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Mixed-mode oscillations in slow-fast delayed optoelectronic systems
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In this article, we investigate the dynamical behavior of breathers in optoelectronic oscillators from the
standpoint of mixed-mode oscillations. In the phase space, these breathers are composite oscillations that are
damped to the attractive branches of an invariant manifold. Our study shows that the emergence of breather
dynamics is linked to the apparition of inflection points in the phase space, and we develop an analytical
framework based on the Liénard reduction form in order to provide an analytical insight into this phenomenology.
Our theoretical results are in excellent agreement with experimental measurements.

DOI: 10.1103/PhysRevE.91.012902 PACS number(s): 05.45.Jn, 42.65.Sf

I. INTRODUCTION

The optoelectronic oscillator (OEO) is one of the most
practical representations of an Ikeda system [1], described
by a delay-differential equation (DDE). It consists of a
closed-loop oscillator characterized by an optical path with
local nonlinearity and a linear frequency-filtered electrical
path. This paradigmatic system is an ideal benchmark for
the investigation of delay-based infinite-dimensional systems,
which provide a higher complexity than low-dimensional
nonlinear systems ruled by ordinary differential equations
(see Ref. [2] and references therein). The OEO mainly finds
its numerous applications in two distinct and complementary
configurations. In the first one, a narrowband filter is inserted
inside the electrical path. In this case, the OEO can be modeled
using a complex-valued slowly varying envelope equation:
the output signal generally has a single frequency and the
main technological application is ultrastable microwave gen-
eration [3–6]. In the second configuration, the electrical path
is subject to a broadband filter and yields high-dimensional
hyperchaos when the feedback gain is large enough. Here the
main technological applications are optical communications
and information processing [7–14].

The latter case is the one with the most diverse set of
complex behaviors. It has for example been shown that,
before the state of fully developed hyperchaos, a hybrid state
displaying the features of slow-fast dynamics can emerge as the
gain is increased beyond the first Hopf bifurcation [7]. These
time-domain structures, which are referred to as breathers,
can be either periodic or chaotic [7]. These breathers are the
result of an interaction between a slow variable and a fast
other variable. Generally, they appear in one or two successive
regular packages that are alternated (up and down).

However, the question of the mechanism leading to the
emergence of breathers has still not been fully addressed,
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despite some noticeable advances [7,8]. Generally, slow-fast
dynamical systems can exhibit bursting oscillations [15–20]
or deterministic mixed-mode oscillations (MMOs) if they are
at least three-dimensional [21–23], or two-dimensional with
noise [24]. MMOs can therefore be considered as trajectories
of a dynamical system in which there are alternated oscillations
of distinct large and small amplitudes (see Ref. [25] and
references therein).

It is remarkable that, by definition, breathers have a
structure that is very similar to that of MMOs. For in-
stance, the particular model of chemical reactor reported by
Koper [26] displays a time evolution that is very similar
to that of breathers. Noticeably, in the time domain, the
fast variable has almost two plateaus, one on the top and
the second on the bottom. Both plateaus present small-
amplitude oscillations (SAOs) that are followed by a large-
amplitude oscillation (LAO), thereby generating an alternated
sequence [25].

From a dynamical point of view, MMOs arise in systems
where there are slow and fast variables, and their phase
portrait is characterized by canard cycles [27]. Desroches and
Jeffrey [27] investigated the boundary of the singular perturba-
tion parameter that favors the presence of canard explosion in
slow-fast dynamical systems. They used the geometric singular
perturbation theory (also known as Fenichel’s theory [28]) to
predict the appearance of inflection points that emerge in the
repulsive domain of the invariant critical manifold. The reader
can for example refer to Refs. [25,27] to gain more insight on
theory of MMOs, which are observed in many systems [29],
such as chemical reactions [30], biological systems [31,32],
and electrical circuits [33,34].

