PHYSICAL REVIEW E 91, 012909 (2015)

Interactions and collisions of discrete breathers in two-species
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The dynamics of static and traveling breathers in two-species Bose-Einstein condensates in a one-dimensional
optical lattice is modelled within the tight-binding approximation. Two coupled discrete nonlinear Schrodinger
equations describe the interaction of the condensates in two cases of relevance: a mixture of two ytterbium
isotopes and a mixture of #Rb and *' K. Depending on their initial separation, interaction between static breathers
of different species can lead to the formation of symbiotic structures and transform one of the breathers from
a static into a traveling one. Collisions between traveling and static discrete breathers composed of different
species are separated into four distinct regimes ranging from totally elastic when the interspecies interaction is
highly attractive to mutual destruction when the interaction is sufficiently large and repulsive. We provide an
explanation of the collision features in terms of the interspecies coupling and the negative effective mass of the

discrete breathers.
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I. INTRODUCTION

Bose-Einstein condensates have become a formidable tool
for studying basic fundamentals of atomic physics [1,2]. When
confined to an optical lattice they serve as an interesting analog
to a solid-state system [3,4], providing means to study solid-
state phenomena at an unprecedented level of parameter con-
trol. These include quantum phase transitions from the super-
fluid to Mott-insulator regimes [5], transport phenomena [6],
Anderson localization [7], low-dimensional systems [8], dis-
crete breathers [9], and solitons [10]. The latter can exist both
with or without a periodic potential, although a lattice environ-
ment makes it possible for solitons and discrete breathers to
exist even when the interactions in the BEC are repulsive (“gap
solitons”) [11-13]. Such states have been observed experimen-
tally in Ref. [14]. Several other methods have been proposed
in the literature, including the use of an additional harmonic
potential [15] and boundary dissipations [16], which could
also be used for nondemolition probing of these states [17].

The introduction of a second atomic species, i.e., the
creation of a binary mixture of Bose-Einstein condensates
leads to even richer physics. In a harmonic trap the two
species may be immiscible due to the interspecies interaction,
leading to phase separation [18,19]. In an effectively one-
dimensional environment, the repulsive interaction between
atoms of different species (“interspecies” interactions) during
the formation of the condensate can leave the mixture far
from its ground state [20,21]. The interspecies interactions
heavily influence the transport properties of a condensate in
a lattice [22,23]. Repulsive interactions enable the formation
and extend the stability region of the so-called symbiotic gap
solitons [24-26], i.e., two-species solitons localized together in
the same spot of the lattice. Somewhat counterintuitively, an at-
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tractive interspecies interaction may split the two overlapping
solitons [27].

So far most of the work has concentrated on the existence
of two-species solitons and their stability [24-32]. Without
a lattice potential, two-component (symbiotic) solitons were
found with attractive interspecies interaction [33]. Collision
of single-species solitons without a lattice potential have also
been shown to form symbiotic structures [34]. Collisions of
symbiotic breathers were studied in Ref. [35]. In this paper we
take a complementary approach: We start with well-defined
single-species discrete solitons (two traveling breathers or a
self-trapped state and a traveling breather, the first made of
one species and the other of the second species) far apart in the
lattice and simulate their collisions. For a single-species BEC
confined to a one-dimensional lattice collisions of traveling
breathers have been analyzed in detail in Ref. [36]. Such an
approach has also been used in the case of binary BECs in har-
monic traps [37,38]. We perform our simulations using exper-
imentally reachable conditions, with specific reference to two
feasible experiments of two-species BECs in optical lattices.

The first of these experiments of interest has been performed
in Kyoto where BECs of Yb atoms have been obtained
separately with isotopes "*Yb [39], '7°Yb [40], and '%8YDb
[41]. A stable mixture of the isotopes '®Yb and '"*Yb was
obtained [41], as well as a '7*Yb and '7°Yb mixture [42] which
is unstable due to the negative scattering length of the '7°Yb
component (see also Ref. [43]). The intra- and interspecies
scattering lengths of ytterbium isotopes have been measured
using data from one- [44] and two-color photoassociation spec-
troscopy [45] and are now well established. The rich isotope
structure of ytterbium enables mass tuning of the scattering
length. It has been shown that, unlike in alkali-metal species,
optical Feshbach resonances can be used to effectively change
the intraspecies scattering length [46—48], thus raising hope
for optical control of interactions between different isotopes,
especially that now their positions are known from interisotope
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photoassociation spectroscopy [49]. Three bosonic isotopes
of ytterbium, namely 9170174y have positive intraspecies
scattering lengths of the order of a few nanometers leading to
similar stable condensates. Since the isotope shifts are small
compared to the detuning of the far-off resonant trap (FORT),
the potential seen by different isotopes is basically identical.
Consequently, given the mass ratios also close to 1, this will
result in very similar tunneling rates.

Even though these three isotopes are similar in terms of the
single-species scattering length, the interspecies interactions of
different pairs of isotopes differ dramatically. The interaction
between a '°Yb and '7#Yb atoms is described by a large
negative scattering length of —27.3 nm, while for '®Yb and
179Yb it is positive and equal to 6.2 nm. Halfway between
these two is the case of '%®Yb and '"#Yb characterized by a
negligible scattering length of 0.13(18) nm, where the two
condensate species should essentially ignore each other.

