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Dynamics of dc bus networks and their stabilization by decentralized delayed feedback
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The present paper deals with the dynamics of bus networks, which consist of several identical dc bus systems
connected by resistors. It is analytically guaranteed that the stability of a stand-alone dc bus system is equivalent
to that of the networks, independent of the number of bus systems and the network topology. In addition, we
show that a decentralized delayed-feedback control can stabilize an unstable operating point embedded within
the networks. Moreover, this stabilization does not depend on the number of bus systems or the network topology.
A systematic procedure for designing the controller is presented. Finally, the validity of the analytical results is
confirmed through numerical examples.
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I. INTRODUCTION

In recent years, there has been growing interest in the
behavior of power-grid networks from academic and industrial
viewpoints [1–5]. Networks can be classified into two types:
alternating-current (ac) networks and direct-current (dc) net-
works [6]. With the recent increases in dc loads, dc generation,
and dc storage thanks to recent progress in power electronics,
dc bus systems are widely expected to play an important
part in future electronic power systems [6]. Unfortunately,
the dc bus system has a serious drawback, namely the bus
line voltage has the potential to be unstable if constant power
loads (CPLs), which continuously consume the same amount
of power, are connected to the bus line. Note that a number of
present and future power loads will be CPLs [7]. Therefore, it
is strongly desired to overcome the above-described drawback
in power electronics. A number of investigations have been
conducted to analyze and overcome this drawback from
the viewpoints of power electronics [8–15]. However, few
studies have investigated this drawback from the viewpoint
of nonlinear dynamics.

In a previous study, we demonstrated that bifurcation theory
analytically clarifies the dynamics of a simplified dc bus
system [16]. Furthermore, a delayed-feedback control [17] was
used to overcome the drawback regarding potential instability.
The application of a delayed-feedback control to the simplified
dc bus system allows us to noninvasively stabilize an unstable
operating point without using the location of the point. In
addition, the stability of the operating point is maintained by
a small control signal even when a system parameter (e.g.,
the consumption power of the CPL) is varied very slowly.
Although our previously proposed method would seem to be
a candidate for overcoming the above-mentioned drawback, it
can be used only in a simplified stand-alone dc bus system.
However, in real situations, bus systems consist of multiple
power sources and loads [18–22], which suggests that the
previously proposed method cannot be used in such real
situations.

The present paper analytically investigates the dynamics
of bus networks, which consist of several identical dc bus
systems connected by resistors (see Fig. 1). We show that
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some features of the Laplacian matrix simplify the stability
analysis of a spatially uniform operating point. The analytical
results on stability are numerically confirmed using a bus
network, the topology and coupling strength of which are
sequentially switched. In addition, numerical simulations
are performed for more practical situations, in which each
bus system has different parameters. Furthermore, we apply
a decentralized delayed-feedback control [23] to dc bus
networks to stabilize a spatially uniform unstable operating
point. The systematic procedure for designing the controller
parameters is provided. The main advantage of this controller
is that the designed controller stabilizes the unstable operating
point independently of its network topology and coupling
strength. The performance of the designed controller for bus
networks is confirmed through numerical simulations.

II. DC BUS NETWORKS

This section considers dynamic behavior of bus networks.
First, the circuit equation of bus networks will be transformed
into simple dimensionless dynamical systems. Second, the
stability of spatially uniform equilibrium, i.e., the operating
point, will be analytically investigated. Finally, the validity
of the analytical results will be confirmed through numerical
simulations.

A. Dynamical systems

Let us consider the dc bus network illustrated in Fig. 1.
Each bus system has a dc voltage source with voltage E,
resistance R, inductance L, and capacitance C. The source
supplies the electric power to its load (i.e., CPL). These
bus systems are coupled by the connection resistance r . The
voltage and current of bus system n are denoted by vn(t)
and in(t), respectively. Note that their product, the consumed
power, is always constant as P = vn(t)in(t) for any t � 0 and
for any n ∈ {1, . . . ,N}, where N is the number of bus systems.

