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We study a two-component nonlinear Schrödinger system with equal, repulsive cubic interactions and different
dispersion coefficients in the two components. We consider states that have a dark solitary wave in one component.
Treating it as a frozen one, we explore the possibility of the formation of bright-solitonic structures in the other
component. We identify bifurcation points at which such states emerge in the bright component in the linear limit
and explore their continuation into the nonlinear regime. An additional analytically tractable limit is found to be
that of vanishing dispersion of the bright component. We numerically identify regimes of potential stability, not
only of the single-peak ground state (the dark-bright soliton), but also of excited states with one or more zero
crossings in the bright component. When the states are identified as unstable, direct numerical simulations are used
to investigate the outcome of the instability development. Although our principal focus is on the homogeneous
setting, we also briefly touch upon the counterintuitive impact of the potential presence of a parabolic trap on the
states of interest.
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I. INTRODUCTION

Atomic Bose-Einstein condensates (BECs) [1,2] constitute
a platform that is ideal for the study of numerous nonlinear-
wave phenomena (see, e.g., reviews in [3–6]). One of the
particularly interesting directions in that regard is the study
of multicomponent BEC systems and solitary waves in
them. This is a subject of broad interest, not only in the
realm of atomic BECs, but also in nonlinear optics [7] as
well as in studies of integrable systems in mathematical
physics [8]. Arguably, one of the most intriguing coherent
structures in the multicomponent settings in the presence of
defocusing nonlinearities (in terms of optical systems) or
repulsive interatomic interactions (in BECs) are dark-bright
(DB) solitons. In particular, exact solutions for such states are
available in the well-known integrable self-defocusing two-
component Manakov system [9]. Generally, the DB solitons
are ubiquitous in two-component systems, i.e., the nonlinear
Schrödinger equations (NLSEs) or Gross-Pitaevskii equations
(GPEs), in which both the self-phase-modulation (SPM) and
cross-phase-modulation (XPM) terms are represented by cubic
terms.
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In the DB structures, the customary dark soliton of the
defocusing NLSE induces an effective potential, via the XPM
interaction, in the other component, which in turn gives rise to
self-trapping of bright-soliton states in the latter component.
This possibility has been studied extensively in atomic BECs
(see, e.g., Refs. [10–19]). Such waveforms have been reported
in experiments both in two-component BEC mixtures, which
make use of two different atomic states of 87Rb [20–25], and
in nonlinear optics [26–28]. The BEC experimental studies
have examined the dynamics of a single DB soliton in a
trap [20,22], the generation of multiple DB solitons in a
counterflow experiment [21] (see also the theoretical work
of Ref. [29]), DB soliton interactions [23], and the creation of
SU(2)-rotated DB solitons, in the form of beating dark-dark
solitons [24,25].

Our aim in the present work is to extend this fundamental
structural idea for the existence of DB solitary waves beyond
the previously studied integrable or close-to-integrable limit of
the Manakov model. In fact, the nearly integrable setting has
been especially useful and relevant to the experiment due to the
fact that the ratios of interspecies and intraspecies interactions
between different hyperfine atomic states of 87Rb in the BEC
mixtures (|1,0〉 and |2,0〉, as well as |1, −1〉 and |2, −2〉)
are very close to unity [20–25]. The dispersion coefficients in
this setting are equal too, as they are determined by the same
atomic weight. It is relevant to note in passing that, quite
recently [30], the studies of spin-orbit-coupled BECs [31]
have led to a set of coupled GPEs (via a multiple-scale
reduction scheme), where the effective dispersion coefficients
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could differ substantially (and controllably), as they depend on
the curvature of the corresponding dispersion relation of the
two-component branches. A similar situation is in principle
possible for a binary condensate loaded into a periodic spin-
dependent potential, in which case the effective mass may be
altered differently by the potential for two atomic states with
different spins.

The possibility of having different dispersion prefactors
(which, of course, are also different in the system of coupled
GPEs corresponding to a heteronuclear binary BEC) in the
model producing the DB solitary waves is the main motivation
for the analysis reported below. In particular, if we assume
that the dark soliton in the one component induces an
approximately frozen effective potential in the other one
(reserved for carrying a bright-soliton structure), then varying
the dispersion coefficient allows us to modulate the depth
and width of the effective potential. In so doing, we can
trap different bound modes, representing the ground state or
excited ones, at the level of the linear approximation for the
bright component. The analysis presented in Sec. II allows us
then to infer the value of the dispersion coefficient along with
the respective eigenvalue (the chemical potential) for which
such multiple states are accessible. Another intriguing case
is the limit of vanishing dispersion of the second component.
Given the algebraic [Thomas-Fermi (TF)] nature of the second
equation in that limit, we can treat that case analytically (this
is presented in Sec. II as well) and then test the solutions
numerically. Based on these aspects of the analysis (the linear
and nonlinear TF limits), we then numerically examine the
emergence of nonlinear states from the predicted bifurcation
points of the linear theory and their continuation (when
possible, all the way to the zero-dispersion limit). Identifying
these solutions, we also explore their stability against small
perturbations, concluding, quite naturally, that higher excited
states, i.e., bright solitary waves with a larger number of nodes,
are more prone to instability. For unstable states, we simulate
the dynamical development of the instability, which often
involves mobility of the coherent structure, and possibilities
of destruction of higher excited states or their reshaping
into lower ones. This computational analysis is performed in
Sec. III. Finally, in Sec. IV we summarize our findings and
present conclusions and highlight directions for future studies.

