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Initial-value representation of the semiclassical zeta function
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This work casts the semiclassical zeta function in a form suitable for practical calculations of energy levels
for rather general systems. To accomplish this, the zeta function is approximated by applying an initial-value
representation (IVR) treatment to the traces of the transfer matrix that appear when the function is expanded in
cumulants. Because this approach does not require searches for periodic orbits or special trajectories obeying
double-ended boundary conditions, it is easily applicable to multidimensional systems with smooth potentials.
Calculations are presented for the energy levels of three two-dimensional systems, including one that is classically
integrable, one having mixed phase space, and one that is almost fully chaotic. The results show that the present
treatment is far more numerically efficient than a previously proposed IVR method for the zeta function [Barak
and Kay, Phys. Rev. E 88, 062926 (2013)]. The approach described here successfully resolves nearly all energy
levels in the range investigated for the first two systems as well as energy levels in spectral regions that are not
too highly congested for the highly chaotic system.
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I. INTRODUCTION

The semiclassical zeta function is one of the most successful
tools for the semiclassical estimation of the quantum energy
levels of bound, chaotic systems. In this paper we develop
an approximation to this function that allows its practical
calculation for rather general systems, including those with
many degrees of freedom and smooth potentials.

Historically, theories of the semiclassical zeta function
[1–5] were developed in the context of Gutzwiller’s [6,7]
semiclassical treatment of the trace of Green’s function for
classically chaotic systems. This trace, given quantum me-
chanically by g(E) = Tr(E+ − H )−1 = ∑

n(E+ − En)−1 for
a bound system, has poles at real values of E that correspond
to energy levels En. To develop a semiclassical approximation
for such levels of a chaotic system, Gutzwiller derived a
semiclassical expression for g(E) as an infinite sum over
classical periodic orbits. However, straightforward application
of this treatment encountered problems because Gutzwiller’s
formula does not converge absolutely for real E [8]. The source
of this difficulty is the exponential proliferation of periodic
orbits with increasing length for chaotic systems. Although
this problem could be partly circumvented by analytically
continuing the trace formula to complex E, or otherwise
damping the contributions of long orbits in g(E) [9,10], these
methods limit the resolution of the spectral levels, preventing
estimation of quantum energies when the level density is high.

A better solution to the convergence problem was found
by formulating the eigenvalue determination in terms of the
semiclassical zeta function ζ−1(E). This function can be
expressed in the form exp[iπN̄ (E)]D(E), where D(E) is
a semiclassical approximation to the spectral determinant,
det(E − H ) = ∏

n(E − En), and N̄ (E) is the mean level
staircase function. Thus, like D(E), the zeta function has
(approximate) zeros at the quantum energy levels E = En.
An explicit expression for the zeta function can be obtained
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by substituting Gutzwiller’s formula for g(E) in the relation
D(E) = exp[

∫ E
g(E′)dE′]. The result can be written as∏

exp(F ) where the product is over primitive periodic orbits
and F can be expressed in terms of actions and monodromy
matrices for repetitions of such orbits. Although this formula
for the zeta function is still not absolutely convergent, it can
be effectively resummed to yield a cycle expansion [2–4,11]
that groups together long periodic orbits with combinations of
shorter orbits of the same total length. Such an expansion
converges because contributions of long orbits are largely
canceled by those arising from the combinations of shorter
orbits. This convergence allows determination of energy
eigenvalues even for dense portions of the energy spectrum
where the damped versions of Gutzwiller’s formula fail.

Despite the importance of the cycle expansion, its ap-
plication is limited. Use of the expansion for a chaotic
system requires the determination and enumeration of all
orbits with periods up to a certain maximum length. Such
a calculation requires a numerical search that is generally
not feasible for systems with more than two degrees of
freedom. Apart from this practical matter, the cycle expansion
is appropriate only for systems whose periodic orbits are
all isolated, e.g., fully chaotic systems. It cannot be used
for systems that are integrable or, more importantly, generic
systems with mixed chaotic and regular phase space regions.
It is, therefore, desirable to develop a numerically useful
semiclassical treatment of the zeta function that is free from
such limitations.

We note that the effective restrictions of the cycle expansion
to small chaotic systems are also shared by Gutzwiller’s
formula for the trace g(E). In a previous publication [12],
these problems were overcome for g(E) by developing a
semiclassical initial-value representation (IVR) treatment of
this function. The possibility of solving analogous problems
for the zeta function motivates the present development of an
IVR approximation for ζ−1(E).

An IVR treatment [13–16] is a semiclassical approximation
to a desired quantity as an integral over phase space variables
that serve as initial conditions for classical trajectories. Such
a treatment does not require a search for special trajectories
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obeying double-ended boundary conditions or periodic orbits,
and is therefore suitable for large systems. Additionally,
previously developed IVR approximations have been found
to be equally applicable to chaotic and nonchaotic systems. In
several cases, IVR expressions can be demonstrated to provide
uniform semiclassical approximations [16–19] and, thus, to be
more accurate than conventional semiclassical formulas that
are expressed explicitly in terms of special trajectories.

IVR treatments have previously been developed for the
time-dependent propagator [15–17], the time-independent
wave function [18,20], the S matrix [21,22], the Green’s
function [19], and its trace [12]. Recently, and most relevant
to the present work, a particular kind of IVR approximation
was also proposed for the zeta function [23]. That treatment
was based on Bogomolny’s [24,25] representation of the zeta
function as a Fredholm determinant det(1 − TE), involving
the so-called transfer matrix TE . Bogomolny derived a
semiclassical approximation that expresses elements of this
matrix in terms of classical trajectories that begin at a specified
position on a Poincaré surface of section (PSS) and return
to another specified position upon their first crossing of this
surface in the initial direction. In the IVR treatment of Ref. [23]
this matrix was more conveniently formulated as an integral
over points on the PSS that serve as initial conditions for
classical trajectories that may end up anywhere on the surface.