The circuit equation of a bus network is described as
follows:

C
dvn(t)

dt
= − P

vn(t)
+ in(t) + 1

r

N∑
m=1

cnm{vm(t) − vn(t)},
(1)

L
din(t)

dt
= −vn(t) − Rin(t) + E,
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FIG. 1. Schematic diagram of a dc bus network.

for n = 1, . . . ,N . Here cnm represents the network topology.
If system n is connected to system m with a connection
resistance r , then cnm = cmn = 1, otherwise cnm = cmn = 0.
Furthermore, we have cnn = 0. The transformation of system
variables, time, and parameters, i.e.,

xn := 1

E
vn(t), yn := L

CRE
in(t), τ := t

RC
,

a := PR

E2
, b := R2

L/C
, ε := R

r
,

(2)

allows us to reduce the circuit equation of Eq. (1) to a
dimensionless model:

ẋn = − a

xn

+ byn + u(ε)
n ,

ẏn = −xn − byn + 1, (3)

where the connection signal is described by

u(ε)
n := ε

N∑
m=1

cnm(xm − xn). (4)

Note that dimensionless model (3) is suitable for the investi-
gation of dynamics from the viewpoint of nonlinear dynamics,
because the six circuit parameters (R,L,C,r,E,P ) in circuit
equation (1) are reduced to three parameters (a,b,ε).

Each bus system (3) without connection (i.e., ε ≡ 0) has two
fixed points, p+ := [x∗

+,y∗
+]T and p− := [x∗

−,y∗
−]T , where

x∗
± = 1

2
(1 ± √

1 − 4a), y∗
± = a

bx∗±
.

Note that bus network (3) with a connection (i.e., ε > 0) has
two spatially uniform equilibrium states:

X∗
± = [ pT

± pT
± · · · pT

±]
T
.

The error states from these equilibrium states, i.e.,

X := [x1 y1 · · · xN yN ]T − X∗
±, (5)

are governed by the linear system,

Ẋ = [IN ⊗ A(x∗
±) − εL ⊗ J]X, (6)

where

A(x∗
±) :=

[
a/(x∗

±)2 b

−1 −b

]
, J :=

[
1 0
0 0

]
.

Here IN is the N -dimensional unit matrix. L is the Laplacian
matrix L = {Lnm} := D − C with the adjacency matrix C =
{cnm} and with the degree matrix D = diag(d1, . . . ,dN ), dn =∑N

m=1 cnm. Moreover, A(x∗
±) denotes the Jacobi matrix for

each bus system (3) without a connection at the fixed point p±.
The stability of p± is equivalent to that of matrix A(x∗

±). Note
that the stability of equilibrium state X∗

+ (X∗
−) is equivalent to

that of linear system (6) with A(x∗
+) (A(x∗

−)).

B. Stability analysis

In this subsection, we analyze the stability of the equilib-
rium states X∗

±. The Laplacian matrix L is a real symmetric
matrix. Then there exists a diagonal transformation matrix T
such that T−1 LT = diag(λ1, . . . ,λN ). Note that the eigenval-
ues of L, λi (i = 1, . . . ,N), always satisfy the following [24]:

0 = λ1 � λ2 � · · · � λN. (7)

Define a new variable Z = [zT
1 · · · zT

N ]
T

:= (T ⊗ I2)−1 X so
linear system (6) can be rewritten as

Ż = (T ⊗ I2)−1[IN ⊗ A(x∗
±) − εL ⊗ J](T ⊗ I2)Z

= [IN ⊗ A(x∗
±) − εdiag(λ1, . . . ,λN ) ⊗ J]Z. (8)

Since linear system (8) is diagonalized, we see that this system
is stable if and only if all of the following systems are stable:

żi = [A(x∗
±) − ελi J]zi , (i = 1, . . . ,N). (9)

This fact leads us to obtain the following lemma.
Lemma 1. The spatially uniform equilibrium state X∗

− of
bus network (3) cannot be stabilized for any topology L and
any coupling strength ε > 0. Furthermore, if the fixed point
p+ of bus system (3) without a connection (ε ≡ 0) is unstable,
the state X∗

+ cannot be stabilized for any topology L and any
coupling strength ε > 0.

Proof. From λ1 = 0 in Eq. (7), systems (9) include ż1 =
A(x∗

±)z1, which does not depend on L and ε. This suggests
that if A(x∗

±) is unstable, then the state X∗
± is unstable for any

L and for any ε. Since A(x∗
−) is always unstable [16], the state

X∗
− is unstable, independent of L and ε. Furthermore, note

that if A(x∗
+) is unstable, the state X∗

+ is unstable, independent
of L and ε. �

Lemma 1 restricts our attention to dynamics around the state
X∗

+. Thus, the present paper will deal only with the dynamics
of systems (9) with A(x∗

+),

żi = [A(x∗
+) − ελi J]zi ,

=
[
a∗ − ελi b

−1 −b

]
zi , (i = 1, . . . ,N), (10)

where the parameter a∗ is given by

a∗ := a

(x∗+)2 = 4a

(1 + √
1 − 4a)2

. (11)

Systems (10) yield the following.
Theorem 1. The spatially uniform equilibrium state X∗