The considerations reported in this paper provide us with
a systematic means for unveiling a whole series of previously
unexplored families of solutions in the two-component NLSE-
GPE system. Actually, with the exception of the fundamental
DB soliton (i.e., the simplest among the considered states, with
a nodeless bright component), understanding of the existence
and especially stability of such states, as well as of their
nonlinear dynamical behavior, is presently very limited. It
is therefore the purpose of this work to find out which of
these states are stable and in what parameter regions. For
unstable states, our intention is to reveal mechanisms through
which the instabilities manifest themselves, as well as eventual
configurations into which the unstable states are driven.
These issues turn out to be by no means trivial, involving
both mobility and different scenarios of transformation into
different types of robust configurations.

To conclude the Introduction, it is relevant to note that
two-component NLSEs with unequal dispersion coefficients

give rise to other families of unusual states, a known example
being symbiotic bright solitary waves in heteronuclear binary
BECs [32]. They are supported by the interplay of repulsive
self-interactions and attractive cross interactions between the
components, which is essentially different from the setting
considered in the present work.

II. MODEL AND ANALYTICAL CONSIDERATIONS

Given that the underlying model is relevant to both atomic
BECs and nonlinear optics, we present it in the general form
of the coupled NLS equations. To this end, we consider the
coupled NLS system written in the following dimensionless
form:

i∂t�− = −D−
2

∂xx�− + γ (g11|�−|2 + g12|�+|2)�−

+V (x)�−, (1a)

i∂t�+ = −D+
2

∂xx�+ + γ (g21|�−|2 + g22|�+|2)�+

+V (x)�+, (1b)

with dispersion coefficients D±, nonlinearity strength γ ,
interaction coefficients gjk (j,k = 1,2, with g21 ≡ g12), and
an external harmonic potential V (x), of the form V (x) =
1
2�2x2, with normalized trap strength �. In BECs of different
species, D± play the role of the inverse masses, while in
the spin-orbit BEC they may be associated with the local
curvature of different branches of the dispersion relation [30].
Fields �± = �±(x,t) in Eqs. (1a) and (1b) will carry the
dark (denoted by a minus subscript) and bright (denoted by
a plus subscript) soliton components, respectively. We fix
gjk = 1 for all j,k = 1,2 (motivated, as indicated above, by
the actual values of the interaction coefficients for the BEC
mixtures in 87Rb) and D− = γ = 1, which is always possible
upon rescaling, defining D+ ≡ D (� 0). Stationary solutions
to Eqs. (1a) and (1b) with chemical potentials μ± are found
using the ansatz �±(x,t) = φ±(x) exp(−iμ±t), where φ±(x)
are real-valued functions. Then Eqs. (1a) and (1b) reduce to
the coupled system of stationary equations

μ−φ− = − 1
2 (φ−)′′ + (φ2

− + φ2
+)φ− + V (x)φ−, (2a)

μ+φ+ = −D
2 (φ+)′′ + (φ2

− + φ2
+)φ+ + V (x)φ+, (2b)

with the prime standing for d/dx. In the majority of cases
studied below, we will be considering both Eqs. (1) and (2)
in the absence of the trapping potential; thus we set V (x) = 0
from now on (unless explicitly noted otherwise).

In the absence of the bright component, i.e., φ+ = 0, an
obvious dark-soliton solution of Eq. (2a) is

φ−(x) = √
μ− tanh(

√
μ−x). (3)

With this solution playing the role of the background for the
weak bright component φ+, the linearized form of Eq. (2b) for
given μ− amounts to an eigenvalue problem

Lφ+ = λφ+, (4)

where L = D
2

d2

dx2 +μ−sech2(
√

μ−x) is a linear opera-
tor and (λ,φ+) is the eigenvalue-eigenvector pair with
λ ≡ μ− − μ+. According to commonly known results from
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quantum mechanics [33] for the respective Pöschl-Teller
potential [34], Eq. (4) gives rise to bound states of order n

(n = 0 corresponds to the ground spatially even state, n = 1 to
the first odd state, etc.) that exist under the following condition:

D < D
(n)
crit = 2

n(1 + n)
. (5)

In particular, the ground state is always present, while the first
odd state exists at D < 1, the first excited even state (n = 2)
exists at D < 1/3, the next excited odd state (n = 3) exists
at D < 1/6, and so on. This feature was fully confirmed by
our numerical computations [see, in particular, the range of D

considered below in Figs. 1–4, which is in accordance with
the bound given by Eq. (5) for μ− = 1].