An interesting mixture of heteronuclear BECs has been
obtained in an experiment of Thalhammer et al. [50], where
41K and ®’Rb atoms are condensed together in an optical lattice.
A remarkable property of this mixture is that the interspecies
scattering length a; , describing the effective interaction of
colliding potassium and rubidium atoms can be tuned over
a wide (both positive and negative) range using a magnetic
Feshbach resonance, while the single-species scattering length
remains positive for either species. This mixture is an example
of one with a large tunneling rate ratio, in contrast to the
ytterbium mixtures, where this ratio is close to 1.

We present an analysis of the interaction and collisional
behavior of discrete breathers in two-species BEC in op-
tical lattices in the tight-binding approximation which has
been successfully used to describe single-species experiments
[9,11,12,51]. In Sec. II the derivation of the model and an
estimate of the parameters are provided. Interaction of station-
ary breathers in close proximity to each other is described in
Sec. III. Collisions of traveling breathers and trapped states are
described in Sec. IV as a function of the interspecies coupling
parameter. Section V provides an explanation of the different
kind of collisions observed in the numerical simulations where
inelastic behavior is found in the mutually repulsive case and
elastic in the mutually attractive case. Finally, the Appendix
shows that the main results of the breather collisions and
interactions are robust to survive in a model where the spatial
variable is continuous rather than discrete.

II. THE TIGHT-BINDING APPROXIMATION APPLIED TO
A TWO-SPECIES BOSE GAS

We analyze the behavior of the two-species Bose gas
with the use of the tight-binding approximation, following
the treatment described in Ref. [23]. The time-dependent
Gross-Pitaevskii equations describing the dynamics of the two
species’ order parameters V; (where i = 1,2) read

= h? - - -
i, (7) = _2—mv2+U(r)+Zg,,j|\p,-(r)|2 W),
! j=1.2
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where the coefficients g; ; describe the effective mean-field
intra- and interspecies interactions and are given by

4 hza,-,j

, 2)
21,

8i,j =

where u; ; = (mi_1 —l—m;')’1 is the reduced mass of the
atomic pair and ¢; ; is the scattering length relevant in the
scattering properties of the species’ atoms.

The external potential confining the BECs is due to two
overlapping and counterpropagating laser beams that create
a standing wave in the axial direction and, as a result, a
periodic potential of depth V;;. The Gaussian profile of the
two laser beams gives rise to an approximately harmonic
off-axis confinement described by the frequencies w, ;. Thus
the external potential reads

Vi = Vo sin’(kx) + gmi;, (v +2°). 3)

Note that real optical lattices also have a shallow harmonic
potential superimposed in the axial direction, which we here
assume to have negligible effects. We also introduce the lattice
strengths s; = Vy;/Eg,;, where E,; = h2k2/2mi is the recoil
energy calculated for the lattice wavelength. The axial on-site
frequency of the lattice is then w; = /s;1ik*/m;.

Both order parameters obey the normalization condition
f d*F|¥;|? = N;, where N; denotes the total number of atoms
of the i-th species in the lattice.

If the lattice is strong enough, i.e., the trap depth is
sufficiently large, the condensate is well localized around
potential minima. For each of the mixture’s order parameters
we use the following ansatz [11,23,30]:

Wi =Y YOG —Fin), “)

where ¢; is an on-site wave function and 7; ,, is the location of
the n-th lattice site seen by the i-th species. When the atomic
interactions are weak, the on-site ground-state wave function
can be replaced by the ground-state harmonic oscillator wave
function in the off-axis direction and a Wannier function [52] of
the lowest band in the axial direction to account for tunneling.
Consequently, |, ,(¢)|> may be interpreted as the number of
i-th species atoms in the n-th lattice site as a function of time
and Y, 1Y, = N;.

Substituting this ansatz into the Gross-Pitaevskii equations
and dropping all terms mixing different lattice sites except for
the ones that describe tunneling (see Refs. [11,23]) one obtains

ih‘ﬁi,n = —Ji(Win-1+ VYint+1)
+ Qi[> + 22¥s—inl® + €00, (S)

where

o e o —n? -
Ji = /d3r¢i(" —Fin) <%V2 + Vi) ¢i(r —ring1) (6)
is the hopping integral describing the tunneling of the i-th
species and is proportional to the intersite tunneling rate y; =

Ji/h, while €, = [ i — Fi ) (52 V2 + Vi(F — Fin)
is the on-site chemical potential. The self- and mutual inter-
action is described by the parameters A;; = g;; [ d°F|¢; (F)[*

and A1 = g1 [ d°Flg1(F)1*|2(F)|%, respectively.
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A. Normalization

In order to move towards a more standard and compu-
tationally efficient form of two coupled discrete nonlinear
Schrodinger equation (DNLSE), we introduce

o, 6T
ﬁwi,n eXp —lh—y1 . (7)

Zin =
T = yit, 3
to obtain

iizl,n = AvilzialPzin + A1,2&|22,n|221,n
dt N1

—Z1,n—1 — Z1,n+1> &)

. 2 2
i—22, = N22l|22,0| 22,0 + A1 212107 22,0

dt
V2
- _(12,11—1 + 22,n+1)- (10)
Vi
In Egs. (9) and (10) we have defined the following parameters:
Aii N, AN
A==t A =22 (11)
Iy hyr

Thus the atomic distribution of each species over the entire
lattice is normalized to unity:

D lzialP=1. (12)

To ensure that the energy and density in the system are
conserved, we use a symplectic fourth-order integrator of
the Yoshida type [53,54]. The energy and density are both
conserved up to nine decimal places at each integration time
step.