+ of
bus network (3) is stable for any topology L and any coupling
strength ε > 0 if and only if the fixed point p+ of bus system
(3) without connection (ε ≡ 0) is stable.
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Proof. The characteristic polynomial of system i in Eq. (10)
is given by h(s,λi) = s2 + a1(λi)s + a0(λi), where a1(λi) :=
b − a∗ + ελi and a0(λi) := b(1 − a∗ + ελi). The necessary
and sufficient condition for h(s,λi) to be stable is that both
a1(λi) > 0 and a0(λi) > 0 hold. By simple manipulation, this
condition can be rewritten as follows:

a∗ − ελi < min {1,b}. (12)

From inequality (12) with condition (7), the stability of X∗
+ is

equivalent to that of p+, independent of L and ε > 0. �
Theorem 1 guarantees that the stability of the operating

point p+ in each stand-alone bus system remains even if the
systems are coupled by the connection resistance. Therefore,
it can be concluded that, for X∗

+ to be stable independent of the
network topology and the connection resistance, we need only
design the parameters a and b in accordance with our previous
paper [16], such that p+ in each stand-alone bus system is
stable.

C. Numerical examples

In this subsection, we confirm the validity of the analytical
results through numerical simulations. Let us consider five
different bus networks, as illustrated in Fig. 2. The parameters
a and b are fixed such that p+ in a stand-alone bus system
is stable: a = 0.10 and b = 0.20 [16]. Figure 3 shows the
time-series data for xn and u(ε)

n in a bus network for which
the topology and coupling strength are sequentially switched
from Network 0 to Network 4. Note that all of the system
states (xn,yn) are randomly changed with small amplitude
0.03 at every instance of switching because such perturbations
are required in order to confirm the stability of X∗

+ through
numerical simulations. All xn and u(ε)

n converge on x∗
+ =

0.8873 and 0, respectively. Thus, we may say that this
numerical result supports Theorem 1.

FIG. 2. (Color online) Five different bus networks: Network 0
(no connection), Network 1 (ring network on weak coupling),
Network 2 (ring network with two shortcuts on strong coupling),
Network 3 (chain network on weak coupling), and Network 4
(network 3 with bus system 4 on strong coupling).

0.85

0.9

0.95

0 500 1000 1500
−0.4

0

0.4

τ

Network 0 Network 1 Network 2 Network 3 Network 4

u( ε
)

x n

x1,2,3,4,5

n

FIG. 3. Time-series data for xn and u(ε)
n (n = 1, . . . ,5) in a bus

network for which the topology and coupling strength are sequentially
switched from Network 0 to Network 4: ε = 0.1 for Networks 1 and
3 and ε = 1.0 for Networks 2 and 4.

Note that the numerical results were obtained under the
assumption that the parameters (a,b,ε) in each bus system are
identical. Although this assumption simplifies the analysis, it
is not practical for real bus networks. Next we consider two
situations in which (a) all of the bus systems have different
parameters with a margin of ±p × 100% errors and (b) one of
bus systems has an extremely large a (i.e., the stand-alone bus
system has an unstable p+), whereas the other bus systems
have a small a (i.e., the others have a stable p+).

For situation (a), the parameters an, bn, and
εn of system n are randomly chosen from among
an ∈ [(1 − p)ā,(1 + p)ā],bn ∈ [(1 − p)b̄,(1 + p)b̄],εn ∈
[(1 − p)ε̄,(1 + p)ε̄], where (ā,b̄,ε̄) are the nominal values.
Figure 4 shows the parameter region of stable spatially uniform
equilibrium state X∗

+ with parameters mismatch p = 0.2
(20%). The gray region indicates the nominal parameter set
(ā,b̄) where a bus network does not diverge even when its
topology and coupling strength are sequentially switched as

b

a

HP

SN DZ

0 0.5 1
0

0.1

0.2

0.3

FIG. 4. Parameter region of stable, spatially uniform equilibrium
state X∗

+ with parameter mismatch p = 0.2 (20%). Gray region:
(ā,b̄), where a bus network switched as shown in Fig. 3 does not
diverge. HP, Hopf bifurcation; SN, saddle-node bifurcation; DZ,
double-zero bifurcation.
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FIG. 5. Schematic diagram of a bus system network: system 1
has a high CPL a1 > aHP and the other systems have low CPLs a2 =
a3 = a4 = a5 < aHP. All of the bus systems have b1 = · · · = b5 < 1.

shown in Fig. 3. According to our previous result [16], for
no parameter mismatch p = 0, a stand-alone bus system has
stable p+ if a < aHP for b � 1 and a < aSN for b � 1, where
aHP and aSN denote the Hopf (HP) and saddle-node (SN)
bifurcation points, respectively. The region with parameter
mismatch shrinks in comparison with the region with no
parameter mismatch. This is because for a nominal parameter
set (ā,b̄) just below bifurcation curves, some buses can have
the parameter set (an,bn) above the curves due to random
choice. On the other hand, this numerical result suggests that
our previous result [16] is useful for design of the nominal
parameters (ā,b̄,ε̄) such that the bus system networks are
stable even with some parameter mismatch.