It can thus be expected that nonlinear solutions correspond-
ing to the ground and excited states in the linear limit bifurcate
at these critical values of D with the corresponding eigenvalues
μ+ of the linear problem (4); on the other hand, μ− is a given
amplitude of the background for the dark soliton, which is set
to be μ− = 1 in our numerical computations below.
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FIG. 1. (Color online) Bound states and continuation results cor-
responding to n = 0 (i.e., the ground states). (a) Steady-state profiles
of the dark (black line) and bright (blue line) soliton solutions
for the parameters D = 1 and μ+ = 0.51. (b) Maximal imaginary
eigenfrequency as a function of the continuation parameter μ+ at
various fixed values of D. (c) and (d) Solution norms, i.e., integral
powers (11) associated with the solution branches, as functions of the
continuation parameter μ+ at various fixed values of D. (e) Dark and
(f) bright soliton solutions analytically predicted by Eq. (8) (blue line)
and numerically obtained (black circles) for D = 0 and μ+ = 0.51.
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FIG. 2. (Color online) Same as Fig. 1, but for bound states of
order n = 1 (i.e., first excited spatially odd states). (a) Steady-state
profiles of the dark (black line) and bright (blue line) soliton solutions
for D = 0.6 and μ+ = 0.96. (b) Maximal imaginary eigenfrequency
as a function of the continuation parameter μ+ at various fixed
values of D. Notice that the second highest instability growth rates
are also shown by dash-dotted lines (see the text for details). (c)
and (d) Solution norms, given by integrals (11), as functions of the
continuation parameter μ+ at various fixed values of D.
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FIG. 3. (Color online) Same as Fig. 1, but for bound states of
order n = 2 (i.e., first excited spatially even states). (a) Steady-state
profiles of the dark (black line) and bright (blue line) soliton
solutions for D = 0.2 and μ+ = 0.9655. (b) Maximal imaginary
eigenfrequency as a function of the continuation parameter μ+ at
various values of D. (c) and (d) Powers associated with the solution
branches [see Eq. (11)] versus the continuation parameter μ+ at
various values of D.
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FIG. 4. (Color online) Same as Fig. 1, but for bound states of
order n = 3 (i.e., second excited antisymmetric states). (a) Steady-
state profiles of the dark (black line) and bright (blue line) soliton
solutions for D = 0.12 and μ+ = 0.977. (b) Maximal imaginary
eigenfrequency as a function of the continuation parameter μ+ at
various values of D. (c) and (d) are similar to Figs. 3(c) and 3(d).

The present calculation and its connection to the Pöschl-
Teller potential also provides a lower bound for the values
of μ+ in the nonlinear system. In particular, considering
the known properties of the exact solution of the linear
problem [33], nonlinear states may exist above the level of
the chemical potentials

μ+ = μ−

⎡⎣1 − D

8

(√
1 + 8

D
− (2n + 1)

)2
⎤⎦ . (6)

This bound has been also fully confirmed in our numerical
computations discussed below. Furthermore, these computa-
tions demonstrate that, with the increase of μ+, the bright
component grows wider, progressively expanding to the size
of the computational domain. The latter determines the upper
bound of μ+ values considered herein.

As explained in the Introduction, D = 0 is an additional
case that can be treated analytically. In this case, Eqs. (2a)
and (2b) become:

1
2φ′′

− + (μ− − μ+)φ− = 0,

φ2
+(x) = μ+ − φ2

−(x) at φ2
− < μ+, (7a)

μ−φ− = − 1
2φ′′

− + φ3
−,

φ+ = 0 at φ2
− > μ+, (7b)

which resemble the TF approximation [1–3] for φ− in the
context of atomic BECs, with the difference that the role of
the potential here is played by the component φ+. Solutions
to Eqs. (7a) and (7b) exist for μ− > μ+, like in the case of

Eq. (4). The odd TF-like solutions are built as

φ−(x) = φ0 sin[
√

2(μ− − μ+)x], φ2
+(x)

= μ+ − φ2
−(x) at |x| < ξ,

(8)
φ−(x) = sgn(x)

√
μ− tanh[

√
μ−(|x| − x0)],

φ+ = 0 at |x| > ξ,

with constants φ0, ξ , and x0 determined by the three matching
conditions

φ0 sin[
√

2(μ− − μ+)ξ ] = √
μ+,

√
μ− tanh[

√
μ−(ξ − x0)] = √

μ+,

φ0

√
2(μ−−μ+) cos[

√
2(μ−−μ+)ξ ] = μ−

cosh2[
√

μ−(ξ−x0)]
.