In this article, we use the theory of MMOs to achieve
a deeper understanding of the dynamics of breathers in
an OEO. The paper is organized as follows. In Sec. II,
we present the slow-fast dynamical model of an OEO.
Section III presents the MMOs signature of an OEO. Sec-
tion IV is devoted to the study of the symmetry prop-
erties of the breathers. The last section concludes the
article.
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FIG. 1. (Color online) Experimental setup of an OEO. The laser
used is a DFB telecom laser diode (∼1550 nm) with a threshold
injection current Ith = 15.2 mA. The thermalized 4-km optical fiber
induces a delay time of TD = 19.6 μs. The cutoff frequencies are
fL = 3.1 Hz (θ = 51.3 ms) and fH = 480 kHz (τ = 332 ns). The
LiNbO3 Mach-Zehnder modulator is characterized by half-wave
voltages Vdc = 6.2 V and Vrf = 3.9 V.

II. THE SYSTEM

The system under study is presented in Fig. 1. It generally
consists of a Mach-Zehnder (MZ) modulator characterized
by radio-frequency (rf) and direct-current (dc) half-wave
voltages, Vrf and Vdc, respectively. This modulator is seeded
optically by a continuous-wave (cw) semiconductor laser of
power P and biased electrically with a constant voltage VB

on the dc electrode. The light at the exit of the modulator
passes through an optical delay line of delay TD , and the
light intensity is later on converted into electrical current by a
photodiode with conversion factor S. The electric signal is then
filtered by an electronic filter in which the low- and high-cutoff
frequencies are fL and fH , respectively. The loop is closed by
returning the filtered voltage V (t) back into the modulator via
the rf electrode, after amplification with overall gain G.

The dynamics of this OEO can be modeled by the following
delay integro-differential equation:

x + τ
dx

dt
+ 1

θ

∫ t

0
x ds = β{cos2[x(t − TD) + φ] − cos2 φ},

(1)

where x(t) = πV (t)/2Vrf is the dimensionless variable stand-
ing for the voltage at the rf input of the MZ modulator,
while the parameters of the equation are the high cutoff
time τ = 1/2πfH , the low cutoff time θ = 1/2πfL, the
offset phase φ = πVB/2Vdc, and the normalized loop-gain
β = πSGP/2Vrf .

It is mathematically convenient to rewrite the above
equation under the form of a flow of first-order coupled
delay differential equations. If we introduce the variable
y = − 1

θ

∫ t

0 x(s) ds and the dimensionless time ζ = t/θ , then
Eq. (1) can be rewritten as

ε
dx

dζ
= y − x + β{cos2[xν + φ] − cos2 φ}, (2)

dy

dζ
= −x, (3)

FIG. 2. Temporal evolution of the breathers. The x variable
exhibits breathers while the y variable performs a slow periodic
oscillation. For this plot, the parameters are ε = 4 × 10−4, ν =
2 × 10−2, φ = −0.57, and β = 2.0.

where ε = τ/θ is the frequency cutoff ratio, ν = TD/θ is the
normalized delay, and xν = x(ζ − ν) is the delayed variable.
Written in the form of Eqs. (2) and (3), the OEO has the
structure of a slow-fast dynamical system with the singular
perturbation parameter ε < 1, one fast variable x involving
the fast time scale ζ/ε, and one slow variable y involving the
slow time scale ζ .

In the case of a large bandwidth filter, τ and θ are
several orders of magnitude apart, so that we actually have
ε � 1. It is already known that the OEO displays breathers
in this configuration [7]. Breathers generally arise when
sin 2φ is negative, and they are of two kinds: nonalternated
and alternated. Nonalternated breathers are a repetition of
one LAO and s � 1 SAOs that arise in a repetitive way.
Alternated breathers are characterized by k � 1 and s � 1
SAOs appearing separately on the top and the bottom plateaus,
respectively; each group of SAOs is preceded by one large
transition. Alternated breathers are plotted in Fig. 2 after
simulating Eqs. (2) and (3). The variable x performs k damped
oscillations on the top and s damped oscillations on the
bottom. In general, the number of oscillations on the top is
not always equal to the number of oscillations on the bottom.
For example, in the case of Fig. 2, k � 11 while s � 7. During
these oscillations, the variable y displays a slow relaxation
evolution. More explanations about this phenomenon are given
in the next section.