For situation (b), as shown in Fig. 5, we assume that bus
system 1 has a high CPL, a1 > aHP = 5/36, and that the other
systems have low CPLs, a2 = a3 = a4 = a5 = 0.1 < aHP. The
other parameters are set to b1 = · · · = b5 = 0.2 and ε1 =
· · · = ε5 = 0.05. Furthermore, all of the bus systems except
system 1 are completely connected (i.e., all-to-all connection:
see the solid lines in Fig. 5), and bus system 1 is connected to
some of the systems (see the dotted lines in Fig. 5). Now let us
consider the network behavior through numerical simulations.
Figure 6 shows the time-series data of xn with a step-by-step
increase of a1. Bus system 1 is connected only to system 2. In
order to numerically investigate the stability, all of the states
are randomly disturbed with small amplitude 0.03 at instances
when a1 jumps to the next higher level. As can be seen, x1

decreases with an increase in a1, and all the states converge
on their operating points, even with the random disturbance.
All of the states eventually diverge when a1 reaches â1. Note
that the network system is stable for any a1 ∈ [aHP,â1]. This
suggests that stand-alone bus system 1, which has an unstable
fixed point, can be stabilized with the help of the other stable
bus systems. In other words, we may say that all of the bus
systems behave cooperatively.

In order to investigate the cooperative effect of the coupling
strength ε and the degree of system 1 (i.e., the number of
connections to system 1: d1 := ∑N

n=1 c1n) on stability of the
network, we numerically estimate the critical parameter value
â1 (see Fig. 6), under which the network system does not
diverge, with respect to ε and d1, as shown in Fig. 7. The critical
parameter value â1 increases as ε and d1 increase. For small
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x n x1
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divergence

a1

a 1

aHP

FIG. 6. (Color online) Time-series data of states xn (n =
1, . . . ,5) and parameter a1 for the bus system network shown in
Fig. 5 (a2 = · · · = a5 = 0.1 < aHP = 5/36, b1 = · · · = b5 = 0.2 <

1, ε1 = · · · = ε5 = 0.05). All of the states are randomly disturbed
with small amplitude 0.03 at instances when a1 jumps to the next
higher level. Bus system 1 is connected only to system 2.

ε, the critical value â1 is between aHP and aSN, which implies
that the unstable operating point of system 1 is stabilized due
to the connections to the stable bus systems. For large ε, â1

exceeds aSN, i.e., the stable operating point of system 1 is
induced by such a connection. This result demonstrates that
the cooperative performance can be enhanced by using high ε

and d1.

III. STABILIZATION OF DC BUS NETWORKS

This section will show that unstable X∗
+ in bus networks can

be stabilized by a decentralized delayed-feedback control. A
systematic procedure for designing the controller is provided.
The performance of the designed controller is examined
through numerical simulations.

ε

a 1

d1=1

d1=4

d1=2

Divergence

aHP

aSN

No divergence

10−2 10−1 100 101

0.2

0.3

FIG. 7. Critical parameter value â1 as a function of coupling
strength ε and the degree of system 1, d1. The parameters and the
numerical procedure are the same as in Fig. 6.
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FIG. 8. Schematic diagram of a dc bus system with delayed
feedback

A. Decentralized delayed feedback

Let us review the analytical results for a stand-alone bus
system (3) with r ≡ +∞ (i.e., ε ≡ 0) [16]. For an impedance√

L/C of less than R (i.e., b < 1), an increase in the
consumption of the load P (i.e., large a) causes the stable
fixed point p+ to become unstable via the Hopf bifurcation.

Lemma 1 suggests that if stand-alone bus systems have
such unstable p+, the spatially uniform equilibrium state X∗

+
in bus networks must be unstable. This situation indicates that
the power sources cannot supply electric power to the loads
in networks. In order to avoid such a supply problem, we will
attempt to stabilize the unstable X∗

+.
The decentralized delayed-feedback control,1 an extended

version of a popular delayed-feedback control [17,25] for
stabilizing unstable periodic orbits [26,27] and unstable fixed
points [28,29] in chaotic systems, will be applied to each
bus system in networks, as shown in Fig. 8. Circuit equation
(1) with control current i(u)

n (t), which is injected from the
delayed-feedback controller to the bus system, is described as
follows:

C
dvn(t)

dt
= − P

vn(t)
+ in(t)

+1

r

N∑
m=1

cnm{vm(t) − vn(t)} + i(u)
n (t),

L
din(t)

dt
= −vn(t) − Rin(t) + E,

where i(u)
n (t) is given by

i(u)
n (t) = 1

rk

{vn(t − �) − vn(t)} .

