go to the origin (black region) is positive, and
there are stable periodic orbits in the black region [see also
Fig. 2(a)]. Surprisingly, the origin is an attractor, whereas the
derivative of the ant-lion map becomes large (greater than
one) around the origin. Such a strange phenomenon is called
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FIG. 1. (Color online) (a) Infinite Bernoulli scheme. Lines repre-
sent the transformation. (b) Ant-lion map. The dashed lines represent
the envelopes of the map.
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FIG. 2. (Color online) Bifurcation diagram and basins of at-
traction for the ant-lion map (10). (a) Bifurcation diagram. This
diagram is drawn as follows: initial points xi

0 are randomly chosen
(i = 1, . . . ,100). After 104 iterations, we plot the values of xi

104

(i = 1, . . . ,100) for each parameter A. (b) Basins of attraction.
Vertical axis represents initial point. The figure is drawn as follows:
initial points are chosen as i/100 for each parameter A = i/100
(i = 1, . . . ,100), and then we plot the values of x103 by their colors.

the ant-lion property [30]. More precisely, orbits which are not
stable periodic orbits in the ant-lion map can be represented as
xn ∝ e−nγ (A)+√

nσ (A)ξn(x0), where γ (A) and σ (A) are constants
which depend on A, and ξn(x0) represents a correction term
which depends on the initial point x0. These orbits are similar
to those generated by a random dynamical system defined by

TR(x) = (1 + A sin Y )x, (11)

where Y is a random variable with uniform density on [0,2π ].
If we assume that the term π/xn (mod 2π ) in the ant-lion
map is uniformly distributed on [0,2π ], we have the above
random dynamical system. The above assumption is physically
reasonable near x = 0 because the ant-lion map becomes
denser as x closes to the origin [see Fig. 1(b)].

Consider an orbit zn = ln xn. Then, we have a biased
random walk, i.e., zn+1 = zn + ln(1 + A sin Yn). Because the
mean 〈ln(1 + A sin Yn)〉 ≡ −γ (A) is negative, the trajectory
zn shows a drift, i.e., 〈zn〉 ∝ −γ (A)n, which implies xn

goes to zero as n → ∞. More precisely, we have xn ∝
e−nγ (A)+√

nσ (A)ξn in the random dynamical system [30]. More-
over, the generalized Lyapunov exponent can be obtained by

using the random dynamical system [30]. Near the origin we
approximate the derivative of the map by

T ′(x) ∼ −πA

x
cos(Y ). (12)

Using trajectories xn ∼ x0e
−nγ (A)+√

nσ (A)ξn , we have〈
n−1∑
k=0

ln |T ′(xk)|
〉

∼
n−1∑
k=0

〈
ln

πA

xk

| cos(Y )|
〉

(13)

∼ γ (A)

2
n2 (n → ∞). (14)

Therefore, the Lyapunov pair is given by (n2,γ (A)/2).
Although the origin is an attractor, the ant-lion map has a
superexponential dynamical instability. This superexponential
dynamical instability validates a randomization of trajectories.
In other words, we can use trajectories in the random
dynamical system (11) to study statistical properties of the
ant-lion map (10) with the aid of its high complexity. This is
another evidence of the superexponential chaos. We note that
the ant-lion map has infinite invariant measures [30,31].

B. Exponential chaos

When a dynamical system on I has an invariant probability
measure m and the function ln |T ′(x)| is an L1(m) function,
i.e.,

∫
I
|f | dm < ∞, the time average of the function ln |T ′(x)|

equals the ensemble average for almost all initial points x0:

1

n

n−1∑
k=0

ln |T ′(xk)| →
∫

I

ln |T ′(x)| dm (n → ∞). (15)

Furthermore, the existence of a probability invariant measure
and ln |T ′(x)| ∈ L1(m) implies a positive Lyapunov expo-
nent [21]. Therefore, dynamical systems are exponential chaos
if and only if the invariant measure m is a probability measure
and the function ln |T ′(x)| is an L1(m) function. In other words,
an origin of superexponential chaos in the infinite Bernoulli
scheme is a non-L1(m) property of ln |T ′(x)|.

