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Influence of oscillatory centrifugal forces on the mechanism of Turing pattern formation
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Constantly acting centrifugal forces on Turing pattern forming systems have been observed to induce orientation
and wavelength changes on Turing structures. Here, we will consider a periodic modulation of such centrifugal
forces and their effects on pattern formation. Depending on the oscillation period the system exhibits a wide
variety of stationary (stripes, H0, etc.) or nonstationary patterns (black eyes, etc.), as well as transitions and
instabilities such as Eckhaus, zigzag, etc. In this paper, a detailed description of the different patterns and
patterning mechanisms will be described and understood within the previous context. The system considered
is the Belousov-Zhabotinsky reaction encapsulated in AOT micelles modeled by the adapted version of the
Oregonator model.
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I. INTRODUCTION

Recent studies have revealed that Turing pattern forma-
tion is highly sensitive to external forcings modifying its
diffusive transport and reaction kinetics [1–5]. The Turing
mechanism [6,7] is commonly used to model and understand
symmetry breaking processes [8–11] that occur in nature, as
patterns on animal coats and fish skin [12,13] or mammalian
brain labyrinthine patterns [14]. Nevertheless, the disparities
of the diffusion processes involved in the Turing mechanism
make it difficult to be obtained in controlled experiments [15].
In addition, in biology, this type of pattern is usually developed
under the influence of external factors in its environment that
actually control the final arrangement of the pattern [16–18].

In this regard, studies on Turing instability under an external
controlled forcing, as, for example, temperature gradients,
concentration constraints, and luminous moving boundaries,
have allowed improving our knowledge about the com-
plex mechanisms involved in pattern formation phenomena
[19–21]. Likewise, it provides a tool to test the nonlinear char-
acter of pattern formation under nonequilibrium constraints.
Depending on the system parameters, Turing instability is
expressed by means of different spatial configurations ranging
from spots of oxidized catalyst with a hexagonal arrangement
(H0) or spots of reduced catalyst with hexagonal configuration
on an oxidized background (Hπ ) to completely disorganized
labyrinthine configuration [22,23]. Furthermore, for certain
regimes of the external perturbation the system can exhibit re-
versed patterns (when the pattern and its background exchange
their colors). This is the case of the well-known honey combs or
black spots patterns [24]. Along the reorganization processes,
long-wave instabilities [25,26] may occur (i.e., zigzag or
Eckhaus instabilities). These instabilities appear when the
system undergoes an alteration on its characteristic wavelength
and the pattern tries to adapt to the current configuration.

Here we present a numerical study for quasi-two-
dimensional Turing pattern formation subjected to an oscil-
lating centrifugal force. Turing instability is modeled by the
Oregonator-like set of equations [27] that takes into account
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the main properties of the water-in-oil Belousov-Zhabotinsky–
aerosol-OT (BZ-AOT) microemulsion system [28–31]. This is
a micellar medium in which the BZ aqueous reaction [28,29]
is surrounded by the AOT surfactant forming nanodroplets,
and these droplets are immersed in the oil phase. It may
be considered as a closed encapsulated system where only
diffusive transport is allowed [4]. This configuration allows
introducing important differences in the diffusive transport of
the main chemical species of the system that are responsible
for Turing pattern formation [6].

A previous work [32] has already shown, both numer-
ically and experimentally, that Turing patterns in BZ-AOT
medium under the effect of a constant centrifugal force may
experience important changes in the diffusion mechanisms.
In particular, the intensity of the external forcing directly
affects the diffusion coefficients of both species, the effect
being modulated by the molecular weight of each species.
This effect is immediately translated into a modification of the
characteristics of the Turing pattern (wavelength, orientation,
etc.) that for large forcings results in a complete suppression
of the patterns.

The goal of this paper is to analyze the effect of a
centrifugal force on such a system when its amplitude is
periodically modulated with time. Especially interesting will
be the case when the modulation period of the external forcing
is comparable with a characteristic time of the system. For
the present case and following an experimentally inspired
approach, we choose as characteristic time the time required
by a pattern in absence of any forcing to develop. A similar
approach, in a different context, was performed by [33,34] in
the chlorine dioxine-iodine-malonic acid (CDIMA) reaction
in an open system subjected to a luminous moving forcing.
Depending on the velocity of the forcing, Turing patterns
presented different spatial arrangements: parallel, oblique, and
perpendicular [33].