With this approach, the quantization condition det(1 −
TE) = 0 was applied to obtain energy eigenvalues for an inte-
grable and a highly chaotic system with a smooth potentials.
The IVR treatment was found to resolve and provide good
approximations for all eigenvalues in the ranges investigated.

Despite these favorable properties, the IVR treatment of
Ref. [23] suffers from some disadvantages that are shared
by other numerical treatments which are based directly on
the expression of the zeta function as det(1 − TE) [26]. First,
the technique is numerically inefficient because determination
of each energy level satisfying the quantization condition
requires repeated evaluation of the determinant det(1 − TE), or
diagonalization of the matrix TE , for several values of E near
the quantum value. Since the dimension of TE is necessarily
large for systems with many degrees of freedom or high
energies, such calculations can be very numerically intensive
and time-consuming, especially when several levels need to be
determined. Second, more as a matter of principle, the reliance
on the diagonalization or the calculation of determinants for
large matrices suggests that the approach should be classified
as a hybrid quantum-semiclassical method, rather than a purely
semiclassical treatment.

In the present work we develop a more numerically
efficient, “purely semiclassical,” IVR treatment of the zeta
function that avoids explicit calculation or manipulation of
large matrices. Like the former method, the present approach
is equally applicable to chaotic and nonchaotic systems but,
in contrast to that treatment, it scales favorably with system
size, making it more suitable for systems with several degrees
of freedom. To proceed, we express ζ−1(E) in terms of the
scalar quantities Tr(Tn

E), n = 1,2, . . . by means of a cumulant
expansion of det(1 − TE). We then express each such trace in
an IVR form involving trajectories which return to the PSS n

times in the initial normal direction. Finally, we determine
semiclassical energy levels as values of E that minimize

the resulting approximation to |ζ−1(E)|. We test the method
with calculations for three systems, including one that is
completely integrable, one that is highly chaotic, and one that
is intermediate in nature, having mixed regular and chaotic
portions of phase space.

Section II presents our treatment more fully and derives
the requisite IVR formulas. Section III describes the sys-
tems treated and numerical details of the test calculations.
Section IV reports the results of the computations and Sec. V
summarizes this work and presents concluding remarks.

II. IVR TREATMENT OF THE ZETA FUNCTION
AND ITS CUMULANT EXPANSION

A. Bogomolny’s expression of ζ−1(E)
as a Fredholm determinant

To develop our treatment of the zeta function, we recall
Bogomolny’s formula [24,25]

ζ−1(E) = det(1 − TE), (1)

which expresses the zeta function in terms of a Fredholm
determinant involving the transfer matrix TE . The quantum
energy levels are, thus, values of E which satisfy the condition

det(1 − TE) = 0. (2)

Each element TE(q′,q) of the transfer matrix plays the role
of a semiclassical propagator that evolves a point on a PSS at
position q to a new point on this surface at position q′. It can be
regarded a the semiclassical analog of the Poincaré mapping
that carries a point on the PSS to one that classically evolves
from it as it crosses the PSS for the first time in the initial
normal direction.

Bogomolny [24,25] derived a semiclassical formula for
such matrix elements which, for a system with f degrees of
freedom, reads

TE(q′,q) =
(

1

2πi�

)(f −1)/2 ∑
classical

traj

∣∣∣∣det

[
∂2WE(q′,q)

∂q′∂q

]∣∣∣∣
1
2

× exp[iWE(q′,q)/� − iνπ/2]. (3)

The sum is over classical trajectories with energy E that
connect points q and q′ after a single crossing of the PSS
in the initial direction, corresponding to an application of the
Poincaré map. The quantity

WE(q′,q) =
∫ q′

q
p(x)T dx (4)

is the reduced action calculated along such a trajectory and ν

is the Maslov index.
A key property of the transfer matrix is that elements

T n
E (q′,q) =

∫
TE(q′,qn−1) · · ·

TE(q2,q1) TE(q1,q)dq1dq2 · · · dqn−1, (5)

of the matrix Tn
E ≡ (TE)n are again given semiclassically by

Eq. (3) for TE(q′,q), with the provision that the sum is taken
over classical trajectories that connect points q and q′ after n
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crossings of the PSS in the initial direction. Such trajectories
are associated with the nth iteration of the Poincaré map.

B. Cumulant expansion of the zeta function

To cast the zeta function in a form suitable for the desired
IVR treatment, we apply the identity det(A) = exp[Tr ln A] to
the determinant in Eq. (1) and formally expand log(1 − TE)
in a Taylor series to obtain

ζ−1(E) = exp

[
−

∞∑
n=1

1

n
Tr Tn

E

]
. (6)

Further expansion of the exponential function in a Taylor
series and rearrangement of terms yields a cumulant expansion
whose first terms are given by [11,27]

ζ−1(E) = 1 − Tr TE − 1
2

[
Tr T2

E − (Tr TE)2]
− 1

3

[
Tr T3

E − 3
2 Tr T2

E Tr TE + 1
2 (Tr TE)3

] · · ·.
(7)

The general form of this expansion can be written as

ζ−1(E) =
∞∑

m=0

cm(E), (8)

where the cumulant (or curvature) terms, cm, are given by the
recursion formula

cm = − 1

m

m−1∑
j=0

Tr Tm−j

E cj , (9)

with c0 = 1. Equivalently, these results can be obtained
directly by applying the Plemelj-Smithies formula [28] to the
determinant det(1 − TE) in Eq. (1).

In contrast to Gutzwiller’s trace formula for the Green’s
function, the cumulant expansion converges absolutely for
a chaotic system. Therefore, the energy eigenvalues of a
system can be obtained from the zeros of Eq. (8), with the
sum calculated to a sufficiently high order. This advantageous
property results from cancellations that occur in each curvature
term between contributions from long periodic orbits and
combinations of shorter ones that shadow them. Substitution
of Bogomolny’s formula for the transfer matrix, Eq. (3), in
Eqs. (8) and (9), provides an alternative route to the derivation
of the cycle expansion for chaotic systems.