C. Sub-exponential chaos

In a previous paper [21], we show that subexponential
instability implies an infinite measure in one-dimensional
maps. From infinite ergodic theory [10], if the function
f (x) = ln |T ′(x)| is an L1(m) positive function, one can obtain
distributional behavior of the normalized Lyapunov exponent:

1

an

n−1∑
k=0

f (xk) ⇒
[∫

I

f (x) dm

]
Yα (n → ∞), (16)

where an is called the return sequence, Yα is a random variable
with the normalized Mittag-Leffler distribution of order α [32].
The notation “⇒” means the convergence in distribution. We
note that initial points x0 in the left-hand side of Eq. (16)
are random variables. Because the mean of the normalized
Mittag-Leffler distribution is one, the generalized Lyapunov
exponent is obtained as

�α = an

nαL(n)

∫ 1

0
ln |T ′(x)|ρ(x) dx. (17)
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Note that there are no n dependence in the right-hand side
(RHS) of Eq. (17). It is also noteworthy that there is at most
one infinite invariant measure if T is a conservative, ergodic,
nonsigular transformation [10] and that the multiplying con-
stant of the invariant measure m is uniquely determined when
the return sequence an is specified. In other words, the return
sequence an is uniquely determined by the choice of an infinite
invariant measure. From infinite ergodic theory, the return
sequence can be obtained using the wandering rate defined by
wn = m(∪n

k=0T
−kB), where B is a set with 0 < m(B) < ∞.

In particular, the return sequence is given by

an ∼ n

�(1 + α)�(2 − α)wn

, (18)

when wn is regularly varying at ∞ with index α [10].
Here we consider the map Tp : [0,1] → [0,1] with p � 1

[33] defined by

Tp(x) = x

[
1 +

(
x

1 + x

)p−1

− xp−1

]1/(1−p)

(mod1). (19)

The invariant density ρp(x) of this map is analytically known
as [33]

ρp(x) = c

xp
+ c

(1 + x)p
, (20)

where c is a multiplicative constant. In what follows, we set
c = 1 for simplicity. According to the estimation of wn in
Ref. [34], we have

wn ∼
{

log n (p = 1),
p1−α

p−1 n1−α (p > 1),
(21)

where α = 1/p. From Eq. (18), the return sequence can be
written as

an ∼
{

n
log n

(p = 1),
(p−1)nα

p1−α�(1+α)�(2−α) (p > 1).
(22)

Therefore, the generalized Lyapunov exponent is obtained as

�α(p) = p − 1

p1−α�(1 + α)�(2 − α)

∫ 1

0
ln |T ′

p(x)|ρp(x) dx.

(23)

Figure 3 shows that numerical simulations of the generalized
Lyapunov exponents are in good agreement with the theory
without fitting.

As an example of subexponential chaos with non-L1(m)
observation function of the Lyapunov exponent, we consider
the log-Weibull map [34,35] defined by

TLW (x) =
{
x + x2e−1/x x ∈ [0,a]
x−a
1−a

x ∈ (a,1], (24)

where a is determined by the equation a + a2e−1/a = 1 (0 <

a < 1). The invariant density has an essential singularity at
0 [34]:

ρ(x) = h(x)e1/x/x, (25)

where h(x) is continuous and positive on [0,1]. The residence
time distribution on (0,a] obeys the log-Weibull distribu-
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FIG. 3. (Color online) The generalized Lyapunov exponent.
Symbols represent the results of numerical simulations for finite
lengths N of sums. The solid curve is the theoretical curve (23)
without fitting parameter.

tion [35],

W (τ ) ∼ exp[−C/ ln(τ + 1)] (τ → ∞), (26)

where C is a constant. This is why we refer to the map (24) as
the log-Weibull map (a logarithmic modification of the Weibull
map [36]). We note that ln |T ′

LW(x)| is not an L1(m) function,

i.e.,
∫ 1

0 ln |T ′
LW(x)|ρ(x) dx = ∞. This class of function is

called weak non-L1 function because of ln |T ′
LW(0)| = 0 [37].

Therefore, the distributional limit theorem (16) cannot be
applied whereas it is known that the return sequence of the
log-Weibull map can be given by an ∝ ln n [34]. Instead,
another distributional limit theorem will be applied. Although
the log-Weibull map does not belong to the maps considered
in Ref. [37], a similar distributional limit theorem will hold.