The outline of the paper is as follows. In Sec. II, we
present the reaction-diffusion model equations, and describe
both the computational domain and the numerical techniques.
The results of the simulations are shown in Sec. III. Firstly, we
analyze the effect of the modulation in the centrifugal force far
from the rotation center in order to avoid the radial dependence
and obtain homogeneous patterns. Then by an analysis close to
the center we consider the effect of a gradient in the anisotropy
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induced in the system. The paper ends with the conclusions
and discussion of the results in Sec. IV.

II. MODEL

The BZ-AOT system involves a complex set of chemical
reactions [30,35]. However, the mechanism of Turing pattern
formation in such a system has been successfully modeled by
the two-variable modified Oregonator model [24,27]:

ε
∂c1

∂t
= f c2

q − c1

q + c1
+ c1

1 − μc2

1 − μc2 + ε1
− c2

1 + ∇ · (D1∇c1),

(1)

∂c2

∂t
= c1

1 − μc2

1 − μc2 + ε1
− c2 + ∇ · (D2∇c2), (2)

where ci represents the dimensionless concentrations of the
activator (i = 1) and inhibitor (i = 2) species. The parameters
f,μ, q, ε, and ε1 depend on the reaction rates and they appear
as a result of applying the mass action law on the chemical
equations [24]. D0

1 and D0
2 are the diffusion coefficients for

both relevant species in absence of any external influence. The
suitable values to get Turing patterns (through a supercritical
Turing instability) in this model

1
are f = 1.2, μ = 190,

q = 0.001, ε1 = 0.01, ε = 0.8, D0
1 = 1 s.u.2/t.u., and D0

2 =
100 s.u.2/t.u. as used throughout this study [24].

The effect of a centrifugal force on this system has been
previously modeled [32,36] by introducing a radial-dependent
diffusion coefficient as follows:

D1,2(β,m1,2,R,t)

= D0
1,2(β,m1,2)

3
√

3
[3 + 2�1,2(β,m,ω(t),R)]3/2, (3)

with

�1,2(β,m1,2,ω(t),R) = 1
2βm1,2ω

2(t)R2, (4)

where m1,2 are the masses of both species, ω the angular
velocity, D0

1,2(β,m1,2) are the diffusion coefficients in absence
of forcing (as stated before), and β = 1/kB� with � as the
absolute temperature. �1,2(β,m,ω(t), R) is a dimensionless
function that takes into account the magnitude of the centrifu-
gal forcing. Note that now the diffusion coefficients explicitly
depend on the distance to the rotation center (given by R).
Note that the effect of the forcing on the diffusion coefficients
is multiplied by the molecular weight [Eq. (4)]; thus for large
forcings the heaviest species is expected to diffuse faster than
the lightest and the Turing mechanism conditions might be
violated [32]. As the diffusion coefficient depends explicitly
on R, this mathematically introduces some convective terms in
the equations that are going to be responsible for some of the
dynamics described below. In particular, the most probable
wavelength of the Turing structures in the system is now
explicitly dependent on the intensity of the external forcing
[given by ω(t) R] as calculated in [32]. The expression is

1s.u. and t.u. denote spatial/temporal dimensionless units from the
scaled numerical model [24].

rather complicated but as a first-order approximation it looks
this way [32]:

	λ = λ

λ0
− 1 ∝ [ω(t)R]2, (5)

where 	λ stands for the wavelength variations of the forced
pattern with respect to the standard pattern, with λ and λ0

being their respective wavelengths. Note that this is the most
probable value of the wavelength although other values are
also possible even if they are not the most probable [10,32].

Here we consider that the rotational angular velocity, given
by ω(t), is periodically modulated following

ω(t) = ω0

2

[
1 − cos

(
2π

T
t

)]
, (6)

where ω0 is the maximum rotation velocity and T represents
the period of modulation of the centrifugal force. These will
be our control parameters in the following.