C. IVR formula for the traces of Tn
E

Our treatment requires development of an IVR formula for
the traces appearing in Eqs. (8) and (9). To accomplish this,
we make use of an IVR approximation

TE(q′,q) =
(

1

2π�

)f −1 ∫
dpy

∫
dy (q′|y′p′

y)

×C eiWE (y′,y)/� (y,py |q), (10)

for the elements of the transfer matrix that was presented
in Ref. [23]. In this equation, py and y are momentum and
position variables on the PSS that serve as initial conditions
for classical trajectories and p′

y and y′ are the corresponding
variables marking the trajectories’ first recrossing of the

PSS in the initial normal direction. Quantities (q|ypy) are
unnormalized Gaussian coherent state functions on the PSS,

(q|y,py) = exp
(−(q − y)T �(q − y)/� + ipT

y (q − y)/�
)
,

(11)

where the f − 1-dimensional matrix � is symmetric with a
positive real part but is otherwise arbitrary. To simplify the
current treatment (and unlike Ref. [23]), we use the same
matrix � for both coherent state functions in Eq. (10). The
prefactor C is given by

C =
[

sgn(ż′ż) det

(
2�

π�

)
det

(
∂ζ ′

∂ζ

)]1/2

, (12)

where ż and ż′ are the initial and final velocities normal to the
PSS and the matrix ∂ζ ′/∂ζ is given by

∂ζ ′

∂ζ
= 1

2

∂p′
y

∂py

− i�
∂y′

∂py

+ i

4

∂p′
y

∂y
�−1 + 1

2
�

∂y′

∂y
�−1. (13)

The partial derivatives (monodromy matrix elements) on the
right-hand side of this equation are evaluated for fixed energy
and position of the final PSS. The phase of the complex
prefactor C is determined by the requirement that it be
continuous with respect to time. It is, therefore, important to
calculate the time-dependent analog of sgn(ż′ż)∂ζ ′/∂ζ along
each trajectory so that phase of the square root appearing in
Eq. (12) can be monitored and its continuity can be ensured.

Equation (10) was obtained in Ref. [23] by imposing the
requirement that it reduce to Bogomolny’s expression, Eq. (3),
when the integrals are approximated by the stationary phase
approximation. One consequence is that, like Eq. (3), the
expression for TE(q′,q) appearing in Eq. (10) is also valid
for T n

E (q′,q) if y′ and p′
y are interpreted as the variables on the

Poincaré surface at the nth return of the trajectory to the PSS
in the initial direction.

Despite its derivation from Bogomolny’s formula, the IVR
and Bogomolny approximations are not equivalent, except
in the classical limit. For example, the numerical results
in Ref. [23] suggested that use of the IVR approximation,
Eq. (10), to calculate energy eigenvalues via Eqs. (1) and
(2), generally produced more accurate results for the chaotic
system investigated than Bogomolny’s theory.

Given the result in Eq. (10) it is simple to obtain an
IVR expression for the traces needed in a calculation of
the cumulant expansion. Indeed, integration over q′ = q
immediately gives

Tr Tn
E =

(
1

2π�

)f −1 ∫
dpy

∫
dy (y,py |y′,p′

y)C eiWE (y′,y)/�,

(14)

where the prime again denotes the nth intersection with the
PSS in the initial normal direction. Energy levels can now
be estimated by substituting this expression into the cumulant
expansion and identifying the values of E that cause |ζ−1(E)|
to be near zero.
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D. Symmetry-projected traces

For systems with high energy or many degrees of freedom,
energy levels are dense and may be difficult to resolve
completely using the treatment described above. This problem
can be partially alleviated for systems with discrete symmetries
by adapting the IVR approximation of the zeta function to
specific irreducible representations (irreps) of the symmetry
point group. The treatment is similar to that detailed in
Ref. [12] for the analogous case of the trace of Green’s
function. The first step is to apply the projection operator for a
particular irrep j to the final position variables in Eq. (10), to
produce the symmetry-projected matrix element TE,j . The
resulting IVR formula for this quantity was presented in
Ref. [23]. Its immediate generalization to Tn

E,j is

T n
E,j (q′,q) =

(
1

2π�

)f −1 ∑
s

∑
σ=±

∫
dy

∫
dpy

∑
R

′
aj (R)

× (q′|y′
rp′

yr )CReiWE (y′
r ,y)/� (y,py |q). (15)

This result is based on the following understandings
[12,23]. The Poincaré surface used to initiate the trajectories
is described by the condition z = 0, where z is one of the
position variables, and the initial velocity normal to the PSS,
ż, is taken to be positive. The symmetry operators R̂ belonging
to the system’s point group are considered to act on the final
coordinates (z′,q′). Of course, like z and ż, the primed variables
obey z′ = 0 and ż′ > 0, but the symmetry operator R̂ generally
changes the condition defining the “final PSS” to z′

r = R̂z′ = 0
and changes the velocity normal to the PSS from ż′ to
ż′
r = R̂żr , which may be positive or negative. Additionally,

the operator can be taken to apply to the dynamical variables
along the surface (y′,p′

y) instead of q′, transforming them to

(y′
r ,p

′
yr ) = (R̂y′,R̂p′

y) [12].
Thus, in Eq. (15), the summation over s is over the nth

crossings of all Poincaré surfaces z′
r = 0 generated by applying

operators R̂ in the point group to the surface z′ = z = 0, and
the summation over σ is over the two possible signs of ż′

r at
the crossing. The summation over R is restricted to those
symmetry operators that transform z′ and ż′ to z′

r and ż′
r ,

respectively, with the specified s and σ . The coefficient aj (R)
is defined as djχj (R)/|G|, where dj is the dimension of irrep
j , χj (R) is the character of R in this irrep, and |G| is the order
of the group. Finally, the prefactor CR in Eq. (15) is given by

CR = [sgn(ż′
r ż) det(2�/π�) det(∂ζ ′

r/∂ζ ) det R]1/2, (16)

where R is the f -dimensional matrix representing R̂ in the
basis of position variables (z′,q′), and ∂ζ ′

r/∂ζ is as defined in
Eq. (13) with (y′,p′

y) replaced by (y′
r ,p

′
yr ).