(9)

An exact analytical solution to Eq. (9) can be found as

φ0 =
√

1

2
(μ− + μ+),

ξ − x0 = (1/
√

μ−) tanh−1

(√
μ+
μ−

)
, (10)

ξ = 1√
2(μ− − μ+)

[
sin−1

(√
2μ+

μ + μ+

)
+ 2πn

]
,

where n = 0 represents the single DB soliton, while higher
values of n correspond to a larger number of DB solitons,
e.g., n = 1 corresponds to five solitons, etc. Via this approach,
exact analytical formulas can be derived for various branches
of solutions at D = 0 (although, given the cumbersome nature
of the formulas, we will not discuss the corresponding higher-
order analytical expressions here).

III. COMPUTATIONAL ANALYSIS

A. Numerical methods

Throughout this section, numerical results are presented for
the coupled NLS system (1). Our investigation addresses three
basic issues: existence, stability, and dynamical evolution.
The first two are considered by performing one-parameter
continuation of steady-state solutions, varying chemical po-
tential μ+, for different values of the dispersion coefficient
D. When the solutions are found to be unstable (stable),
their dynamical evolution is monitored by means of direct
numerical simulations to explore (corroborate) the outcome of
the instability development (stable relaxation).

Initially, we employ a one-dimensional uniform spatial grid
consisting of N points labeled by xj = −L + 2jL/(N + 1)
and j = 1, . . . ,N with lattice spacing (resolution) δx and half-
width L. The left and right boundary points are located at j = 0
and j = N + 1, respectively. In all the cases studied herein we
fix δx = 0.1 and L = 30 (except for the evolution of the first
excited symmetric state with D = 0.25 and μ+ = 0.99, where
we use L = 60). In this way, both fields φ±(x) and �±(x,t) are
replaced by their discrete counterparts on the spatial grid, i.e.,
φj,± = φ±(xj ) and �j,±(t) = �±(xj ,t), respectively. Then
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the second-order spatial derivatives in Eqs. (1) and (2) [as
well as in Eqs. (A3a) and (A3e) in the Appendix] are
replaced by second-order central-difference formulas. Finally,
the no-flux boundary conditions are applied at the edges of the
spatial grid, i.e., ∂xφ±|x=±L = 0 and ∂x�±(t)|x=±L = 0, for
all t . The latter conditions are incorporated into the internal
discretization scheme using first-order forward and backward
difference formulas at the left and right boundaries, respec-
tively. Thus, the no-flux boundary conditions are enforced by
explicitly requiring φ0,± = φ1,± and φN+1,± = φN,±, as well
as �0,±(t) = �1,±(t) and �N+1,±(t) = �N,±(t).

As far as the existence part is concerned, steady-state
solutions to Eqs. (2a) and (2b) are identified by employing
a Newton-Krylov method [35], together with a suitable initial
guess in order to ensure convergence. To that end, our
starting point is the eigenvalue problem (4), which is solved
numerically. In particular, we focus on a bound state of order
n and pick a value of D satisfying the threshold condition (5).
Then we determine the value of μ+ corresponding to one of
the lowest eigenvalues λ (e.g., the bound state of order n = 0
corresponds to the lowest eigenvalue λ, the bound state of
order n = 1 to the second lowest eigenvalue λ, and so on)
and the corresponding eigenvector (or bright component) φ+
is obtained afterward. As a result, the “seed,” which is fed into
the nonlinear solver, consists, essentially, of the pair (μ+,φ+)
together with the dark component φ− given by Eq. (3). Next
we trace steady-state solutions, for a given value of dispersion
coefficient D, by performing a single-parameter numerical
continuation with respect to chemical potential μ+. Our
approach is based on the sequential continuation method, i.e.,
using the solution for given μ+, found by the nonlinear solver,
as the seed for the next continuation step. We corroborate
our results using the pseudo-arc-length continuation method
(see, for instance, Ref. [36] and references therein), while
numerical results obtained by means of the sequential method
are reported throughout this section.

We investigate the stability of the steady states obtained by
the Newton solvers at each continuation step, using linearized
equations for small perturbations (see the Appendix). In
particular, an eigenvalue problem [cf. Eq. (A2)] is obtained (at
order ε) and solved numerically afterward. The steady state is
classified as a stable one if none of the eigenfrequencies ω =
ωr + iωi has a nonvanishing imaginary part ωi . Two types of
instabilities can be thus identified: (i) exponential instabilities
characterized by a pair of imaginary eigenfrequencies with
zero real part and (ii) oscillatory instabilities characterized by
a complex eigenfrequency quartet.