Numerical simulations of Eqs. (1) and (2) are performed
by applying an explicit three-level in time, and centered in
space, integration scheme (Du Fort–Frankel scheme) [37] with
a spatial step of 0.2 s.u., a time step of 10−3 t.u. and zero flux
boundary conditions. The computational domain is constituted
by a square mesh of 300 × 300 grid points. The period of the
forcing T is varied around the characteristic time of the system,
τ = 600 t.u., i.e., the time needed by the system to develop the
pattern; it is an indirect measurement of the reacting time upon
external perturbations. To trigger the instability we use random
noise as an initial condition.

III. RESULTS

In our analysis the three control parameters used to modify
the centrifugal force are the maximum rotation frequency (ω0),
the period of the modulation of the rotation frequency (T), and
the distance to the rotation center (R). Firstly, the effect of T
will be analyzed when observations are performed far from the
rotational center (keeping constant ω0 = 0.025 rad/t.u. and
R = 1000 s.u.) Secondly, both the effect of T and a strong
gradient on the centrifugal force will be studied in the vicinity
of the rotation center with the maximum rotation frequency
fixed at 0.4 rad/t.u.

At the limiting case of T � τ , the centrifugal force is
practically constant; therefore depending on its magnitude the
system exhibits different configurations ranging from stripes to
complete suppression of the patterns. For intermediate values
the system may exhibit hexagons (H0, Hπ ) or mixed states as
described in [32].

A. Effect of periodicity of the centrifugal forcing, T

For the simulations presented here, we always considered
an integration domain located far from the rotational center
(radius equal to 1000 s.u.) in order to avoid gradients in the
system; thus the centrifugal force along the domain keeps
its direction constant and it basically depends on T. For the
particular figures in this paper the direction of the centrifugal
force was chosen along the diagonal of the third quadrant. ω0

was kept constant (ω0 = 0.025 rad/t.u.) for the simulations in
this subsection. This value of ω0, if kept constant [32], is able
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FIG. 1. Effect of the oscillating forcing ω(t) on Turing pattern
formation along a full oscillation for T ∼ τ . (a–h) correspond to
ω(t)/ω0: 0, 0.6, 0.7, 1.0, 0.8, 0.6, 0.3, and 0, respectively. The direction
of the oscillatory force is fixed along the diagonal of the third quadrant
[see arrow in (a)] with a maximum value fixed in ω0 = 0.025 rad/t.u.

to suppress completely the pattern, the effect being stronger in
the lower right corner of each picture.

Very low values of T (T � τ ) result in the formation of a
steady pattern in the domain, that corresponds to the average
value of 〈ω(t)〉, a mixed state of spots and stripes. In this case,
the patterns tend to align along the direction of the centrifugal
force as in Ref. [32].

As T is increased, the modulation period becomes com-
parable with the characteristic time in the system (τ ) and
nontrivial behaviors are expected. For T ∼ τ , the system
exhibits a complicated dynamic that periodically repeats along
time as ω(t) varies. The different snapshots in Fig. 1 present
the evolution of the pattern along a complete oscillation of
ω(t). At the beginning of the cycle [ω(t) = 0] the system
exhibits a standard pattern (the one that could be observed
in absence of external forcing). As ω(t) increases the pattern
tries to adapt to the new value changing its configuration
into inverted stripes and Hπ until it is completely suppressed
at ω(t) ∼ ω0. Note that in the corresponding snapshot not
the whole domain is homogeneous as the centrifugal force
is slightly smaller in the areas where the radius is slightly
smaller (upper right corner of the figure) and some remaining
of the pattern can still be observed. As time increases, ω(t)
decreases and the area covered by the pattern grows. Now the
pattern clearly exhibits a stripe geometry with stripes oriented
in the direction perpendicular to the centrifugal forcing [see
Fig. 1(e)]. It is noteworthy to observe the evolution to reach
this configuration of perpendicular stripes. In fact, not only
the type of pattern changes with time as the forcing decreases
but also the wavelength of the pattern is modified, becoming
smaller. In Figs. 1(b) and 1(c) the wavelength that the system
is able to support is larger than in Figs. 1(d) and 1(e), thus,
as time goes on, the pattern exhibited needs to readjust to the
new wavelength and this is done through the splitting of the
existing stripes, as is clearly seen in Fig. 1(e) [26,38]. After
the situation shown in Fig. 1(f), the system evolves in just
the opposite way. Now the wavelength the system can support
increases with time as the forcing is decreased. The pattern
needs, thus, to readjust its wavelength and this is done via
zigzag instability [38]. As time evolves the forcing reaches
the lowest value again and the system readjusts to exhibit a
configuration very similar to that in Fig. 1(a) again.