Setting q′ equal to q and integrating over this variable gives
the desired IVR formula for the trace,

Tr Tn
E,j =

(
1

2π�

)f −1 ∑
s

∑
σ=±

∫
dy

∫
dpy

∑
R

′
aj (R)

× (y,py |y′
rp′

yr )CReiWE (y′
r ,y)/�. (17)

This equation allows one to calculate the trace of the
projected transfer operator by launching trajectories from
an initial PSS and following them as they intersect, for the

nth time, each Poincaré surface generated by applying the
group symmetry operators to the initial surface. Each such
intersection contributes to terms in the sums in Eq. (17) with
particular values of s and σ and R. The R values for such
contributions correspond to symmetry operators R̂ that carry
the final intersection surface to the initial PSS with positive
transverse velocity. These operators must be identified in order
to evaluate the factors appearing after

∑′
R in Eq. (17).

III. CALCULATIONS

A. The system

As in previous publications [12,18,19,23,29], we test our
IVR treatment with numerical calculations for the two-
dimensional quartic oscillator system with the Hamiltonian
[30–32]

H = 1

2

(
p2

x + p2
y

) + α

2
(x2y2) + β

4
(x4 + y4). (18)

The parameters α and β in this expression can be adjusted to
vary the classical dynamics of the system from almost fully
chaotic (α > 0, β = 0), to nonintegrable with mixed phase
space (α > 0, β > 0), to fully integrable (α = 0, β > 0). The
symmetry of the potential energy function allows the wave
functions of the system to be classified according to the irreps
of the C4v point group. In the present calculations, we focus on
the energy levels of states belonging to the one-dimensional
irreps A1, A2, B1, and B2.

Conveniently, the potential energy function for this system
is a homogeneous polynomial, obeying V (λx) = λ4V (x).
As a result, a one-to-one relationship exists between each
classical trajectory (x(t),p(t)) at an energy E and a particular
trajectory (x̃(t̃),p̃(t̃)) at an arbitrary reference energy Ẽ [7].
This relationship is expressed as

x =
(

E

Ẽ

)1/4

x̃, p =
(

E

Ẽ

)1/2

p̃, and t =
(

E

Ẽ

)−1/4

t̃ .

(19)
The implication is that all the classical trajectories for an
IVR treatment can be calculated at the single energy Ẽ. To
further simplify the numerical computations, we choose the
one-dimensional width “matrix” � to scale with the energy as
� = (E/Ẽ)1/4γ̃ , where γ̃ has a fixed, positive value. With the
choice Ẽ = 1, this allows Eq. (14) for the present system to
be expressed as

Tr Tn
E = 1

2π�

√
π�

2γ

∫
dỹ

∫
dp̃y E3/4 C̃ exp(iE3/4φ/�),

(20)

where the integration is over a Poincaré surface at energy Ẽ,
C̃ is the prefactor defined in Eq. (12) at energy Ẽ, and φ is
given by

φ = iγ̃

2
(ỹ ′ − ỹ)2 + i

8γ̃
(p̃′

y − p̃y)2

− 1

2
(ỹ ′ − ỹ)(p̃y

′ + p̃y) + WẼ(ỹ ′,ỹ). (21)

This result allows one to recalculate the quantities Tr Tn
E ,

needed to form the cumulant expression for the zeta function,
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at any energy E, by simply rescaling two functions in
the integrand. Therefore, classical trajectories determined at
energy Ẽ = 1 can be used to perform IVR calculations at all
energies. An entirely analogous simplification occurs for the
symmetry-adapted traces of Eq. (17).

B. Numerical details

As in Refs. [12,13], the phase space integrations in our
IVR formulas for Tr Tn

E [Eqs. (14) or (17)] are carried
out by the Monte Carlo method with uniform sampling
of a PSS. To generate random ỹ and p̃y values for the
Monte Carlo integration, a rectangular portion of a Poincaré
plane, containing the classically allowed region at Ẽ = 1, is
uniformly sampled and points falling outside this region are
rejected. The accepted points are used as initial conditions
for Hamilton’s equations of motion and these, along with
the linearized equations of motion for the stability matrices
and a differential equation for the action WE , are integrated
as a function of time until the trajectories cross the required
symmetry-related Poincaré surfaces in each normal direction
a preselected maximum number of times, np. This allows
evaluation of Tr Tn

E for n = 1,2, . . . ,np and, thus, the zeta
function to order np in the cumulant expansion, Eq. (8).

Semiclassical energy levels are estimated from minima in
plots of the computed quantities |ζ−1(E)| as a function of E.
Quantum mechanical energy eigenvalues used for comparison
are obtained by diagonalizing the Hamiltonian operator in
a large harmonic oscillator basis set (for states with A1

symmetry) or from values tabulated in Ref. [32] (for states
with B1, B2, and A2 symmetries).

IV. RESULTS

A. Integrable case

We begin by presenting results for the treatment of an
integrable system obtained by setting the parameters in the
Hamiltonian of Eq. (18) to α = 0, β = 0.01. The Poincaré
surface was taken as the line y = x passing through the origin
in configuration space and the Gaussian width parameter γ̃

was chosen as 0.5. Energy levels for states with A1 symmetry
and E < 27 were investigated.