B. Estimate of the calculation parameters

In Sec. IIT A we present results that model different Bose
gas mixtures, notably mixtures of ytterbium isotopes and that
of 'K 4 ¥7Rb. At present, the only ytterbium isotope mixture
BEC obtained so far is that of "*Yb + '"°Yb where the '"°Yb
partinstantly collapses because of its negative scattering length
[42]. Thus we focus on ytterbium mixtures of isotopes whose
scattering length is positive, namely '*Yb, 179Yb, and '"#Yb.
The latter two have already reached BEC separately [39,40]
while the major technical difficulty in reaching a '*Yb BEC
is its low natural abundance of 0.13%.

To calculate the self-nonlinear parameter, A; ;, it is sufficient
to approximate the on-site wave function ¢; ,(¥) with a har-
monic oscillator ground state, which is basically a Gaussian,
to yield

mw?w

2
)"l,l - al,l 27Th . (13)
In the case of ytterbium mixtures the mutual interaction
parameter A, can also be estimated from the above formula
as the masses of the two isotopes are very similar and the two
wave functions are well overlapped.
In the case of the 'K +3Rb mixture the two wave
functions are differently shaped (one is narrower than the other
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TABLE 1. Values of parameters used in the simulations.

Pair 51 52 /v A Aop A
18yh + 10Yp  3.19  3.27 0.96 5.28 1.368 2.51
0y +174Yb 327 3.43 0.91 1.368 2486 -12.24
8Rb + *'K 3.03 7 6.97 12.31 5.89 (free)

due to the difference in masses). The difference in the masses
of the two species has a further effect—the two clouds are
separated due to gravity but an additional laser can be used to
force overlap of the two species [55]. The scattering length of
87Rb is 5.25 nm [56] while for *'K it is 3.1 nm [57,58]. The
interspecies scattering length can be changed by the use of a
convenient magnetic Feshbach resonance [59] so A, can be
considered as a free parameter.

To estimate the tunneling rates y;, it is not sufficient to
approximate the on-site wave functions with Gaussians and
one has to use the Wannier wave functions. This is because
the tunneling rate is mostly determined by the wings of the
on-site wave function which have an oscillatory-exponential
rather than a Gaussian tail. In this case the tunneling rate can
be approximated as [4]

%E,,,»sf/“ exp(—24/57) . (14)
The parameters for the ytterbium isotopes considered here are
as follows. The lattice laser wavelength is 532 nm; the lattice
frequencies for both species are w, = 27 x 100 Hz and o =
2m x 15 kHz, which are close to the experimental realizations.
For the sake of simplicity, we consider N; = N> = O(10?) as
it is difficult to find initial conditions that would lead to a
clear traveling breather at larger densities. This is a general
property of gap solitons [15]. The results apply, however, to
larger values of N; up to 10°.

In the case of the ’Rb and *'K mixture we consider a
lattice wavelength of 1064 nm and we take the (tunable) lattice
depth to be V, = 7E, for rubidium so the same parameter for
potassium is around 3. This is done to ensure that we can still
use the tight-binding approximation (i.e., tunneling rates to
further sites are at least an order of magnitude smaller than y;,
see Table I in Ref. [4]). On the other hand, the tunneling rate
needs to be large enough for traveling breathers to exist.

The calculation parameters discussed above are shown in
Table I.

Ji =hy =

III. BREATHER INTERACTION

It has been demonstrated that initially Gaussian wave
packets can evolve via the single-species DNLSE into static
breathers [9,11,51]. If the wave packet is given a momentum
in a certain direction, traveling breathers that translate across
the lattice can also be formed. The general expression of the
initial wave packet is

= 2 )
—) e, (15)
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FIG. 1. (Color online) Density profiles of '"°Yb (black solid line) 4+ '®*Yb (blue dashed line) mixture. (a) Initial density profile of
170Yb + '8Yb breathers with D = 0. Inset displays the logarithmic profile of this, which shows the exponential tails of the breathers. (b)
Density profile of "°Yb + '8Yb breathers at = 1000 after A, is switched on for D = 0. Note that the density profiles have changed when
forming the symbiotic breather. The inset shows the logarithmic profile, in which the background of the '7°Yb species can be seen more clearly.
(c) Initial density profile of '°Yb + 98 Yb breathers with D = 2. The wave functions of the two species still overlap significantly. (d) Density
profile of '°Yb + 8YD breathers at T = 1000 after A , is switched on for D = 2. Note that the '7°Yb is smaller and some of the background

has become localized to the left of the main breather.

where o; is the initial width of the Gaussian cloud and 7;
is its position. For the single-species case, low nonlinearity
and values of |p;| between zero and /2, corresponding to
a positive cos p;, the cloud expands diffusively within the
lattice. Localization into static breathers is then observed
when increasing the repulsive self-interaction A; ;. However,
when the pseudomomentum crosses 7 /2 and the repulsive
self-interaction A;; is not too large, traveling breathers are
formed (unless cos p; is exactly 1, in which case the breather
is stationary) [9,11,16,17,51,60].