Here vn(t − �) represents the past bus voltage in bus system
n with delay time � � 0. Transformations (2) and

xn,T := 1

E
vn(t − �), T := �

RC
, k := R

rk

,

1The decentralized delayed-feedback control for coupled map
lattices was proposed in our previous study [23], whereas that for
continuous-time networks, to the best of our knowledge, has not been
proposed in the field of nonlinear science and control.

yield a dimensionless model,

ẋn = − a

xn

+ byn + u(ε)
n + u(k)

n ,

(13)
ẏn = −xn − byn + 1,

where the control signal is given by

u(k)
n := k(xn,T − xn). (14)

We use delayed-feedback controller (14) for the following
reasons. The control signal u(k)

n for maintaining the stable state
X∗

+ is zero due to its noninvasive property. The location of X∗
+

in networks never moves for any network topology and any
connection resistance, even if controller (14) works.

For now, we investigate the stability of X∗
+ in networks

consisting of dimensionless models (13) with controllers (14).
Define an error state by Eq. (5) and

XT := [x1,T y1,T · · · xN,T yN,T ]T − X∗
+,

so the dynamics around X∗
+ takes the form

Ẋ = [IN ⊗ {A(x∗
+) − k J} − εL ⊗ J]X + [IN ⊗ (k J)]XT .

(15)

Using the variables Z defined in the preceding section and
ZT := (T ⊗ I2)−1 XT , we rewrite linear system (15) as

Ż = [IN ⊗ {A(x∗
+) − k J} − εdiag(λ1, . . . ,λN ) ⊗ J]Z

+[IN ⊗ (k J)]ZT .

Since this system is diagonalized, the necessary and sufficient
condition for this system to be stable is that all

żi=
[
a∗ − ελi − k b

−1 −b

]
zi +

[
k 0
0 0

]
zi,T , (i = 1, . . . ,N),

(16)

be stable, where zi,T := zi(τ − T ). The characteristic
quasipolynomial of linear systems (16) is given by

G(s,T ) =
N∏

i=1

g(s,T ,ελi), (17)

where

g(s,T ,�γ ) : = s2 + (b − a∗)s + b(1 − a∗)

+(s + b){�γ + k(1 − e−sT )}. (18)

We see that if g(s,T ,�γ ) is stable for any �γ ∈ [0,ελ̂], then
the state X∗

+ is guaranteed to be stable for any L, the maximum
real eigenvalue λN of which is less than or equal to λ̂. Remark
that a quasipolynomial is said to be stable if and only if all its
roots are in the open left half of the complex plane.

B. Design of the controller

In this subsection, we present a systematic procedure for
designing the feedback gain k > 0 and the delay time T > 0
such that the state X∗

+ becomes stable2 for any L and any

2Note that there is no upper bound for ε � 0 and λN � 0, because
we do not restrict the value of r , the number N , or the network
topology L.
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ε > 0. This can be reduced to the problem of designing k > 0
and T > 0 such that g(s,T ,�γ ) is stable for any �γ � 0.

Here recall that our previous study [16] provided a
systematic procedure for designing k > 0 and T > 0 such that
the unstable fixed point p+ in a stand-alone bus system, the
characteristic quasipolynomial of which is given by g(s,T ,0),
becomes stable as follows.

Theorem 2 (Refs. [16,30]). Consider g(s,T ,0), characteris-
tic quasipolynomial (18) with �γ = 0, under the assumption

b < a∗ < 1. (19)

If k satisfies all of the inequalities,

d1 := b2 + a∗2 − 2b − 2a∗k < 0,

d2 := d2
1 − 4b2(1 − a∗)(1 − a∗ + 2k) > 0,

d3 := ψ1

ω1
− ψ2

ω2
< 0,

(20)

where

ω1 : =
√

−d1 − √
d2

2
, ω2 :=

√
−d1 + √

d2

2
,

ψ1,2 : = Arg

[
k(b + jω1,2)

b(1 − a∗ + k) − ω2
1,2 + jω1,2(b − a∗ + k)

]
,

then there exist T such that g(s,T ,0) is stable. In particular,
g(s,T ,0) is stable if and only if T is within one of the intervals
as follows:

T ∈
(

ψ1 + 2πl

ω1
,
ψ2 + 2πl

ω2

)
,

l = 0, . . . ,

⌊
ψ2ω1 − ψ1ω2

2π (ω2 − ω1)

⌋
,

(21)

under condition (20). Here Arg[s] ∈ [0,2π ) and 	r
 represent
the principal argument of a complex number s and the largest
integer not greater than r for a real number r, respectively. j

represents the imaginary unit.
Inequality (19) is the necessary and sufficient condition for

A(x∗
+) to have the two unstable eigenvalues. This condition

indicates the situation in which the fixed point p+ in the
stand-alone bus system is unstable. Furthermore, even though
g(s,T ,0) with designed k and T is stable, we cannot guarantee
the stability of g(s,T ,�γ ), which describes the stability of X∗

+
in controlled bus networks. Thus, we present the following
lemma.

Lemma 2. If there exist no ω � 0 and �γ > 0 such that,
with k and T designed by Theorem 2, g(jω,T ,�γ ) = 0 holds,
then g(s,T ,�γ ) with the designed k and T is stable for any
�γ > 0. �

Proof. Since g(s,T ,0) with k and T designed by Theorem
2 is stable, all of the roots of g(s,T ,0) = 0 are within the open
left half complex plane. The destabilization of g(s,T ,�γ ) for
a given �γ > 0 corresponds to the fact that at least one of the
roots moves from left to right. Thus, if there exist no ω � 0
and �γ > 0 such that g(jω,T ,�γ ) = 0 holds, no root of
g(s,T ,�γ ) = 0 moves from the left to the right for any �γ >

0, which indicates that all of the roots of g(s,T ,0) = 0 remain
within the open left half complex plane for any �γ > 0. �

A simple procedure for checking the condition in Lemma
2 is provided below.

Lemma 3. For k and T designed by Theorem 2, if there
exists no ω > 0 such that both

f1(ω) := ω3 + ωb(b − 1) + k(b2 + ω2) sin ωT = 0, (22)

f2(ω) := ω(b − a∗) + ωk(1 − cos ωT ) + bk sin ωT < 0,

(23)

hold, then g(s,T ,�γ ) is stable for any �γ � 0.
Proof. The condition in Lemma 2 is equivalent to the fact

that there exist no ω � 0 and �γ > 0 with the designed k and
T such that

1

b
Re[g(jω,T ,0)] = −�γ

(24)
1

ω
Im[g(jω,T ,0)] = −�γ,

are satisfied. Note that, for ω = 0, there exists no �γ satisfying
Eq. (24). Thus, we need only consider ω > 0. For common
�γ > 0 in the above two equations, the above fact can be
reduced to the fact that there exists no ω > 0 for

ωRe[g(jω,T ,0)] = bIm[g(jω,T ,0)] < 0, (25)

to be satisfied. The equality and the inequality in condition
(25) are rewritten as Eq. (22) and inequality (23), respectively.
Thus, if ω such that equality (22) and inequality (23)
both hold does not exist, there exists no ω > 0 satisfying
condition (25). �

Based on these lemmas, we can easily obtain our main
result.

Theorem 3. Design k and T in controller (14) according to
Theorem 2. If there exists no ω > 0 such that both conditions
(22) and (23) are satisfied, the state X∗

+ in bus networks (13)
with controllers (14) is stable for any topology L and any
coupling strength ε > 0.

Proof. Since it is clear from Theorem 2 and Lemmas 2 and
3, this proof is omitted. �

Corollary 1. For a given a ≡ ag and b, design k and T in
controller (14) according to Theorem 3. Then the state X∗

+
in bus networks (13) with controllers (14) is stable for any
a ∈ (0,ag], any topology L, and any coupling strength ε > 0.

Proof. Note that g(s,T ,�γ ) in Eq. (18) can be rewritten as

g(s,T ,�γ ) : = s2 + (b − a∗ + �γ )s + b(1 − a∗ + �γ )

+k(s + b)(1 − e−sT ). (26)

Equation (11) suggests that a∗ decreases monotonically with
decreasing a for a ∈ (0,1/4). According to Eq. (26), a decrease
in a is equivalent to an increase in �γ . Since Lemma 3
guarantees the stability of g(s,T ,�γ ) for any �γ � 0, it is
obvious that, for a given a ≡ ag , k and T designed by Theorem
3 are valid for any a ∈ (0,ag]. �

Now let us provide a systematic procedure for the design
of k and T based on our analytical results.

Step 1: The parameters a ≡ ag and b are given, but the
topology L and the coupling strength ε > 0 are unknown.