FIG. 2. Effect of the oscillating forcing ω(t) on Turing pattern
formation along a full oscillation for T ∼ 10τ . (a–h) correspond to
ω(t)/ω0: 0, 0.5, 0.7, 0.8, 1, 0.7, 0.5, and 0.2, respectively. The direction
of the oscillatory force is fixed along the diagonal of the third quadrant
[see arrow in (a)] with a maximum value fixed in ω0 = 0.025 rad/t.u.

Increasing T (T = 10τ ) results in a similar behavior (see
Fig. 2). The pattern is forced to evolve from the standard
configuration [Fig. 2(a)] to inverted patterns [Figs. 2(b)
and 2(c)] and black spots [Fig. 2(d)] right before the pattern
is suppressed. As time goes on, the pattern starts recovering.
The splitting mechanism plays an important role here again
[Fig. 2(g)]. In this case, the stripes do not align perpendicularly
to the forcing but they rather choose a direction of 45° [38,39].

For very large values of T (T = 100τ ), the centrifugal force
varies very slowly and thus the system has enough time to
readjust to the changing conditions. This behavior is observed
in Fig. 3. Figure 3(a) presents the pattern when the rotational
velocity is zero. As time goes on and centrifugal force is
increased, the pattern transits into inverted black spots (Hπ )
that self-organize in a very ordered way [Figs. 3(d) and 3(e)].
Note that in this case, no splitting appears as the changes in the
centrifugal forces are so gradual that the pattern has enough
time to readjust without any need of splitting mechanisms.
Then, the pattern is suppressed [Fig. 3(e)]. Later on, the pattern
reappears in the system and stripes appear clearly oriented
along the direction of the forcing [Fig. 3(f)]. Zigzag instability
occurs [Fig. 3(g)] and the pattern loses the orientation before
a new cycle starts again.

FIG. 3. Effect of the oscillating forcing ω(t) on Turing pattern
formation along a full oscillation for T ∼ 100τ . (a–h) correspond
to ω(t)/ω0: 0, 0.4, 0.6, 0.8, 0.9, 0.7, 0.5, and 0.1, respectively. The
direction of the oscillatory force is fixed along the diagonal of the
third quadrant [see arrow in (a)] with a maximum value fixed in
ω0 = 0.025 rad/t.u.
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FIG. 4. Black eye pattern. Effect of the oscillating forcing ω(t) on
Turing pattern formation along a full oscillation for T ∼ 0.1τ . (a–h)
correspond to ω(t)/ω0: 0, 0.3, 0.6, 1, 0.7, 0.5, 0.3, and 0, respectively.
The direction of the oscillatory force is fixed along the diagonal of
the third quadrant [see arrow in (a)] with a maximum value fixed in
ω0 = 0.025 rad/t.u.

Another interesting case occurs at intermediate values of
T (T ∼ 0.1τ ). In this case oscillating black eyes [23,40] appear
as described in Fig. 4. For this value of T, the centrifugal force
changes very rapidly but the system is still able to see some
differences in the force and react accordingly. As a result,
the pattern observed is periodically suppressed. Only when
centrifugal force is low, the oscillating black eyes pattern arises
[see Figs. 4(a) and 4(h)]. Note that the pattern arises almost
without transition in the same way as it vanishes.

The behavior of the wavelength with the forcing is analyzed
separately. In Fig. 5(a) we present the wavelength variations
of the forced pattern with respect to the standard pattern,
	λ = λ/λ0 − 1, as a function of time or equivalently the
actual value of the rotation frequency ω. Three representative
forcing periods are considered: T ∼ 100τ , τ , and 0.1τ . The
dashed line corresponds with the most probable value of
the wavelength as predicted by the theory and following
Eq. (5). The shadowed region marks all possible values of
the wavelength that are accessible by the system calculated by
linear stability analysis [10,32]. These values do not appear
spontaneously but if they are imposed by some means they
may remain stationary [38].