Finally, the spectral stability results obtained from the
eigenvalue problem are checked against direct dynamical
evolution of the coupled NLS system (1) forward in time. To
this end, the Dormand-Prince method with an automatic time-
step adaptation procedure (see the Appendix in Ref. [37]) and
tolerance 10−13 is employed. We have also corroborated our
results using the standard fourth-order Runge-Kutta method
with a fixed time step of δt = 10−4, although numerical
results are presented throughout this section using only the
Dormand-Prince method. Thus, we initialize the dynamics
at t = 0 using the available steady states, with two distinct
initialization approaches. We initialize the dynamics under
the presence of a small (uniformly distributed) random
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FIG. 5. (Color online) Eigenfrequency spectra corresponding to
bound states of order n = 1 with D = 0.2 and for (a) μ+ = 0.82, (b)
μ+ = 0.8257, (c) μ+ = 0.8277, and (d) μ+ = 0.8294.

perturbation with amplitude 10−3 for the class of stable steady
states. An alternative approach is to initialize the dynamics
using the linearization ansatz (A1) for the unstable solutions
with ε = 10−2 (except for the first excited antisymmetric
steady state with D = 0.2 and μ+ = 0.77, where ε = 10−1

is used) and eigenvector V corresponding to the (complex)
eigenfrequency having the largest imaginary part. The latter
approach is useful towards seeding the relevant instability and
observing the ensuing dynamics.

B. Numerical results

In this section, numerical results are presented for the
coupled NLS system (1) and organized following the reasoning
mentioned in the previous section. Figures 1–4 summarize
the results for the existence of steady-state solutions and
the corresponding parametric continuations (using μ+ as the
continuation parameter, at different fixed values of D) for
bound states of order n = 0 (ground states with a single-hump
bright component, corresponding to a generalization of the
fundamental DB solitary waves), n = 1 (the first excited odd
states), n = 2 (the second excited states, which are spatially
even), and n = 3 (the third excited states overall and second
excited odd ones), respectively. Figures 1(a)–4(a) present a
typical example of the relevant profiles, while Figs. 1(b)–4(b)
showcase the growth rate of the most unstable perturbation
mode max(ωi), which, if positive, indicates instability for the
particular pair (μ+,D). Furthermore, Figs. 1(c)–4(c) and 1(d)–
4(d) summarize the existence results by presenting∫ L

−L

[μ− − |φ−(x)|2]dx,

∫ L

−L

|φ+(x)|2dx, (11)

respectively, as functions of μ+ and for various fixed values
of D. These integrals represent the total power in optics or
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the atom number in the BEC, considered as a function of the
propagation constant or chemical potential, respectively.

In particular, it can be inferred from Fig. 1(b) that solutions
corresponding to the ground state are stable for D = 0.4–1.0
and for all values of μ+ within the range of interest [see, e.g.,
Eq. (6) and the subsequent discussion]. In contrast, the solution
branch corresponding to D = 0.2 is stable up to a critical point
μcrit

+ ≈ 0.69, while past this value an exponential instability,
accounted for by an imaginary eigenfrequency pair with zero
real part, emerges [see also Fig. 7(f)]. Similar arguments
can be applied to Figs. 2(b)–4(b), although the description
is somewhat different. In particular, it can be seen in Fig. 2(b)
that the solution branch corresponding to D = 0.2 possesses
a number of instability intervals for μ+ > 0.71. However, in
the present case the instability is accounted for by a complex
eigenfrequency quartet, which corresponds to an oscillatory

instability related to a Hamiltonian Hopf bifurcation [see also
Fig. 8(i) below as a case example]; for a recent discussion of
relevant bifurcations, see, e.g., Ref. [38]. While instabilities
of this type are present as shown in Fig. 5(a), past the value
of μ+ ≈ 0.8252 an additional imaginary eigenfrequency pair
appears too, as depicted in Fig. 5(b) and initially marked with
a dash-dotted red line in Fig. 2(b). As μ+ further increases,
the exponentially unstable mode grows [cf. Fig. 5(c)] and
becomes dominant [cf. Fig. 5(d)], while the oscillatory one
follows a smaller growth rate, as depicted in Fig. 2(b) by a
dash-dotted red line (the crossing of the solid line with the
dash-dotted line marks the exchange of the dominant form of
the instability). This is also the case for the solution branches
with D = 0.4 and 0.6 depicted in Fig. 2(b) by dash-dotted
green and blue lines, respectively. This transition between the
exponentially and oscillatory unstable modes also occurs for
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FIG. 6. (Color online) Summary of results corresponding to n = 0 (i.e., the ground states) in the presence of the trapping potential with
� = 0.1. (a) Comparison of the steady-state profiles in the absence (solid lines) and presence (dash-dotted lines) of the trap. In particular,
the dark (black) and bright (blue) soliton solutions are depicted for D = 0.2 and μ+ = 0.51. (b) Maximal imaginary eigenfrequency as a
function of the continuation parameter μ+ at various values of D; the dash-dotted red line corresponds to the D = 0.2 branch of Fig. 1(b),
for comparison. Also shown is the spatiotemporal evolution of densities |�−(x,t)|2 (c) and (f) and |�+(x,t)|2 (d) and (g) corresponding to
perturbed soliton solutions, along with (e) and (h) the eigenfrequency spectrum of the steady states for (c)–(e) D = 0.2 and μ+ = 0.36 and
(f)–(h) D = 0.2 and μ+ = 0.8.
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FIG. 7. (Color online) Spatiotemporal evolution of densities |�−(x,t)|2 (a) and (d), and |�+(x,t)|2 (b) and (e) corresponding to (perturbed)
soliton solutions of order n = 0, as well as the eigenfrequency spectra (c) and (f) of the steady states for (a)–(c) D = 1 and μ+ = 0.51 and
(d)–(f) D = 0.2 and μ+ = 0.7.