Step 2: Design k and T according to Theorem 2.
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k

T

g(s, T, 0): stable

(k, T )=(0.10, 5.00)

0 0.2 0.4
0

20

40

FIG. 9. (Color online) Boundary curves of T plotted with respect
to k for g(s,T ,0) to be stable (a = 0.17,b = 0.20). Thin black (Bold
red) line: lower (upper) stable intervals of T in Eq. (21).

Step 3: Plot f1(ω) and f2(ω) using the designed k and T . If
there exists no ω > 0 such that both f1(ω) = 0 and f2(ω) < 0
hold, then the state X∗

+ with the designed k and T is stable
for any a ∈ (0,ag], any topology L, and any coupling strength
ε > 0.

C. Numerical examples

In this subsection, we confirm the validity of our analytical
results through numerical simulations. Let us fix the parameter
b = 0.2 throughout this subsection. For a stand-alone bus
system, an increase in parameter a destabilizes the stable
fixed point p+ at a = aHP = 5/36 via the Hopf bifurcation,
and then p+ vanishes at a = aSN = 1/4 via the saddle-node
bifurcation [16]. We now focus on the unstable fixed point p+
at a = ag ≡ 0.17 ∈ [aHP,aSN].

The controller parameters k and T are now designed in
accordance with the above steps. Step 1: The parameters
a = ag ≡ 0.17 and b = 0.20 are given. Step 2: We confirm
that assumption (19), i.e., 0.20 < 0.2774 < 1, holds. The pa-
rameters, a = 0.17, a∗ = 0.2774, and b = 0.20 are substituted
into inequalities (20), and then the polynomials d1,2,3 have
only k as a variable. The stable intervals of T are obtained
from Eq. (21) if inequalities (20) hold (see Fig. 9). The gray
regions are the parameter sets in which g(s,T ,0) is stable.
We set (k,T ) = (0.10,5.00) [16]. Step 3: f1(ω) and f2(ω)
with (k,T ) = (0.10,5.00) are plotted in Fig. 10. Note that
f1(ω) = 0 has an unique root (i.e., • in Fig. 10), but the root
does satisfy f2(ω) < 0. As a result, we can guarantee that X∗

+
with (k,T ) = (0.10,5.00) is stable for any a ∈ (0,0.17], any
topology L, and any coupling strength ε > 0.

Now we consider the same situation as in Fig. 3, except that
a = 0.17. Figure 11 shows the time-series data of xn, u(ε)

n , and
u(k)

n on the switched bus network with decentralized delayed-
feedback controller (14). All of the states xn are stabilized
on x∗

+ = 0.7828, and all of the connection signals u(ε)
n and

the control signals u(k)
n converge on 0. This numerical result

indicates that controller (14) designed as described in the above
steps works well in the numerical simulations.

Let us investigate the dynamic behavior of the controlled
bus network with parameter mismatch. We now consider
situation (a) in Sec. II C. The parameters, an, bn, and εn, are

ω

f 1,
2(
ω

)

f1(ω)

f2(ω)

0 2
−0.1

0

0.1

0.2

FIG. 10. Functions f1(ω) and f2(ω) plotted with respect to ω > 0
for designed (k,T ) = (0.10,5.00) (a = 0.17,b = 0.20). There exists
no ω such that both f1(ω) = 0 and f2(ω) < 0 hold.

randomly chosen with nominal values, ā = 0.17, b̄ = 0.20,
and ε̄ = 0.1 or 1.0, and with p = 0.1 (10% error). As shown in
Fig. 12, the states xn are stabilized in the spatially nonuniform
equilibrium state. In contrast, all of the control signals u(k)

n

converge on 0 due to its noninvasive property. We may
conclude that decentralized delayed-feedback controller (14)
is robust against parameter mismatch.

Here we focus on the situation in which bus sys-
tem 1 has a slow time-varying CPL, a1 = 0.17 +
0.15 sin 2π (τ − 100)/400, and the other systems have a con-
stant CPL, a2 = · · · = a5 = 0.17, on the bus system network
shown in Fig. 5 with decentralized delayed-feedback controller
(14). The other parameters are fixed at b1 = · · · = b5 = 0.2
and ε = 1.0. Bus system 1 is connected to bus systems 2 and
3. Figure 13 shows the behavior of the bus network. Parameter
a1 is fixed at a1 = 0.17 until τ = 100 and varies from τ = 100.
Since parameter a1 varies with large amplitude, it often
exceeds aSN, where a stand-alone bus system 1 has no fixed