Figures 1–3 display the numerical results for the func-
tion |ζ−1(E)|, obtained by applying the IVR expression,
Eq. (17), to the traces Tr Tn

E in the cumulant expansion (8).
These calculations were performed using 2.5×104 trajectories
(Monte-Carlo points on the PSS) and a maximum of np = 40
returns to the PSS. Practically identical results were obtained
with np = 20. Apart from a few exceptions, these figures
display a nearly one-to-one correspondence between the
minima of |ζ−1(E)| and the quantum energy levels in the
range examined. Considering the near degeneracies of many of
the levels, the successful resolution of the quantum energies
here is remarkable. Although the former IVR treatment of
Ref. [23] for this system was able to resolve all energy levels
in the range considered, it is important to bear in mind that
the work there was restricted to lower energies, E < 12, and
required a factor of 20–25 more computational time than the
present treatment for the same energy range.

0 2 4 6 8 10 12
0

1.2

2.4

Energy

|ζ
−

1 (E
)|

FIG. 1. (Color online) |ζ−1(E)| vs energy for A1 states of the
integrable system for 0 � E � 12. Vertical lines indicate quantum
mechanical energy levels.

B. Intermediate case

We now apply our IVR treatment to a system whose phase
space has an intermediate, mixed, nature, with regions of
chaotic dynamics coexisting with those of regular behavior,
characterized by invariant tori. To achieve this situation
we choose values α = 1,β = 0.25 for the parameters in
Eq. (18). The composite Poincaré surface in Fig. 4 verifies
that substantial portions of phase space are occupied by chaotic
trajectories and by regular classical trajectories for this case.
The energy in this figure is chosen as E = 1 but the classical
scaling properties of the Hamiltonian of Eq. (18) imply that
the Poincaré surface of the section has a similar appearance at
any energy.

Figure 5 displays the function |ζ−1(E)| for A1 states of
this system with energies E < 57. Here (and in the chaotic

12 13 14 15 16 17 18 19 20
0

1.2

2.4

Energy

|ζ
−

1 (E
)|

FIG. 2. (Color online) |ζ−1(E)| vs energy for A1 states of the
integrable system for 12 � E � 20. Vertical lines indicate quantum
mechanical energy levels.
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20 21 22 23 24 25 26 27
0

1.2

2.4

Energy

|ζ
−

1 (E
)|

FIG. 3. (Color online) |ζ−1(E)| vs energy for A1 states of the
integrable system for 20 � E � 27. Vertical lines indicate quantum
mechanical energy levels.

case below), the Poincaré plane was chosen as x = 0 to obtain
the most rapidly converging results. The calculations were
carried out by using γ̃ = 0.5, np = 12, and 5×104 trajectories
(although effective convergence was already achieved with
half this number). As in the integrable case, the results show
that nearly all energy levels in the investigated range are
resolved and that the semiclassical energy estimates (the
minima of |ζ−1(E)|) are in very good agreement with the
quantum energy levels.

C. Chaotic case

We now turn our attention to the parameter choice α = 1.0,
β = 0.01, which is known to result in strongly chaotic classical
dynamics (characterized by large Lyapounov numbers) that
extends throughout almost all portions of phase space [30–32].
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FIG. 4. (Color online) Poincaré surface of section (x = 0,

py > 0) for the classical Hamiltonian (18) with α = 1.0, β = 0.25.
Due to the symmetry only one quadrant is shown.
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FIG. 5. (Color online) |ζ−1(E)| vs energy for A1 states of the
system with mixed phase space. Vertical lines indicate quantum
mechanical energy levels.

These parameters were previously used to test the former IVR
treatment of the zeta function [23] and the IVR approximation
for the trace of Green’s function [12].

In common with most other IVR treatments for chaotic
systems, the high instability of the classical trajectories in this
case poses a serious challenge for the present IVR treatment.
Specifically, this instability makes the complex exponent in the
IVR formula [e.g., the function φ in Eq. (20)] very sensitive
to variations in the initial conditions at long times, causing
the phase of the integrand to fluctuate rapidly with changes
in the integration variables. The large Lyapounov numbers
also cause the modulus |C| of the prefactor to grow, on the
average, exponentially with time. These combined effects
make numerical evaluation of the IVR integral very difficult
for long-time dynamics, requiring a very large number of
trajectories for convergence. Thus, for the present system,
a straightforward Monte Carlo calculation of Tr Tn

E or cn is
found to be practically unfeasible for n > 2.

As in other IVR treatments [12,29,33], we partially over-
come this problem by terminating trajectories when the square
modulus of the integrand becomes larger than a predetermined
cutoff, chosen here to be 1.3×106. This makes it possible
to converge the Monte Carlo integrations with a reasonable
number of classical trajectories. However, as will become
apparent below, the price of such a restriction to the length of
highly chaotic trajectories is a broadening of certain minima
in the function |ζ−1(E)| and a consequent loss of resolution in
the energy spectrum.

The termination of trajectories also creates some appar-
ent difficulties for the calculation of the symmetry-adapted
traces Tr Tn

E,j via Eq. (17). The numerical procedure de-
scribed in Sec. II D requires a trajectory to intersect each
symmetry-related Poincaré surface in each direction n times in
order for it to contribute to this trace. However, the termination
procedure often cuts off trajectories after completion of only
some, but not all, of these intersections. If the contributions
from such partial completions are discarded, very few Monte
Carlo points remain for the convergence of the integrals
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FIG. 6. (Color online) |ζ−1(E)| vs energy for A1 states of the
chaotic system. Vertical lines indicate quantum mechanical energy
levels.

representing traces so that, again, calculations are impractical
even for moderate values of n.

In the present work we simply retain contributions from all
such partial completions. Although one may worry that this
would ruin the symmetry projection, the numerical results for
the zeta functions, presented below, do not display signs of any
significant symmetry contamination. A possible explanation
is that the various trajectories in the Monte Carlo calculations
undergo complementary completed and missed intersections
so that each symmetry-related intersection occurs statistically
an equal number of times.