In this section, we run simulations starting from stationary
breathers of '®Yb and '°Yb in separate positions. These
are formed by running simulations of initially Gaussian wave
packets with A, = 0 and letting them reshape with dissipa-
tion applied at the boundaries to get rid of the background (see
Ref. [9] for a detailed description of the effects of dissipation).
The final stable single-species breathers are of the “staggered”
type and evolve in time as z;,(t) = exp (—iu; T)(—1)"v; 4,
where v; , satisfies the stationary equations

2 2
M1V1n — (U1 p1 + Vi p—1) — (Ul,n + ,31)27”) v =0,
V2 2 2
M2U2, — V_(U2,n+1 + vau-1) — (av3, + Bui,) van =0,
1

(16)

withf = Ay /A1 1anda = Ay /A1 The breathers are spa-
tially localized [see inset of Fig. 1(a), in which the exponential
tails of the breathers are seen clearly in a logarithmic scale].
Substituting the exponential ansatz,

vin = A; exp(—giln|), (17

into Eqgs. (16), as in Ref. [26], we find that the decay rates g;
and frequencies u; of the breathers are related via

qi =1n (w1 +/ui —4)

2
Y2 )2

@ =In|—u;+ <—M2> —4
14! Y1

(18)

Following again Ref. [26], we obtain variational equations
from an effective Lagrangian given by

A? coth(2q,) + BA3 coth(q, + g2)
= 2 tanh(q;/2) + (11 — 2) coth(qy)

R 5 (19)
aAj coth(2g,) + BA7 coth(g) + g2)

2 2
= tanh(g>/2) + (Mz - ﬁ) coth(qz) .
2! Y1

Solutions with both A; and A, different from zero and
corresponding to symbiotic breathers may exist for 8 > 0. In
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contrast to Ref. [26], single-species staggered breathers exist
in the uncoupled case of 8 = 0. For this reason we cannot
exclude the existence of symbiotic breathers for 8 < 0. We
can, however, state that symbiotic breathers that are more
localized than the original single-species interacting breathers,
such as those generated in the numerical simulations below,
do not exist for B < 0. In the case of increasing values of g;,
one can see from Eqgs. (19) that the fastest growing terms are
those containing u; that depend exponentially on g;, while the
intensities A7 grow only linearly with ¢;. Such growth can only
be compensated by a positive term containing coth(g; + ¢») on
the left-hand sides of Egs. (19) and corresponding to 8 > 0. We
can then conclude that no symbiotic breathers corresponding
to further localization of the atomic density can form with
negative B from the interaction of two staggered single-species
breathers.

In the simulations presented in this subsection, the fre-
quencies of the single-species breathers for Aj, =8 =0
are found to be w; =2.1 and u, =4.1. The decay rates
are then calculated using Egs. (18) to get ¢; = 0.3 and
q>» = 1.3, respectively. Once the breathers are formed and the
background noise has vanished, we turned the dissipations off
and measured values of g; and g, within a few percentages
from the predictions of (18).

To study the interactions of these breathers, we have set
A, to the value of 2.51 and changed the initial distance
D between the centers of two single-species breathers. With
the stationary breathers centered on the same site at the start
of the simulation (D = 0), a symbiotic staggered breather is
formed, with the '7°Yb breather moving atomic density into
the background [see the insets of Figs. 1(a) and 1(b) where we
show that the background of the '7°Yb breather has increased
from around 107° to around 10~2]. The density profile of the
symbiotic breather then differs from that of the two single-
species breathers corresponding to A > = 0. The presence of
the interspecies interaction increases both the frequencies w;
and the exponential slopes g; of the breathers, making the
breathers narrower and more localized. The frequencies are
increased to ;) = 3.1 and p, = 5.3 and the decay rates are
both increased to g; = 1.0 and ¢, = 1.6. The measured values
of u;, qi, and A; satisfy the variational Eqgs. (19) within less
than 1% in spite of the approximations made.

This behavior keeps occurring when the initial distance
between the breathers is larger but still small enough that
the initial density profiles overlap significantly. An example
of this behavior is shown in Figs. 1(c) and 1(d) for D = 2.
Here we see that fewer of the '°Yb atoms join with the
symbiotic breather and more are expelled into the background.
A small traveling packet is then formed from the atoms in the
background. The reshaping process of the '8Yb breather is
much the same as with D = 0. The formation and evolution of
atraveling breather out of the interaction of two static breathers
of separate species is presented in Fig. 2. With D = 8§, the
initial density profiles of the breathers only overlap at the tails
[see Fig. 2(b)]. The result of this is that only a small density
of 'Yb atoms contributes to the symbiotic breather. As D
is increased, more '"°Yb atoms go into the background to
support the traveling breather and less in the symbiotic one.
A nonzero background is required for the traveling breather
to exist [9]. The inset of Fig. 2(b) shows the logarithmic
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FIG. 2. (Color online) Interaction between initially stationary
breathers in the '7°Yb (black solid line) + '*Yb (blue dashed line)
mixture for D = 8. (a) Evolution of "Yb part of the mixture.
The majority of '°Yb atoms forms a traveling breather while the
remaining atomic density is absorbed by the '®Yb breather to form a
symbiotic breather. We only show the '7°Yb part of the mixture since
the '*®Yb evolution is rather straightforward, with the breather highly
localized in the center. (b) Density profile of the initial condition
in a logarithmic scale, showing the overlap at the tails. The inset
shows the density profile of the '7°Yb mixture at T = 1000. Note that
the background is significantly higher than in the iniital condition,
allowing the breather to travel.