the bound states of order n = 2 [cf. Fig. 3(b)] and n = 3 [cf.
Fig. 4(b)]. An additional feature that arises in the latter figures
is well known in the context of discrete systems as a finite-size
effect and was introduced in Ref. [39]. This is related to the
fact that the continuous spectrum of background (phonon)
excitations is discretized on our spatial grid, hence complex
eigenfrequencies may return to the real eigenfrequency axis
temporarily before colliding with another pair to exit again
as quartets. It is expected (cf. Ref. [39]) that these discrete
effects gradually disappear as the spectrum becomes denser,
i.e., in the infinite-domain limit. It is the combination of the
above-mentioned exchanges of the dominant instability type
and of temporary restabilizations that gives rise to the spikes
in Figs. 3(b) and 4(b). In such cases, only the dominant
instability growth rate is shown; recall that Fig. 3 presents
the results for the second excited (first excited even) branch
and Fig. 4 those for the third excited (second excited odd)
branch.

It is relevant to note that the branches with higher n are
generally more prone to instability than ones with lower n. The
ground-state single-hump solution is generally fairly robust,
as is suggested by the observability of the fundamental DB
soliton in both atomic and optical settings [20–22,26]. Our
results reveal that only at very low values of D does an
instability arise for this state. On the other hand, branches with
n = 1–3 are less robust. Among them, our results suggest that
the n = 1 branch attains the highest instability growth rates.
However, examining the parametric intervals of the instability
(i.e., widths of the intervals of μ+ over which the branches
remain stable), we observe that the higher the n, the narrower
the corresponding stability interval becomes. Actually, the
instability growth rates are relatively weak, typically ∼ 10−2,

which suggests that the solutions should be long-lived ones,
as the dynamical simulations corroborate below.

In a similar fashion, we also present results on steady-state
solutions for bound states of order n = 0 in Figs. 6(a) and 6(b)
in the presence of the trapping potential in Eqs. (2a) and (2b)
with � = 0.1. Specifically, Fig. 6(a) displays trapped DB soli-
ton solutions (dash-dotted black and blue lines, respectively)
which, according to our stability analysis, are fairly stable in
the absence of the trap [cf. Fig. 1(b)]. The naive intuition here
would be that the trap would only contribute to the stability of
the configuration. Yet exactly the opposite is happening here.
In particular, deeper intuition suggests that the trap contributes
to the breaking of the translational invariance of the system,
releasing a negative-energy (negative-Krein-signature) mode
along the imaginary axis of perturbation eigenvalues (see also
the discussion in Ref. [23]). Upon variation of parameters,
such as the chemical potential, this eigenvalue collides with
other ones that correspond to positive energy, giving rise
to instability quartets. Thus, while the D = 1 case is, as
is well known from previous studies of DB solitons in
BECs (see, e.g., Refs. [10,23]), generally stable, for other
values of D, the setting with the trap is considerably less
robust than in the homogeneous limit, where the translational
invariance absorbs this potentially dangerous eigendirection.
This scenario is depicted in Fig. 6(b), which complements the
existence results presenting stability characteristics, namely,
the dominant unstable eigenfrequency. Note that in Fig. 6(b)
we include the D = 0.2 branch of Fig. 1(b) denoted by a
dash-dotted red line, for comparison.

Finally, we present results on the evolution of perturbed
steady-state solutions of orders n = 0, 1, 2, and 3 (for
various values of D and μ+) in Figs. 7–10, respectively,
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FIG. 8. (Color online) Same as in Fig. 7, but for soliton solutions of order n = 1: spatiotemporal evolution of densities |�−(x,t)|2 (a), (d),
and (g), and |�+(x,t)|2 (b), (e), and (h). Panels (c), (f), and (i) display the eigenfrequency spectra of the steady-state solutions for (a)–(c)
D = 0.6 and μ+ = 0.96, (d)–(f) D = 0.2 and μ+ = 0.83, and (g)–(i) D = 0.2 and 0.77.