To investigate the scaling of the dynamical instability
sequence, we consider the evolution of ln |T ′

LW (xk)| on [0,a]
using a continuous approximation. Since a displacement,
xn − xn−1, is very small near the fixed point (x = 0), the
difference equation (24) can be replaced by the differential
equation:

dx

dt
= x2e−1/x (x � 1). (27)

This equation is solved as

x(t) = 1

ln(e1/x0 − t)
(t < τ ), (28)

where x0 is the initial point and τ satisfies x(τ ) = 1, i.e.,
τ = e1/x0 − e or x0 = 1/ ln(τ + e). When the total residence
time (time elapsing from reinjection on [0,a] to escape from
it) is given by τ , the partial sum of ln |T ′(xk)| from time 0
to t during residing on [0,a], i.e., I (t,τ ) ≡ ∑t

k=0 ln |T ′
LW (xk)|

(t < τ ), is approximated by

I (t,τ ) ∼=
∫ t

0
ln |T ′

LW (x(t ′))| dt ′

∼= ln(τ + e) − ln(τ + e − t), (29)
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where we approximate the partial sum of ln |T ′
LW (xk)| from

time 0 to t as a continuous process [37]. The total increase
of the partial sum during residing on [0,a] is given by
I (τ ) ≡ I (τ,τ ) ∼= ln(τ + e) − 1. Rigorous discussion on the
above approximation has been done in Ref. [37]. Here, we
consider a continuous accumulation process [37]. Let Q(x,t)
be the probability density function (PDF) that a partial sum is
x at time t when the orbit escapes from [0,a], then we have

Q(x,t) = δ(t)δ(x) +
∫ ∞

0
dx ′

∫ t

0
dt ′ψ(x ′,t ′)

×Q(x − x ′,t − τ ) dτ dx ′, (30)

where ψ(x,τ ) = w(τ )δ[x − I (τ )] and w(τ ) is the PDF of the
residence time, i.e., w(τ ) = W ′(τ ). The conditional PDF of Xt

at time t [note that the orbit will be in (0,a)] on the condition
of τNt+1 = τ (Nt is the number of escapes from [0,a] until
time t), denoted by P (x,t ; τ ), is given by

P (x,t ; τ ) =
∫ x

0
dx ′

∫ t

0
dt ′�(x ′,t ′; τ )

×Q(x − x ′,t − t ′) + �(x,t ; τ ), (31)

where �(x,t ; τ ) = δ[x − I (t,τ )]θ (τ − t) and θ (x) = 0 for
x < 0 and 1 otherwise. It follows that the PDF of Xt at time t

reads

P (x,t) =
∫ ∞

0
w(τ )P (x,t ; τ ) dτ. (32)

Double Laplace transform with respect to time (t → s) and
space (x → k) gives

P̂ (k,s) ≡
∫ ∞

0
dt

∫ ∞

0
dxe−st−kxP (x,t)

=
∫ ∞

0

w(τ )�̂(k,s; τ )

1 − ψ̂(k,s)
dτ, (33)

where

ψ̂(k,s) ≡
∫ ∞

0
dτ

∫ ∞

0
dxe−sτ−kxψ(x,τ )

=
∫ ∞

0
e−sτ e−kI (τ )w(τ ) dτ (34)

and

�̂(k,s; τ ) ≡
∫ ∞

0
dt

∫ ∞

0
dxe−st−kx�(x,t ; τ )

=
∫ τ

0
e−st−kI (t,τ ) dt. (35)

Because the Laplace transform of the mean partial sum of
ln |T (x)| denoted by Ĥ (s), is given by Ĥ (s) = − ∂P̂ (k,s)

∂k
|k=0,

we have

Ĥ (s) = − ψ̂ ′(0,s)

s[1 − ŵ(s)]
+

∫ ∞
0 dt

[ ∫ ∞
t

dτw(τ )I (t,τ )
]
e−st

1 − ŵ(s)

∝ − ψ̂ ′(0,s)

s[1 − ŵ(s)]
, (36)

FIG. 4. (Color online) The generalized Lyapunov exponent of the
log-Weibull map. The generalized Lyapunov exponent �0 defined by
Eq. (40) converges to ALW

∼= 1.43. Inset figure shows that 〈Sn〉/ ln n

increases with ln ln n.

where we used the approximation that the second term has the
same order as the first one. Using the asymptotic form of ψ̂(s),

ŵ(s) ∼ W (1/s) ∼ exp

[
− C

ln(1/s)