Numerical calculations of the zeta function for symmetry
species A1, A2, B1, and B2 are presented in Figs. 6–9,
respectively. The calculations were performed with γ̃ = 0.5,
1.0×105 trajectories, and np = 25. Increasing np to 200
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FIG. 7. (Color online) |ζ−1(E)| vs energy for A2 states of the
chaotic system. Vertical lines indicate quantum mechanical energy
levels.
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FIG. 8. (Color online) |ζ−1(E)| vs energy for B1 states of the
chaotic system. Vertical lines indicate quantum mechanical energy
levels.

caused no visible change the computed results. In each figure,
the minima of |ζ−1(E)| are found to be in good agreement
with the quantum energy levels for low energies but there
are clear signs of resolution loss at higher energies where
the quantum spectrum becomes dense. Comparison of the A1

semiclassical levels with those obtained from an IVR treatment
of the trace of Green’s function [12] indicate that the two
techniques yield comparable (but not identical) results. The
trajectory truncation procedure limits the energy resolution in
a similar way for both cases. More will be said about this
matter in the next section.

V. SUMMARY AND REMARKS

The cycle expansion of the semiclassical zeta function has
been one of the most successful tools for the semiclassical
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FIG. 9. (Color online) |ζ−1(E)| vs energy for B2 states of the
chaotic system. Vertical lines indicate quantum mechanical energy
levels.

012912-7



HAIM BARAK AND KENNETH G. KAY PHYSICAL REVIEW E 91, 012912 (2015)

quantization of chaotic systems. However, this treatment is
effectively restricted to systems with fully chaotic behavior
and requires identification and coding of all periodic orbits,
a process that is not feasible for systems with more than two
or three degrees of freedom. In the present work, we develop
an IVR treatment for the cumulant expansion of ζ−1(E), a
direct precursor of the cycle expansion. This yields a method
for calculation of the zeta function that is equally applicable to
integrable systems, classically chaotic systems, and generic
systems with mixed phase space. This treatment does not
require searches for periodic orbits or their enumeration and
coding, and is therefore relatively easy to apply to systems
with several degrees of freedom and smooth potentials.

The above advantages are shared by the IVR approximation
for the zeta function presented in Ref. [23]. However, the
approach developed here avoids diagonalization or evaluation
of determinants of large matrices, which lend a quantum
flavor to the former method and cause computations to scale
unfavorably with energy and system size. Consequently, calcu-
lations based on the present treatment are far more numerically
efficient than those using the former method, requiring compu-
tational times that are a factor of at least 20 shorter in the cases
examined here. In view of the N3 scaling for computation times
of N -dimensional determinants, this numerical advantage
should grow dramatically for larger systems.

The tests of the IVR method presented in Sec. IV are
encouraging. The semiclassical calculations for the integrable
and intermediate systems provide resolution of all but a few,
very closely spaced, levels and yield energies that are in very
good agreement with quantum values. There are indications
that the remaining, minor, imperfections in the resolution may
be related to the limited reliability of using the minima of
|ζ−1(E)| to detect energy levels compared, e.g., with the
method based on examination of the eigenvalues of TE applied
in Refs. [26] and [23].

For the highly chaotic system studied here, our semiclassi-
cal technique gives levels that are in generally good agreement
with quantum values at low energies, but the method becomes
noticeably less capable of resolving all levels as the energy
and the spectral density increase. This feature can be traced to
the numerical problems associated with long trajectories that
affect almost all IVR treatments of chaotic systems. To our
knowledge, the only IVR quantization method that is free of
such problems is the IVR zeta function method of Ref. [23].
That treatment, though far more computationally demanding
that the present one, successfully resolves all energy levels
for the present chaotic system because it relies only on short
trajectories that undergo a single return to the PSS in the initial
direction.

As discussed above, the numerical problems associated
with long trajectories in IVR methods are due to the highly
oscillatory nature of the phase space integrals. Thus, to apply
IVR methods in such cases, it is necessary to reduce these
fluctuations. Methods that have been proposed to accomplish
this include filtering techniques [33–35] and the simple trajec-
tory termination method applied here [29,33]. Unfortunately,
all these methods limit the resolution of the computed energy
spectra, reducing the usefulness of the IVR treatments at high
energies.

It is interesting to observe that the IVR long trajectory
problem is in some ways analogous to the problem of long
perodic orbits that prevents the absolute convergence of
Gutzwiller’s trace formula for chaotic systems. In addition,
the trajectory termination method applied here bears some
resemblance to techniques that impose convergence upon the
Gutzwiller formula by damping terms with long periodic orbits
[9,10]. Such methods also lead to a loss of resolution in the
computed energy spectra comparable to that observed for the
IVR treatment here.

The cumulant expansion of the zeta function effectively
solves the problem of long trajectories in the context of
Gutzwiller’s treatment. It accomplishes this by diminishing
the effect of these trajectories, canceling their contributions
to the zeta function with those of shorter trajectories. It may,
therefore, seem odd that the cumulant expansion does not
similarly solve the long trajectory problem for IVR treatments,
as evidenced by the need to truncate trajectories and the
consequent loss of resolution in the present calculations for
the chaotic system.

The reason for this, however, becomes clearer when we
recall that each curvature term cm in the cumulant expansion
is itself a sum of terms, each proportional to a product of the
form

∏
n Tr Tn

E with
∑

n = m. It is among such terms that
cancellation of the long trajectories takes place for each cm.
The present IVR treatment calculates this sum by evaluating
each of the traces Tr Tn

E , n = 1,2, . . . ,m, individually by an
IVR expression, calculating each term in cm separately, and
finally combining these terms to form the desired quantity cm.
However, the terms in the expression for cm are not individually
small. Only their combination in cm is small (for large enough
m) so that a curvature term is the small difference of relatively
large numbers. Because such a differencing process results in
the loss of precision, an accurate calculation of cm requires an
even more accurate calculation of each term in the difference.