while results corresponding to the bound state of order n = 0
(with D = 0.2) in the presence of the trapping potential
are presented in Figs. 6(c)–6(e) (μ+ = 0.36) and 6(f)–6(h)
(μ+ = 0.8). In particular, Figs. 6(c) and 6(f) and Figs. 6(d)
and 6(g) correspond to the spatiotemporal evolution of the dark
and bright components, respectively, while the corresponding
eigenfrequency spectra of perturbations around the steady
states (for which the evolution is examined) are presented
in Figs. 6(e) and 6(h). For the stable steady states at hand
[see Figs. 1(a)–4(a)], the corresponding dynamical evolution
of the (a) dark and (b) bright components is depicted in the top
rows of Figs. 7–10, respectively. In addition, the dynamical
evolution of stable steady states in the presence of a harmonic
trap is presented in Figs. 6(c)–6(e) [see, in particular, Figs. 6(c)
and 6(d)]. Clearly, the stable solutions are indeed persistent,
in the presence of small random perturbations, within the time
range of the simulations.

In contrast, a number of different scenarios are observed
for unstable solutions, depending upon the corresponding
dominant unstable eigenmode, as predicted by computations of
the eigenfrequencies. Specifically, perturbations applied along

the unstable eigendirection corresponding to an exponential
eigenmode typically lead to solitons’ mobility. This is the case
in Figs. 7(d), 7(e), 8(d), 8(e), 9(d), 9(e), 10(g), and 10(h),
where motion of the solitons is observed. While for the
fundamental branch this type of mobility may be persistent,
for the higher excited states the acceleration induced by the
instability eventually leads to a breakdown of the solution (an
apparent merging of the dark-in-bright solitons therein [40]),
after a sufficiently long time has elapsed. In the presence of
the trapping potential, in Fig. 6, the oscillatory instability
displaces once again the solitary wave from its equilibrium
position. However, here the large difference of D from 1
does not allow the resulting moving DB to oscillate in the
trap (as it would at D close to 1 [10,22,23]) but rather
contributes to its rapid destruction upon interaction with the
background.

A number of additional possibilities emerge when unstable
steady states are perturbed by oscillatory eigenmodes. This
leads to oscillatory growth eventually translating into an
apparent jerky motion of the corresponding dark and bright
components. This behavior is presented in Figs. 8(g) and 8(h)
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FIG. 9. (Color online) Same as in Fig. 7, but for soliton solutions of order n = 2: spatiotemporal evolution of densities |�−(x,t)|2 (a), (d),
(g), and (j), and |�+(x,t)|2 (b), (e), (h), and (k). Panels (c), (f), (i), and (l) display the eigenfrequency spectra of the steady-state solutions for
(a)–(c) D = 0.2 and μ+ = 0.9655, (d)–(f) D = 0.1 and μ+ = 0.86, (g)–(i) D = 0.1 and μ+ = 0.99, and (j)–(l) D = 0.25 and μ+ = 0.99.

(for n = 1) [here it is clear that the instability wipes out the
initial dark-in-bright solitary wave, transforming the bright
component into a fundamental single-peak mode that is breath-
ing in time]. Note also Figs. 9(g) and 9(h) (for n = 2), where
an explosion breaks apart the entire solitary wave. In Figs. 9(j)
and 9(k) (i.e., for n = 2), we observe a progression through the
instability from a two-node solution in the bright component
to a single-node one, and, eventually, to a fundamental state
that is again breathing in time. In Figs. 10(d) and 10(e) a
rapid destruction of the n = 3 state occurs again, this time

directly transforming it into a fundamental traveling-wave
structure. In Figs. 10(j) and 10(k) a more complex scenario
arises, with the dark soliton splitting off into apparently gray
ones, the fastest of which is not accompanied by a bright
counterpart. As a result, the bright component disperses,
maintaining, however, some of its nodal structure. Finally, in
Figs. 10(m) and 10(n) (once again, for n = 3), the third excited
state (the second spatially odd one) transforms itself into the
corresponding first excited state maintaining, again, breathing
oscillations.
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FIG. 10. (Color online) Same as in Fig. 7, but for soliton solutions of order n = 3 and (a)–(c) D = 0.12 and μ+ = 0.977, (d)–(f) D = 0.12
and μ+ = 0.99, (g)–(i) D = 0.04 and μ+ = 0.8, (j)–(l) D = 0.04 and μ+ = 0.95, and (m)–(o) D = 0.06 and μ+ = 0.851.
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It is worth noting that, for the fundamental branch, there is
at most a translational (imaginary) eigenfrequency responsible
for the instability. It is thus rather natural that its manifestation
in direct simulations involves mobility. However, as we
progressively move to higher excited states, the number of
potentially unstable modes increases, creating an oscillatory
instability for n = 1, two instabilities for n = 2, and so on, in
accord with Figs. 8, 9, etc. It is the intricate interplay of these
distinct dynamical instabilities (often with comparable growth
rates) that is responsible for the resulting complex dynamics.