profile of the 10y} condensate, in which it is clear that
the background is significantly higher than that of the initial
condition.

It is important to stress that the motion of the traveling
breather made of '"°Yb atoms is due to the interaction of the
two species via A, being different from zero. In the case
of no interaction (A, = 0) both breathers remain stationary
at all times. No symbiotic breather has been observed to
form via the interaction of two single-species breathers for
Alqg < 0.
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FIG. 3. (Color online) Collision of two “clean” traveling
breathers, with minimal sound waves. The initial conditions are A| =
A, =11, =16, 1, =112, 0y = 0, = 3, and cos p; =cos p, =
—0.95 for all panels. Note that p; = — p, and therefore the traveling
breathers move in opposite directions. A;, = 0 is set to (a) 0, (b)
—20, and (c) 30. In (a), the breathers ignore each other, acting as
if the other species was not present. In (b), the breathers collide
elastically. In (c), the breathers are destroyed and a new symbiotic
breather is created. The color here represents the total density of the
two species, unlike the other figures.

IV. COLLISION OF TRAVELING AND
STATIONARY BREATHERS

Having assessed the interaction of discrete breathers of
different atomic species when set in close proximity, we
investigate here the collision of these breathers having set one
or both of them in motion by using the pseudomomentum
p; in the initial conditions given by (15). Experimentally,
traveling breathers can be constructed by accelerating the
lattice confining the condensate. Such accelerations were
realized experimentally in Ref. [61] and were used to observe
a lensing effect on the condensate cloud. In the case of two
different species in the same lattice the difference in the masses
will naturally lead to different pseudomomenta of the clouds
after acceleration to the same group velocity, thus making
collisions possible.

In Fig. 3, we show three symplectic simulations of two col-
liding traveling breathers, with carefully chosen parameters so
there would be a minimal amount of sound waves emitted from
the initial Gaussian distributions. In all simulations presented
in Fig. 3 the breathers start from the same initial conditions but
with different values of the interspecies interaction parameter
A1». The color represents the (normalized) atomic density
|Zn.i |2 with i = 1 for one species and i = 2 for the other. The
simulations start with two Gaussian wave packets of the form
(15) with cos p; = cos p, = —0.95 and p; = —p; to form
two colliding traveling breathers.

In Fig. 3(a) when the interspecies interaction parameter
A, is set to zero, the breathers follow the dynamics of single-
species condensates and pass through each other unaffected.
When A, is a nonzero value, the two species affect each
other when occupying the same lattice sites. This is shown in
Figs. 3(b) and 3(c). At the beginning of the simulations, when
the breathers are far apart from one another in the lattice, they
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follow the same path as in Fig. 3(a), until they collide. For
large negative values of A, the breathers collide elastically,
as shown in Fig. 3(b). In this example, A;, = —20 and the
breathers become narrower when they collide. In Fig. 3(c),
Ay is changed to a positive value and the collision is not
elastic. At the collision, the breathers explode, emitting a large
amount of sound waves and a stationary symbiotic soliton
composed of both species is formed.

It is worth noting that elastic collision occurs when
the interspecies interaction parameter is negative, which
would normally imply attractive interactions between the two
species. Normally the two clouds try to achieve maximal
overlap in order to minimize energy [34], while in our case the
tendency is to minimize the overlap and retain separation of
at least a few lattice sites. An explanation of this phenomenon
by using the negative effective mass of the discrete breathers
is provided in Sec. V.

It should be noted that the single-species traveling breathers
are not exact solutions of the DNLS equation due to the
emission of sound waves [62]. Nevertheless, they survive well
localized for extremely long time scales. For the simulations in
Fig. 3, we have carefully chosen the parameters so the amount
of sound waves emitted from the breathers is minimal and find
that, at the moment of collision, the breathers have only lost
less than 0.47% of their densities. We also found that without
interactions between species, they survive in simulations with
time scales of 7 &~ 10°, which is much higher than the collision
times considered here.

In the following we turn our attention to values of the
parameters chosen from Table I to model mixtures of ytterbium
isotopes and that of #'K + 3Rb in realistic configurations. In
these simulations, although the initial condition emits large
amount of noise, we show that the main dependance of the
collision from the interaction parameter A;, remains that
displayed in Fig. 3.