]
(s → 0), (37)

and
∫ ∞

0 e−sτ ln(τ + e)w(τ ) dτ = O[ln ln(1/s)] (see the
Appendix), we have

Ĥ (s) ∼ ALW

ln(1/s) ln ln(1/s)

s
(s → 0), (38)

where ALW is a constant. The inverse Laplace transform reads〈
n−1∑
k=0

ln |T ′
LW (xk)|

〉
∼ ALW ln n ln ln n (n → ∞). (39)

It follows that the generalized Lyapunov exponent of the log-
Weibull map is given by

�0 ≡
〈

1

ln n ln ln n

n−1∑
k=0

ln |T ′
LW (xk)|

〉
→ ALW (40)

as n → ∞. We note that the dynamical instability sequence,
ln n ln ln n, is not the same as the return sequence because of
a non-L1(m) property of ln |T (x)|. Therefore, the Lyapunov
pair is given by (ln n ln ln n,ALW ), where ALW is numerically
obtained as ALW

∼= 1.43. Because the separation of nearby
orbits grows slower than a stretched-exponential growth, the
dynamical instability is much weaker than that in Pomeau-
Manneville map. We call this chaos superweak chaos. Figure 4
shows the generalized Lyapunov exponent converges to a
constant.

IV. CONCLUSION

We have proposed the Lyapunov pair as a unified characteri-
zation of dynamical instabilities, such as superexponential and
subexponential dynamical instabilities. The dynamical insta-
bility sequence represents a separation growth of nearby orbits,
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while the generalized Lyapunov exponent �α characterizes the
growth rate of the separation, i.e., |�x(n)/�x(0)| ∼ e�αnαL(n).
In the log-Weibull map, we show that the dynamical instability
sequence is represented as ln n ln ln n, which means that the
separation growth of nearby orbits is slower than a stretched-
exponential as well as a power-law growth (superweak chaos).
In deterministic subdiffusion, the mean square displacement
grows sublinearly, 〈x(t)2〉 ∝ tα , whereas the time-averaged
mean square displacement grows linearly, δ2(�) ∼ Dα�, but
Dα remains random [6]. Using the Lyapunov pair, we can
characterize the subdiffusive exponent α and the mean of
diffusion coefficients through the relation 〈x(t)2〉 ∝ tαL(t)
and 〈Dα〉 ∝ �α , where tαL(t) is the dynamical instability
sequence [6]. Therefore, the Lyapunov pair will play an
important role in anomalous transports.
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APPENDIX: SCALING OF THE LAPLACE TRANSFORM

We derive the asymptotic form of the Laplace transform of
the function f (τ ) = ln(τ + e)w(τ ). The asymptotic form of
f (τ ) is given by

f (τ ) ∼ ln(τ + e)

(τ + 1)[ln(τ + 1)]2
∼ 1

τ ln τ
(τ → ∞). (A1)

We decompose the integration as follows:∫ ∞

0
e−sτ f (τ ) dτ =

∫ τ ∗

0
e−sτ f (τ ) dτ +

∫ 1/s

τ ∗
e−sτ f (τ ) dτ

+
∫ ∞

1/s

e−sτ f (τ ) dτ. (A2)

The first term in the RHS of Eq. (A2) can be represented by

0 <

∫ τ ∗

0
e−sτ f (τ ) dτ <

∫ τ ∗

0
f (τ ) dτ

<

∫ τ ∗

0

1

τ + 1
dτ (A3)

for some τ ∗ > 0. Therefore, the first term is bounded for s �
1. On the other hand, the second and third terms in the RHS
of Eq. (A2) can be estimated by

e−1
∫ 1/s

τ ∗
f (τ ) dτ <

∫ 1/s

τ ∗
e−sτ f (τ ) dτ +

∫ ∞

1/s

e−sτ f (τ ) dτ

< e−sτ ∗
∫ 1/s

τ ∗
f (τ ) dτ + f (1/s)

∫ ∞

1/s

e−sτ dτ. (A4)

By ∫ 1/s

τ ∗
f (τ ) dτ ∼

∫ 1/s

τ ∗

1

(τ + 1) ln(τ + 1)
dτ

= [ln ln(τ + 1)]1/s
τ ∗ = ln ln(1/s + 1) − ln ln(τ ∗ + 1),

(A5)

we obtain the leading order of the Laplace transform
of f (τ ):∫ ∞

0
e−sτ f (τ ) dτ = O [ln ln(1/s)] (s → 0). (A6)
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