In the first case, (T ∼ 100τ ), the pattern adapts so progres-
sively to the centrifugal force that Eckhaus instabilities are not
observed. Therefore the wavelength continuously oscillates
closely following the theoretical values. In the second case
(T ∼ τ ), the response of the patterns and the period of the
forcing are comparable, so changes in the pattern structure
are abrupt. It generates a clear wavelength splitting (Eckhaus
phenomenon) and two wavelengths coexist while forcing is
decreasing (shown as a discontinuity in the line). Note that
all the values of the exhibited wavelength are stable for each
particular value of ω. In the last case, when the response of the
pattern is slow comparing to the period of the forcing patterns,
the system exhibits a black eyes arrangement, and we observe
splitting at both sides of the maximum wavelength increment.
In the latest two cases, the observed wavelengths deviate from
the theoretical prediction as the pattern is not able to adapt
to the changing conditions; thus other types of instabilities
are to happen as described before. Nevertheless, all the values
of the wavelength that the system exhibits are compatible, as

FIG. 5. (Color online) (a) Wavelength increments with respect to
the standard pattern, 	λ = λ/λ0 − 1, versus forcing. Blue squares,
dotted green line, and red circles correspond to the following forcing
periods taken from Figs. 1, 3, and 4: T = τ , T = 100τ , and T =
0.1τ , respectively. The shadowed region corresponds to theoretical
increments (at T = 100τ ) suitable for the Turing regime, with the
dashed pink line as the most probable increment. (b) Morphological
characterization of Turing patterns with � parameter versus forcing
(for T ∼ τ ). � = −αsign(E), with E the Euler number and α the
mean eccentricity of the patterns. All magnitudes in this figure were
measured at ω0 = 0.025 rad/t.u and R = 1000 s.u.

a first approximation, with the theoretical Turing conditions
and, thus, they are allowed to exist.

This quasisinusoidal behavior of the wavelength is obtained
at fixed R; however, in a previous work [32], the wavelength
of the patterns under a constant centrifugal field was observed
to depend on a semilog law with the distance to the rotation
center.

In order to classify the different patterns observed so far,
we develop a morphological characterization depending on
the applied forcing. This analysis classifies and discriminates
by a unique parameter direct from reverse structures, as well
as between spots, stripes, or mixed states. An analogous
characterization was developed by Mecke et al. in [41,42]
using Minkowski functionals [43] as morphological measures
in order to discriminate between different Turing structures
in CDIMA reaction, in porous media or even in galaxies
distributions in the universe. We consider here a parameter (�)
widely tested on the characterization of Turing structures [44].
It is defined by � = −αsign(E), where α is the mean
eccentricity of the patterns distribution and E is the Euler
number. The Euler number presents negative or positive values
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depending on whether the structures are direct or reversed,
respectively. The eccentricity takes a value equal to 0 for pure
circular spots (or 1 for straight stripes).

The morphological modifications that the oscillating forc-
ing induces on Turing patterns are shown in Fig. 5(b). Here, �
parameter is plotted as a function of the forcing for the case of
T ∼ τ . Low values of forcing from ω(t)/ω0 = 0 to 0.5 present
positive values of � (0.4–0.6, respectively) which indicates the
structures are direct. In this region, the structures are formed
by a mixed state of spots and stripes that increases the ratio of
stripes with the forcing. This tendency is kept until a certain
forcing is reached; after that the pattern changes to reverse
structures and therefore � takes negative values (equal to
−0.6). During the interval ω(t)/ω0 = 0.5 to 1 this reversed
mixed state is gradually transformed into black spots with
a value of gamma close to zero (� = −0.1) due to the low
eccentricity of the spots.

Then, while the forcing decreases the black spots change
to completely orientated stripes by the Eckhaus mechanism
at ω(t)/ω0 = 0.5 with � of −0.9. In addition, the Eckhaus
transforms the reversed structure to direct and � turns positive.
Finally, when the forcing goes on decreasing to zero, the zigzag
instability breaks the stripes into a mixed state with a � of 0.5.

B. Effect of a strong radial gradient on the oscillatory
centrifugal force

The oscillating angular motion has a strong dependence
on the radius [see Eq. (4)] and it is reflected on the Turing
instability. Figure 6 shows the evolution of the structures
for three different values of the rotation period close to the
rotation center. Note that now the centrifugal forcing acting on
the system is radius dependent and thus the patterns organize
and evolve with angular symmetry, including an external ring
where the pattern completely disappears as the centrifugal
force reaches its maximum.