However, the present technique is unable to achieve such
accuracy for chaotic systems due to the convergence problems
of the IVR expressions. Thus, the desired cancellation does
not occur. Indeed, unless methods such as termination of
trajectories are applied, the lack of numerical convergence
for the IVR integrals causes successive terms in the cumulant
expansion to grow exponentially rather than decrease, so that
the expansion itself diverges strongly.

Nevertheless, it remains possible that a different IVR
treatment of the cumulant expansion for ζ−1(E) may provide a
solution to the long trajectory problem that plagues almost all
IVR methods for chaotic systems. The analysis above suggests
how such an IVR expression would need to be designed.
Unlike the present approach, such a treatment would have
to express a given curvature term cm as a whole (and not
individual components such as Tr Tn

E) as an IVR integral over
initial conditions for classical trajectories. Such a formulation
should allow the cancellation associated with long trajectories
to occur in each term of a Monte Carlo sum representing
the integral. This cancellation can be accomplished accurately
since the quantities needed to form each term can be calculated
with high precision and no very large numbers need to
be differenced. These ideas should be explored in future
work.
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[11] P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, and G. Vattay,

Chaos: Classical and Quantum (ChaosBook.org–Niels Bohr
Institute, Copenhagen, 2014).

[12] K. G. Kay, J. Phys. A: Math. Theor. 44, 205304 (2011).
[13] M. Thoss and H. Wang, Annu. Rev. Phys. Chem. 55, 299 (2004).
[14] K. G. Kay, Annu. Rev. Phys. Chem. 56, 255 (2005).
[15] M. F. Herman and E. Kluk, Chem. Phys. 91, 27 (1984).
[16] K. G. Kay, J. Chem. Phys. 100, 4377 (1994).
[17] K. G. Kay, Chem. Phys. 322, 3 (2006).
[18] K. G. Kay, Chem. Phys. 370, 51 (2010).

[19] K. G. Kay, J. Chem. Phys. 132, 244110 (2010).
[20] D. Zor and K. G. Kay, Phys. Rev. Lett. 76, 1990 (1996).
[21] Y. Elran and K. G. Kay, J. Chem. Phys. 114, 4362 (2001).
[22] Y. Elran and K. G. Kay, J. Chem. Phys. 116, 10577 (2002).
[23] H. Barak and K. G. Kay, Phys. Rev. E 88, 062926 (2013).
[24] E. B. Bogomolny, Nonlinearity 5, 805 (1992).
[25] E. B. Bogomolny, Chaos 2, 5 (1992).
[26] M. R. Haggerty, Phys. Rev. E 52, 389 (1995).
[27] G. Tanner, K. Richter, and J.-M. Rost, Rev. Mod. Phys. 72, 497

(2000).
[28] B. Simon, Trace Ideals and Their Application (American

Mathematical Society, Providence, RI, 2005).
[29] K. G. Kay, J. Chem. Phys. 101, 2250 (1994).
[30] A. Carnegie and I. C. Percival, J. Phys. A: Math. Gen. 17, 801

(1984).
[31] P. Dahlqvist and G. Russberg, Phys. Rev. Lett. 65, 2837 (1990).
[32] B. Eckhardt, G. Hose, and E. Pollak, Phys. Rev. A 39, 3776

(1989).
[33] M. Spanner, V. S. Batista, and P. Brumer, J. Chem. Phys. 122,

084111 (2005).
[34] A. R. Walton and D. E. Manolopoulos, Mol. Phys. 87, 961

(1996).
[35] H. Wang, D. E. Manolopoulos, and W. H. Miller, J. Chem. Phys.

115, 6317 (2001).