In Fig. 4 we show numerical simulations of two colliding
breathers in the '"°Yb + '7#Yb mixture that display similar
results to that of Fig. 3(b). Note that for all following
simulations, the dynamics of each species is shown in separate
panels, unlike Fig. 3. For example, the left column in Fig. 4
shows the '7°Yb species, while the right column shows the
174Yb species. In Fig. 4(a), at about T & 90 the two breathers
collide elastically, as in Fig. 3(b) since the interspecies
scattering length is large and negative.

Figure 4(b) shows a similar situation, except that now one
of the breathers ('’*Yb) is at first stationary (cos p, = —1).
After the collision the initially traveling breather (almost) stops
while the other, up to now stationary, starts traveling. One could
argue that this is a manifestation of a form of conservation of
momentum. Again, as in Fig. 3, the elastic behavior occurs
even though the '7°Yb and '7#Yb pair is described by a large
negative scattering length of a; , = —27.3 nm, which, under
normal circumstances, stands for attraction between the atoms
of the two species.

Compared to the examples in Fig. 3, there is a much larger
amount of sound waves emitted from the breathers in Fig. 4
due to the parameter values used from Table I. For example,
in Fig. 4(a), the '7°Yb (174Yb) breather loses 1.83% (15.5%)
of its density from the sound waves. Small amplitude sound
waves do not affect the main collision in a significant way since

012909-6



INTERACTIONS AND COLLISIONS OF DISCRETE ...

Species 1 Species 2
250
(a: t
Ol 127 1 127
n n
250
(b): t
Ol 127 1 127
n n

FIG. 4. (Color online) Collisions of two breathers in the '7°Yb
(species 1) + '7*Yb (species 2) mixture characterized by a large
negative interspecies scattering length of —27.3nm. The Gaussian
parameters for the initial condition in (a) are 7i1; = 16, i, = 112,
o) =0, =3, and cos p; = cos p, = —0.95. For (b), the physical
situation is the same as in Fig. 4(a), except that 71, = 64 and
cos pp = —1 to make a stationary breather. In (a), two traveling
breathers collide elastically. In (b) a traveling breather transfers
large part of its (pseudo)momentum to a stationary one and nearly
stops.

the central part of each breather acts as an effective barrier to
the sound waves emitted by the breather of the other species.
Sound waves that would normally expand over the entire lattice
are now confined to a region limited by the central parts of the
two breathers. The scattering of sound waves due to discrete
breathers is investigated in detail in Ref. [62].

A qualitatively different behavior from the above and
similar to that in Fig. 3(c) is found in the case of the 168yp 4
170Yb pair described by a positive (repulsive) scattering length
of a; » = +6.2 nm. Due to the large intraspecies interaction
of 198Yb it is difficult to construct a clear traveling breather
and therefore we limit ourselves to the case where the '**Yb
breather is initially stationary. This situation is presented in
Fig. 5(a). As in Fig. 3(c), at the time of impact (t ~ 40)
the two breathers literally explode emitting a large amounts
of sound waves and forming a double-species symbiotic
stationary breather. In this state, the two component wave
functions are well overlapped. Moreover, the final breather
is much narrower than any of the original breathers before
the collision. The frequency of oscillation of the two final
colocated and coexisting breathers is species dependent. In the
case displayed in Fig. 5(a) the frequency of the '93Yb breather
is about 1.5 times that of the 7°Yb breather located on the same
site.

To further explore these phenomena we carried out a
simulation for the physical situation described in Fig. 4(a) of
the '7°Yb + '74Yb mixture but with the interaction parameter
A, increased to 4, corresponding to an interspecies scattering
length of a; > = 8.9 nm. Such an increase can potentially be
achieved using an optical Feshbach resonance. In this situation,
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FIG. 5. (Color online) Inelastic collisions of ytterbium isotopes.
In (a), a traveling ('°Yb, species 1) and stationary breather ('3 Yb,
species 2) collide for a positive interspecies scattering length of
6.2 nm. The initial condition parameters are 77; = 16, i, = 64,
o1 =15, 0, =3, cos p; =0.8, cos p, =1.0. As in Fig. 3(c), the
traveling breather is destroyed and a new symbiotic soliton is created.
In (b) we have the same physical situation as in Fig. 4 (a), except
that the parameter A;, describing the interspecies has now been
increased to 4, corresponding to a positive interspecies scattering
length of 8.9 nm. In this regime, the two breathers tunnel through
each other. Note that a small part of each breather is trapped inside
the other forming double-species traveling breathers.

we observe the collision of two traveling breathers with a
positive interspecies interaction as shown in Fig. 5(b). We find
yet another collision behavior with these parameters: the two
breathers mainly tunnel through each other but at each collision
a fraction of the atomic species in one soliton becomes trapped
inside the other. Moreover, the breathers appear to accelerate or
decelerate for a brief time during the strong interaction. In this
simulation we consider that lattice sites outside the condensate
are empty resulting in traveling breathers to “bounce” off
at reflective boundaries [63]. This is realized experimentally
by fixing the size of the condensate with external magnetic
fields. We have included this effect here to show that when the
breathers collide with each other for a second time, the result
is a stationary symbiotic breather.

Quite different results are obtained for the *'K + ®Rb
mixture, characterized by a large tunneling rate ratio of
v2/y1 =~ 6.97. This, together with the large self-interaction
of Rb, changes the physics dramatically.