IV. CONCLUSION

In the present work we have revisited the model based
on two-component nonlinear Schrödinger equations with
defocusing nonlinearity, which plays a fundamental role in
nonlinear optics, as well as in the description of repulsively
interacting binary BEC mixtures. We have examined the fun-
damental dynamical features of dark-bright solitons, namely,
the formation of the effective potential well for the bright
component induced by the dark one via the XPM interaction.
Using the dispersion coefficient of the bright component as
a control parameter, we modified the depth of the effective
potential well, enabling the formation of higher-order excited
bound states in this well, including those with n = 1, 2, and
3 nodes. These may be considered as dark-in-bright solitary
structures [40] or as excited states trapped in the potential
well. We have shown that, while the ground single-peak
state is generally very robust (except for the case of large
difference between the dispersion coefficients of the two
components), this is not true for the excited states, which are
subject to progressively wider intervals of both exponential
and oscillatory instabilities. The instability of the ground state
leads to motion of the DB soliton, but does not destroy it.
For the excited states with progressively increasing n, the
complexity of the evolution scenarios also increases, resulting
from the interplay of the increasing number of instability
modes. Exotic scenarios involve the fusion of the dark-in-
bright solitary waves, the explosion of the waveforms into
multiple splinters, and relaxation, either abruptly or gradually,
into less excited states, possibly accompanied by breathing.

The present analysis suggests a number of paths for future
studies. One possibility might be to expand on the exact
solutions identified herein for D = 0 beyond this special limit,
using a perturbative expansion to explore both their existence
and, potentially, also their stability in the limit of small D.
Moreover, one can extend the present considerations to the
quite important (e.g., in BEC) and widely studied class of
spinor systems, involving more than two components [41].
Following this possibility, one can envision, in the spirit of
Ref. [11], one dark component creating a potential for the
other two bright components, which could be found either
in the same or, for suitable parametric regimes, possibly in
different states of their respective potential wells. This would
be a particularly intriguing setup to explore, as concerns its
existence and stability properties. Furthermore, we note that
the possibility of one component forming a well for another
one is independent of the spatial dimension. For instance, in
two dimensions the notion of vortex-bright solitons [16,42]
is a by-product of the same type of potential approach (the
topological charge of the vortices is not experienced by the

bright component when the interaction is incoherent, i.e., the
potential well is solely determined by the density distribution
in the vortex). Here it would be interesting to explore what type
of excited states could be created, such as a dark-in-bright ring
and associated multiring states, inter alia.

Note added in proof. Recently, we were informed of the
relevant work [43] on solutions and integrability of the coupled
NLS system.
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APPENDIX: THE LINEARIZATION ANSATZ AND
STABILITY MATRIX

In this appendix we briefly discuss the linearization ansatz
employed for the investigation of the stability of the stationary
solutions, together with the formulation of the stability
matrix. We start with the perturbation ansatz around stationary
solutions φ0

±(x) (which may be complex, in principle)

�̃− = e−iμ−t {φ0
− + ε[a(x)eiωt + b∗(x)e−iω∗t ]}, (A1a)

�̃+ = e−iμ+t {φ0
+ + ε[c(x)eiωt + d∗(x)e−iω∗t ]}, (A1b)

where ω is the (complex) eigenfrequency, ε is a small
amplitude of the perturbation, and the asterisk stands for
complex conjugation. Then we insert Eqs. (A1) into Eqs. (1)
and thus obtain, at order ε, an eigenvalue problem in the
following matrix form:

ρ

⎛⎜⎝a

b

c

d

⎞⎟⎠ =

⎛⎜⎝ A11 A12 A13 A14

−A∗
12 −A11 −A∗

14 −A∗
13

A∗
13 A14 A33 A34

−A∗
14 −A13 −A∗

34 −A33

⎞⎟⎠
⎛⎜⎝a

b

c

d

⎞⎟⎠, (A2)

with eigenvalues ρ = −ω, eigenvectors V = (a,b,c,d)T , and
matrix elements given by

A11 = −D−
2

∂2

∂x2
+ γ (2g11|φ0

−|2 + g12|φ0
+|2) + V − μ−,

(A3a)

A12 = γg11(φ0
−)2, (A3b)

A13 = γg12φ
0
−(φ0

+)∗, (A3c)

A14 = γg12φ
0
−φ0

+, (A3d)

A33 = −D+
2

∂2

∂x2
+ γ (g12|φ0

−|2 + 2g22|φ0
+|2) + V − μ+,

(A3e)

A34 = γg22(φ0
+)2. (A3f)
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Sengstock, Nat. Phys. 4, 496 (2008).

[21] C. Hamner, J. J. Chang, P. Engels, and M. A. Hoefer, Phys. Rev.
Lett. 106, 065302 (2011).

[22] S. Middelkamp, J. J. Chang, C. Hamner, R. Carretero-
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