Similarly to the previous section, low periods of the forcing
(T ∼ 0.001τ ) result in a situation where the patterns just
feel the average value of the centrifugal force [Fig. 6(a)].
Note that there is no evolution of the pattern as observed
in Figs. 6(a.1)–6(a.4). The picture at the left (SP.A) presents
the space-time plot of the points along the line marked SP.A
in the figure. Curvature of the lines in this space-time plot
indicates an intrinsic motion of the patterns in the direction of
the centrifugal force and it will be analyzed in detail below.

The effect of intermediate values of the forcing period
(T ∼ τ ) is shown in Fig. 6(b). Now the structures present an
oscillatory behavior. At the maximum forcing [Fig. 6(b.2)] the
pattern mainly disappears while at the minimum [Fig. 6(b.4)]
the pattern occupies the entire domain with a uniform
wavelength. The left panel in Fig. 6(b) shows the space-time
plot of line SP.B. The dynamics here reflected are completely
different. Despite the oscillatory forcing being a sinusoid the
response of the pattern is not symmetric. Firstly, the Eckhaus
instability occurs only while the strength of the forcing
decreases. Secondly, the pattern undergoes a more abrupt
change in its spatial extension while the forcing increases
(this is clearly seen in the zoomed area plotted). This is a
clear demonstration of the existence of two different temporal
scales in the system, one associated with the development of

a new pattern and the other associated with the time needed to
suppress the pattern.

Figure 6(c) presents the evolution of a pattern when T ∼
100τ . The evolution of the pattern is much faster than the
changes in the forcing and so the pattern has enough time to
adjust to the changing values of the centrifugal force. For this
reason, the pattern in Fig. 6(c.2) presents a radial configuration.
In this case, the Eckhaus instability does not play any role and
the behavior is symmetric both while increasing the strength of
the centrifugal force and while decreasing it (see space-time
plot of line SP.C). Note that in this case, the whole pattern
also experiences a net displacement in the direction of the
centrifugal force.

The space-time plots SP.A and SP.C in Fig. 6 (left column)
show an important curvature in the trajectories and this implies
that the patterns are forced to move in the direction given by
the centrifugal force.

For the patterns shown in Fig. 6(a), with T ∼ 0.001τ , the
system effectively feels the mean value of the forcing and
we observe a displacement of the patterns from the center to
the boundary where they disappear with a growing velocity.
This phenomenon is similar to the drift of Turing patterns
observed in a BZ-AOT system subjected to an electrostatic
field [45].

The measure of the drift velocity versus the rotation
center is plotted in Fig. 7. When T ∼ 0,001τ we obtain a
straight line of slope b0.001τ = 0.041 (s.u.)−1, that is, related
to the drift velocity and therefore to the angular velocity.
This forcing corresponds to the patterns shown in Fig. 6(a)
where the angular velocity is approximately constant. To
measure the drift velocity we take an individual pattern path
along the space-time plot (SP.A), i.e., from the center to
the boundary where patterns disappear. When T ∼ 100τ the
angular velocity is time dependent and it is reflected in the
nonlinear plot (b100τ curve). Arbitrarily, we divide the curve in
three parts and adjust each one to straight lines of constant
slope: b1100τ = 0.036 (s.u.)−1, b2100τ = 0.073 (s.u.)−1, and
b3100τ = 0.153 (s.u.)−1. It allows us to compare the drift
velocity at different distances from the rotation center. We
observe that far from the center (close to the region where the
pattern disappears) the slope is almost 4 times higher; it means
that the drift velocity and the diffusive transport are maximum
in this region.

IV. DISCUSSION AND CONCLUSION

In this paper, we studied numerically the Turing instability
in a BZ-AOT system subjected to an oscillatory centrifugal
force. This kind of forcing modifies the diffusive transport
and therefore the Turing pattern formation is altered, as was
reported experimentally in [32]. To consider the effects of the
forcing into the Turing pattern formation we included a time-
dependent anisotropy in the Oregonator model that results in
an effective anisotropic diffusion coefficient. This is a very
natural way to introduce a time-dependent anisotropy in a
pattern-forming system that actually can be directly extended
into experiments as was previously demonstrated [32].