In Fig. 6 we show a collision of a traveling breather and a
self-trapped state of rubidium atoms. Within the range of our
simulation parameters that simulates possible experimental
realizations, it has proved not possible to initiate a traveling
breather state with the Rb condensate due to its large self-
interaction. We set the interspecies interaction parameter
Ay =3 for Fig. 6(a) and A = —9 for Fig. 6(b). In both
cases the rubidium breather acts only as a potential barrier,
through which some of the incoming potassium soliton can
either reflect or tunnel. This behavior, which contrasts with
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FIG. 6. (Color online) A collision of a traveling (*'K, species 1)
and a stationary breather (¥’Rb, species 2), with the interspecies
interaction parameter A;, =3 (a) and A;, = —9 (b). The ini-
tial condition parameters are 7i1; = 64, i, = 12, 01 = 0.5, 0, =3,
cos p; =1, cos p, = —0.9. In (a), the traveling breather tunnels
almost completely through the self-trapped state, while in (b), the
traveling breather bounces elastically from the self-trapped state with
only a minor proportion tunneling through.

the phenomena seen in the simulation with ytterbium, can
be attributed to the drastically different tunneling rates of
potassium and rubidium.

V. THE COLLISION MECHANISM

To understand the mechanisms at the base of the collision
outcomes, we have investigated the dependence of the result
of the collisional process with respect to the heteronuclear
interaction. By treating the discrete condensate wave functions
as distributions we define the mean lattice site,

(ni) =Y nlzial, (20)

n

and its standard deviation,

1/2
(An;) = (Z(n - <ni>)2|zi,n|2> : 1)

These two parameters describe the global behavior of the
condensate. In fact, if a breather splits or is destroyed in a
collision, the standard deviation increases dramatically. To
assess the local behavior, i.e., looking for a new breather
created in a collision, we also search for the site with the
largest number of atoms, nmax; and attempt to estimate
the new breather’s width [full width at half maximum
(FWHM)] by counting the adjacent sites which contain at
least half the number of atoms of those in the site of the
maximum.

Figure 7 shows the parameters (n;), nmax.;, and (An;) and
the FWHM as a function of the mutual interaction parameter
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FIG. 7. (Color online) The collision outcome as a function of the
interspecies interaction, A;,. The top panel displays the mean and
the peak site per species, the center panel the standard deviation per
species, and the bottom panel the FWHM per species as defined in
the text. Symplectic simulations corresponding to the '"°Yb + 17*Yb
mixture.

Aj . For each value of Aj, a simulation was performed
up to T = 150, just past the collision. The initial conditions
and interaction parameters are the same as in Fig. 4, except
for the scanned A, and the tunneling ratio y,/y;, which is
setto 1.

Four different regimes can be identified from Fig. 7. On the
left, for A > lower than about —2.0, two traveling breathers
collide elastically and remain basically unaffected by the
collision. This is the situation shown in Fig. 4. Then there is a
transition point at Aj & —1.5 where the each breather splits
into two as they collide. This results in a sudden increase of
(An) for each species. Note that this increase differs between
the two species; for 7*Yb its maximum is located at A} , ~ —2
as opposed to A > ~ —1 for '79Yb, quite probably as a result
of the different self-interaction parameters.

For small, but positive, values of A, (i.e., less than 6)
the two breathers tunnel through each other. Note that (An)

012909-8



INTERACTIONS AND COLLISIONS OF DISCRETE ...

remains low in this regime (about 15 sites, growing slowly to
20) which means that the breathers are not destroyed. This is
shown in Fig. 5(b) for A;, = 4. As the two breathers tunnel
through each other, a part of their wave function is trapped
inside the other soliton; this effect grows as the interspecies
interaction increases leading to a slow increase in the standard
deviation of the atomic density distributions.

A rather sudden change takes place at about A, = 6.
The system becomes visibly sensitive to small changes in
the mutual interaction. This is the regime where the collision
results in the destruction of the two breathers. Figure 5 is
an example of such a case. The process is chaotic, yet in
many cases leads to the creation of a double-species symbiotic
breather manifested by its very low FWHM.

A. Discussion

The presented results can be reasonably explained by using
one of the key phenomena at the base of gap solitons: the
negative effective mass. The dynamics of a gap soliton in
an external potential are exactly opposite to what one would
expect—a gap soliton attempts to climb potential hills and in
itself is a balance between its negative effective mass that
tries to make it collapse and its repulsive self-interaction
that prevents it [11,27]. In fact, the variational model of
a wave packet used in Trombettoni er al. [11] shows that
the wave-packet center obeys a Newton-like dynamics when
p ~ 0 and exactly the contrary when p ~ 7.

This “contrary” behavior of the solitons seems to be the
key to the explanation of our findings. The totally elastic
collision encountered when the interspecies interaction is
highly attractive would be caused by the fact that the solitons
“see” each other as potential walls rather than wells.