0.75

0.8

−0.1
0

0.1

0 500 1000 1500
−0.01

0

0.01

τ

Network 0 Network 1 Network 2 Network 3 Network 4

u( ε
)

x n
u(k

)

x1,2,3,4,5

n
n

FIG. 11. Time-series data of xn, u(ε)
n , u(k)

n (n = 1, . . . ,5) of
the switched bus network (a = 0.17,b = 0.20) with decentralized
delayed-feedback controller (14) (k = 0.10,T = 5.00). The situation
is the same as in Fig. 3, except that a : 0.10 → 0.17 and k : 0 → 0.10.
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FIG. 12. Time-series data of xn, u(ε)
n , u(k)

n (n = 1, . . . ,5) of the
switched bus network (ā = 0.17, b̄ = 0.20, ε̄ = 0.1 or 1.0) with
parameter mismatch p = 0.1 (10% error). The situation is the same
as in Fig. 11, except for parameter mismatch.

point. In addition, the other parameters a2 = · · · = a5 = 0.17
exceed aHP, where a stand-alone bus system has the unstable
fixed point p+. Despite such a severe situation, controller (14)
traps the wandering spatially nonuniform state with a small
control signal.

Let us summarize the numerical results. The decentralized
delayed-feedback controller designed using our systematic
procedure enhances the stability of the spatially uniform
equilibrium state in bus networks. The controller enhances
the stability of the spatially nonuniform equilibrium state

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0 500 1000
−0.01

0

0.01

τ

a 1
x n

u(k
)

x1

x2,3

x4,5

aHP

aSN

n

FIG. 13. (Color online) Time-series data of xn, a1, and u(k)
n (n =

1, . . . ,5) of the controlled bus network (k = 0.10,T = 5.00), with
a slow time-varying CPL a1 = 0.17 + 0.15 sin 2π (τ − 100)/400,
shown in Fig. 5. Bus system 1 is connected to bus systems
2 and 3.

with parameter mismatch. The controller tracks the spatially
nonuniform equilibrium state with a slow time-varying CPL.
These results indicate that the controller has two advantages.
First, since control law (14) does not use information about
the equilibrium state, there is no need to obtain accurate
values of the system parameters. This is a useful advantage
for the practical situation in which there is a lack of accurate
information on bus systems. Second, controller (14) consumes
only a small amount of control energy for stabilizing or
tracking states due to its noninvasive property. This advantage
may allow us to implement controller (14) with a small size
and a low cost.

IV. DISCUSSION

We now review previous studies related to the results of
the present study. Huddy and Skufca reported that delay
connections can induce the stabilization of an operating
point in coupled dc bus systems [22]. This stabilization is
referred to as time-delay-induced amplitude death, which is
a well-known phenomenon in the field of nonlinear science
[31–34]. The stability of amplitude death is closely related
to that of our decentralized delayed-feedback controller (14).
The delay connections for amplitude death can be realized
by replacing xm with xm,T in connection signal (4); thus,
the characteristic quasipolynomial describing the stability of
uniform equilibrium state X∗

+ differs from quasipolynomial
(17). However, it should be noted that these quasipolynomials
have a common term g(s,T ,0). This term, dealt with in
Theorem 2, describes the stability of the fixed point p+ in
a stand-alone bus system controlled by delayed feedback [16].
Therefore, we notice that the stability of p+ with delayed
feedback is a necessary condition for stability of X∗

+ with
the delay connection and that with the decentralized delayed
feedback. Furthermore, one of the most interesting common
features of the time-delay-induced amplitude death and the
decentralized delayed-feedback control is that the time delay,
which is considered to be a destabilizing factor in the field of
control theory, is used as a stabilizing factor.

It is well known that the tracking filter, which is imple-
mented simply by RC in electronic circuits, can stabilize
unstable fixed points in stand-alone nonlinear systems [28,35].
This filter has been used for stabilization of an operating point
in stand-alone dc bus systems [7]. On the other hand, a simple
method for increasing capacitance C and that for connecting
an additional capacitor in parallel with C have been widely
used for such stabilization [9]. However, these methods tend
to require large capacitors, which are generally big, heavy, and
expensive. Therefore, they would not be suitable for industrial
applications with severe restrictions on space, weight, or cost.
In contrast, the decentralized delayed-feedback control does
not require large capacitors.

V. CONCLUSION

The present paper extended our previous study [16] to bus
networks. The stability of the operating point in a stand-alone
dc bus system is equivalent to that in networks for any
network topology and any coupling strength. The delayed-
feedback control was applied to every bus system, and an
unstable operating point embedded within the network was
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then stabilized. The controller parameters were systematically
designed based on stability analysis. Numerical simulations
were conducted in order to demonstrate the robustness of the
bus system networks with respect to parameter mismatch and
a slow-varying parameter.
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