012912-9

http://dx.doi.org/10.1088/0305-4470/21/3/023
http://dx.doi.org/10.1088/0305-4470/21/3/023
http://dx.doi.org/10.1088/0305-4470/21/3/023
http://dx.doi.org/10.1088/0305-4470/21/3/023
http://dx.doi.org/10.1103/PhysRevLett.61.2729
http://dx.doi.org/10.1103/PhysRevLett.61.2729
http://dx.doi.org/10.1103/PhysRevLett.61.2729
http://dx.doi.org/10.1103/PhysRevLett.61.2729
http://dx.doi.org/10.1103/PhysRevLett.63.823
http://dx.doi.org/10.1103/PhysRevLett.63.823
http://dx.doi.org/10.1103/PhysRevLett.63.823
http://dx.doi.org/10.1103/PhysRevLett.63.823
http://dx.doi.org/10.1088/0951-7715/3/2/005
http://dx.doi.org/10.1088/0951-7715/3/2/005
http://dx.doi.org/10.1088/0951-7715/3/2/005
http://dx.doi.org/10.1088/0951-7715/3/2/005
http://dx.doi.org/10.1088/0305-4470/23/21/024
http://dx.doi.org/10.1088/0305-4470/23/21/024
http://dx.doi.org/10.1088/0305-4470/23/21/024
http://dx.doi.org/10.1088/0305-4470/23/21/024
http://dx.doi.org/10.1063/1.1665596
http://dx.doi.org/10.1063/1.1665596
http://dx.doi.org/10.1063/1.1665596
http://dx.doi.org/10.1063/1.1665596
http://dx.doi.org/10.1209/0295-5075/9/6/002
http://dx.doi.org/10.1209/0295-5075/9/6/002
http://dx.doi.org/10.1209/0295-5075/9/6/002
http://dx.doi.org/10.1209/0295-5075/9/6/002
http://dx.doi.org/10.1103/PhysRevLett.61.483
http://dx.doi.org/10.1103/PhysRevLett.61.483
http://dx.doi.org/10.1103/PhysRevLett.61.483
http://dx.doi.org/10.1103/PhysRevLett.61.483
http://dx.doi.org/10.1016/0375-9601(90)90692-H
http://dx.doi.org/10.1016/0375-9601(90)90692-H
http://dx.doi.org/10.1016/0375-9601(90)90692-H
http://dx.doi.org/10.1016/0375-9601(90)90692-H
http://dx.doi.org/10.1088/1751-8113/44/20/205304
http://dx.doi.org/10.1088/1751-8113/44/20/205304
http://dx.doi.org/10.1088/1751-8113/44/20/205304
http://dx.doi.org/10.1088/1751-8113/44/20/205304
http://dx.doi.org/10.1146/annurev.physchem.55.091602.094429
http://dx.doi.org/10.1146/annurev.physchem.55.091602.094429
http://dx.doi.org/10.1146/annurev.physchem.55.091602.094429
http://dx.doi.org/10.1146/annurev.physchem.55.091602.094429
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141257
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141257
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141257
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141257
http://dx.doi.org/10.1016/0301-0104(84)80039-7
http://dx.doi.org/10.1016/0301-0104(84)80039-7
http://dx.doi.org/10.1016/0301-0104(84)80039-7
http://dx.doi.org/10.1016/0301-0104(84)80039-7
http://dx.doi.org/10.1063/1.466320
http://dx.doi.org/10.1063/1.466320
http://dx.doi.org/10.1063/1.466320
http://dx.doi.org/10.1063/1.466320
http://dx.doi.org/10.1016/j.chemphys.2005.06.019
http://dx.doi.org/10.1016/j.chemphys.2005.06.019
http://dx.doi.org/10.1016/j.chemphys.2005.06.019
http://dx.doi.org/10.1016/j.chemphys.2005.06.019
http://dx.doi.org/10.1016/j.chemphys.2009.12.015
http://dx.doi.org/10.1016/j.chemphys.2009.12.015
http://dx.doi.org/10.1016/j.chemphys.2009.12.015
http://dx.doi.org/10.1016/j.chemphys.2009.12.015
http://dx.doi.org/10.1063/1.3451076
http://dx.doi.org/10.1063/1.3451076
http://dx.doi.org/10.1063/1.3451076
http://dx.doi.org/10.1063/1.3451076
http://dx.doi.org/10.1103/PhysRevLett.76.1990
http://dx.doi.org/10.1103/PhysRevLett.76.1990
http://dx.doi.org/10.1103/PhysRevLett.76.1990
http://dx.doi.org/10.1103/PhysRevLett.76.1990
http://dx.doi.org/10.1063/1.1346646
http://dx.doi.org/10.1063/1.1346646
http://dx.doi.org/10.1063/1.1346646
http://dx.doi.org/10.1063/1.1346646
http://dx.doi.org/10.1063/1.1479137
http://dx.doi.org/10.1063/1.1479137
http://dx.doi.org/10.1063/1.1479137
http://dx.doi.org/10.1063/1.1479137
http://dx.doi.org/10.1103/PhysRevE.88.062926
http://dx.doi.org/10.1103/PhysRevE.88.062926
http://dx.doi.org/10.1103/PhysRevE.88.062926
http://dx.doi.org/10.1103/PhysRevE.88.062926
http://dx.doi.org/10.1088/0951-7715/5/4/001
http://dx.doi.org/10.1088/0951-7715/5/4/001
http://dx.doi.org/10.1088/0951-7715/5/4/001
http://dx.doi.org/10.1088/0951-7715/5/4/001
http://dx.doi.org/10.1063/1.165898
http://dx.doi.org/10.1063/1.165898
http://dx.doi.org/10.1063/1.165898
http://dx.doi.org/10.1063/1.165898
http://dx.doi.org/10.1103/PhysRevE.52.389
http://dx.doi.org/10.1103/PhysRevE.52.389
http://dx.doi.org/10.1103/PhysRevE.52.389
http://dx.doi.org/10.1103/PhysRevE.52.389
http://dx.doi.org/10.1103/RevModPhys.72.497
http://dx.doi.org/10.1103/RevModPhys.72.497
http://dx.doi.org/10.1103/RevModPhys.72.497
http://dx.doi.org/10.1103/RevModPhys.72.497
http://dx.doi.org/10.1063/1.467665
http://dx.doi.org/10.1063/1.467665
http://dx.doi.org/10.1063/1.467665
http://dx.doi.org/10.1063/1.467665
http://dx.doi.org/10.1088/0305-4470/17/4/020
http://dx.doi.org/10.1088/0305-4470/17/4/020
http://dx.doi.org/10.1088/0305-4470/17/4/020
http://dx.doi.org/10.1088/0305-4470/17/4/020
http://dx.doi.org/10.1103/PhysRevLett.65.2837
http://dx.doi.org/10.1103/PhysRevLett.65.2837
http://dx.doi.org/10.1103/PhysRevLett.65.2837
http://dx.doi.org/10.1103/PhysRevLett.65.2837
http://dx.doi.org/10.1103/PhysRevA.39.3776
http://dx.doi.org/10.1103/PhysRevA.39.3776
http://dx.doi.org/10.1103/PhysRevA.39.3776
http://dx.doi.org/10.1103/PhysRevA.39.3776
http://dx.doi.org/10.1063/1.1854634
http://dx.doi.org/10.1063/1.1854634
http://dx.doi.org/10.1063/1.1854634
http://dx.doi.org/10.1063/1.1854634
http://dx.doi.org/10.1080/00268979600100651
http://dx.doi.org/10.1080/00268979600100651
http://dx.doi.org/10.1080/00268979600100651
http://dx.doi.org/10.1080/00268979600100651
http://dx.doi.org/10.1063/1.1402992
http://dx.doi.org/10.1063/1.1402992
http://dx.doi.org/10.1063/1.1402992
http://dx.doi.org/10.1063/1.1402992