A strong coupling was shown between the period of
the oscillating centrifugal force and the characteristic time
required by a pattern to develop in the absence of forcing.
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FIG. 6. (Color online) Turing instability coupled to an oscillatory centrifugal force close to the rotation center. The computational domain
consists of a two-dimensional mesh of 300 × 300 grid points, with a spatial step of 0.2 s.u. Three sequences of snapshots were taken for three
different oscillation periods (a–c) at different forcings along a full oscillation, i.e., ω(t)/ω0 = 0.5, 1.0, 0.5, and 0, denoted as 1, 2, 3, and 4,
respectively. The magnitude of the forcing remains at ω0 = 0.40 rad/t.u. (a) Oscillation period T = 0.001τ . SP.A is the space-time plot of the
mean value pattern showed in (a.1)–(a.4) for an interval of (t = 15τ ). (b) Oscillation period T = τ . SP.B is the space-time plot of the circular
patterns shown in (b.1)–(b.4) for an interval of (t = 15τ ). The zoom corresponds to an interval of 2τ . (c) Oscillation period T = 100τ . SP.C is
the space-time plot of the radial pattern showed in (c.1)–(c.4) for an interval of (t = 150τ ).

The configurations presented by Turing structures are different
depending on the magnitude and the period of the forcing. In
fact, a wide range of different static and nonstatic patterns were
described, as well as the different instabilities that eventually
yield to the patterns.

The dependence of the orientation of the stripes pattern
with the chosen frequency is noteworthy [see Figs. (1)–(3)].
Low periods imply that the boundary where patterns disappear
moves relatively fast compared with the growth velocity for
the pattern. Thus the pattern grows parallel to that boundary.
For high values of the period, the boundary where patterns
disappear moves very slowly and the pattern is forced to
grow with the boundary; thus it grows in the axial direction.
Intermediate values of the period result in a mixed state
of stripes oriented in an oblique direction. This is formally
equivalent to the case described in [33].

The other patterns that appear are related with the mech-
anism to adapt to the changing wavelength in the medium.
For large periods the wavelength of the structure naturally fits
with the theoretically expected values. For the other cases,

there are several such mechanisms and the particular election
of the mechanism is usually determined by the velocity of the
change and the direction of the change (whether it increases
or decreases), as well as on the particular values of the model
parameters (whether there are subcritical patterns that may
become temporally more stable, etc.). Some detailed analysis
of such transitions can be found in [38]. It is important to
remark here that independently of the particular mechanism
chosen by the system to adapt its wavelength to the changing
conditions, the exhibited wavelength is always compatible
with the Turing conditions.

Another important observation from the results presented
here is the existence of two different temporal scales in the
system that resulted in some sort of hysteresis phenomenon
discussed in Figs. 5(a) and 6(b). We observed that depending
on whether the forcing is increasing or decreasing, the
response of the patterns was different, as revealed by the
wavelength analysis in Fig. 5(a) and the space-time plots
in Fig. 6(b). The hysteresis phenomenon on Turing patterns
was observed in networks [46], but chemical systems such as
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FIG. 7. (Color online) Semilog plot of the drift velocity [ln(v),
with ln as the natural log] for the Turing patterns subjected to
the oscillating angular motion versus the position with respect to the
rotation center (x). The velocity was measured from the space-time
plots (SP.A and SP.C) of Fig. 6. Circles (squares) correspond to
the patterns subject to a period of forcing of T = 0.001τ (T = 100τ ).
Paths 1 and 2 indicate the trajectories of any two patterns from the
center to the disappearance region.

BZ-AOT need more study. At enough high periods, hysteresis
disappears and patterns are able to take the sense of the
centrifugal force presenting a radial arrangement. In addition,
the space-time analyses stated that each individual pattern
underwent an intrinsic motion in the sense of the centrifugal
force.

In this paper we exploited the experimental result that
anisotropy can be induced in a system by external means.
By modulating the external forcing, centrifugal force in this
case, we were able to induce time-dependent anisotropies in
the system and analyze their effects on pattern formation.
A large variety of patterns was reported here endowed with
complicated dynamics. This work will aid future research as
it describes the possibility to dynamically change properties
of the active medium that, otherwise, are constant and
noncontrollable.
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