The splitting behavior has been investigated in a slightly dif-
ferent context by Matuszewski et al. [27] where the dynamics
of two already overlapped stationary solitons was analyzed. In
our case splitting happens if the attractive interaction is small
enough to let the two breathers overlap briefly. Then the system
becomes unstable and each breather splits into two. It is also
possible to look at this phenomenon from a different angle.
Due to its negative effective mass, the split of the breather
is quite similar to the case of a wave packet encountering a
potential barrier where, depending on the barrier height (or
the interaction between the breathers) part of the wave packet
goes through while the rest is reflected.

In the repulsive interaction regime the breathers behave
as if they saw each other as potential wells. This is again
an effect of their negative effective mass and, consequently,
reversed dynamics. Thus, for the collision’s duration, their
speed increases (at the cost of wave-packet spreading and of a
reduction of their energy due to atomic self-interaction).

The chaotic behavior when the interspecies interaction is
large and repulsive is probably caused by the system entering
an unstable regime as predicted by Gubeskys et al. [24]. The
chaotic dynamics would then cause the destruction of the
original two breathers and possibly the creation of a stable
intragap soliton. It is beyond the capabilities of our model
to establish if it is possible for an intergap soliton to emerge
during the collision since the tight-binding approximation is
limited to the lowest band-gap by definition.
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VI. CONCLUSION

We have analyzed the behavior of interacting and colliding
discrete breathers in BEC composed of different atomic
species in optical lattices. We have found that the interaction
depends on the initial distance of the two breathers and led
either to the formation of a symbiotic solitons or to the setup
in motion of one of the two breathers. The collision outcome
depends both on the tunneling rate ratios of the two species,
as well as the interspecies interactions. When the tunneling
rates differ greatly, as in the #'K 4+ 8’Rb mixture, one of the
breathers acts as an effective potential wall to the other and
the whole process can be viewed as a case of one-particle
scattering on a potential wall.

In the case where the tunneling rates are comparable (like in
the case of mixtures of ytterbium isotopes) we have identified
four collision regimes. For large negative scattering lengths
the collision is elastic and the two traveling breathers remain
intact, with considerable momentum transfer between the
two. For small negative scattering rates, the breathers overlap
briefly and split into two, as originally predicted in Ref. [27].
When the interspecies interaction is weakly repulsive, the
two breathers tunnel through each other unharmed for a wide
range of interspecies interacions. Finally, with the interspecies
interaction sufficiently large, the dynamics becomes chaotic
and the two breathers are destroyed with a possible creation
a new two-component soliton similar to an intragap soliton
as predicted in Ref. [24]. Feasible explanations to the above
phenomena have been provided using the concept of negative
effective mass and the resulting reversed dynamics.

Interaction and collision properties of localized excitations
in BEC in optical lattices can have interesting applications
in the realization of ultracold Bose-Fermi mixtures where gap
solitons can be viewed as matter-wave counterparts of quantum
dots and antidots [64]. Changing the species interaction allows
one to tune the character of the collisions from fully elastic
to fully inelastic and/or tunneling with clear advantages in the
manipulation of information in matter-wave systems.
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APPENDIX: SIMULATIONS OF THE
CONTINUOUS MODEL

The DNLS model describes BEC in optical lattices in the
limit of deep potential wells. The interactions and collision
mechanisms of breathers in two-species BECs presented in
Secs. III, IV, and V survive the tight-binding approximation.
Here we use a scaled version of the one-dimensional Gross-
Pitaevskii equation [65] extended to two-species BEC in
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FIG. 8. (Color online) Collision of two traveling breathers in the
continuous case (Al) for ;; = 1. By is set to (a) —18, giving an
elastic collision, and (b) 20.4, with the destruction of the breathers
and creation of a symbiotic one. These results are similar to those
displayed in Figs. 3(b) and 3(c) for the DNLS model.

optical lattices:

82
8 T + Vpsin ( )

where u; is the wave function of the i-th species, Vy = 10 is the
potential depth scaled to the recoil energy, and §;; and 8, , =

D Biluil® fui, (A1)

j=12

in; =

PHYSICAL REVIEW E 91, 012909 (2015)

P21 are the intra- and interspecies interaction parameters,
respectively. The spatial variable x is now continuous and the
Laplacian term describes the momentum of the atoms in the
lattice. We show here that the collision mechanisms survive
from the discrete to continuous limit by simulating an optical
lattice of 80 potential wells.

In Fig. 8(a), we show an elastic collision of moving lattice
solitons (continuous breathers) with a large attractive inter-
species interaction of B; ; = —18 obtined by the numerical
integration of Eq. (Al). Likewise, inelastic collisions take
place with repulsive interactions as shown in Fig. 8, with
Bi,j = 20.4. The inelastic collision here ends in the formation
of a symbiotic lattice soliton.

The simulations of the continuous model (A1) take at least
3 times as long as those of the discrete model, even with the
smaller number of potential wells (80 in the continuous com-
pared to 127 in the discrete). We also note that the numerical
method used for the continuous case is not symplectic and
uses periodic boundary conditions that limit its application. In
spite of these limitations, the results of the continuous model
simulations confirm those of the DNLS model in the deep
potential case as demonstrated in Fig. 8. For these reasons, the
DNLS model represent an accurate and trustworthy testbench
for the realistic investigation of the collision mechanism of
breathers in two-species BEC as shown, for example, in the
exhaustive Fig. 7.
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