We also depict in Fig. 3 both experimental and numerical
results obtained with ε = 6.47 × 10−6 and ν = 3.82 × 10−4.
The experimental parameter β = (I − Ith)/(IH − Ith) is the
relative value of the laser injection current (I ) calculated over
the solitary measured threshold (Ith) and the closed-loop Hopf
threshold at φ = −π/4 (IH ). The breathers start to appear in
the system at β = 1.46. From that value, they progressively
grow as the pump increases. Their inner structure reveals a
square-wave oscillation at a period equal to 2TD = 39.2 μs.
There are approximately 263 oscillations (k � 263) on the top
against 365 oscillations on the bottom (s � 365) in Figs. 3(c)
and 3(d) giving a total of k + s � 628. When the pump
becomes very large, breathers disappear, the square-wave
oscillations are no longer present, and, consequently, the
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FIG. 3. (Color online) Experimental and numerical time traces demonstrating the evolution of breathers as a function of the gain. These
results are obtained with ε = 6.47 × 10−6, ν = 3.82 × 10−4, and φ = −0.97. For the numerical results, from top to bottom, the values of β

are 1.5, 2.04, 3.0, and 3.42. For experimental figures, from top to bottom, the values of β are 1.48, 1.86, 2.78, and 3.42.

system becomes totally chaotic [see Figs. 3(g) and 3(h)]. The
chaotic behavior is confirmed through the evaluation of the
maximal Lyapunov exponent which is positive over the time
interval of Fig. 3(h) (λ = 0.0166). For the sake of the clarity of
the figures and the phenomenology that we want to highlight
in this article, the parameters ε and ν hereafter keep the values
used in Fig. 2.

The set of Eqs. (2) and (3) can be rewritten under the
following general form:

ε
dx

dζ
= y − f (x,xν,β), (4)

dy

dζ
= g(x), (5)

and alternatively, it can also be written in the form of

dx

dξ
= y − f (x,xμ,β), (6)

dy

dξ
= εg(x), (7)

if the dimensionless time is rather defined as ξ = t/τ = ζ/ε,
while the dimensionless delay is redefined as μ = TD/τ .
The functions f and g are, respectively, defined as f =
x − β{cos2[xν + φ] − cos2 φ} and g = −x in our present
case.

The first form [set of Eqs. (4) and (5)] is generally referred
to as the slow subsystem (or the reduced system), while the
second form [set of Eqs. (6) and (7)] is the fast subsystem (also
known as the layer problem). These two subsystems are able
to give insight into the full dynamics of the system in the limit
of small ε as we will see later.

If we cancel the delay, i.e., xν → x in the above sets of
equations, one obtains for each pair the so-called Liénard
system [35]. Recent studies on the Liénard equation have
revealed the existence of critical values of ε for the appearance
of canard cycles [27]. Despite the fact that Liénard forms are
of course more complex in DDEs than in ordinary differential
equations (ODEs), we will see that the theories developed
for the case of low-dimensional systems are still useful to
understand the phenomenology observed in high-dimensional
delayed systems.
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III. CRITICAL MANIFOLD AND PHASE SPACE
OF THE OEO EQUATION

According to singular perturbation theory, the critical
manifold is the curve in the (x,y) plane defined in the limit of
ε → 0. In other terms, following Eqs. (4) and (5), this manifold
is explicitly defined as

S : y = f (x,xν,β)

= x − β{cos2[xν + φ] − cos2 φ}. (8)

The variables x and xν are two variables that bring out the
same information but at two different times, ζ and ζ − ν.
Investigating the dynamics of the system in an infinite-
dimensional phase space is a very complicated task: Here,
we show that the key manifolds obtained in the limit ν → 0
(null delay) still provide an insightful perspective into the
mechanisms leading to the emergence of breathers when
ν �= 0.

In the limit ν → 0, the critical (or Liénard) manifold is
explicitly defined as

SL : y = f (x,x,β)

= x − β{cos2[x + φ] − cos2 φ}, (9)

where the subscript L stands for Liénard. The fold points of
this critical manifold as defined in Ref. [27] are solutions of
the equation

df

dx
= 1 + β sin(2x + 2φ) = 0. (10)

Restricting the study in the range of x ∈] − π/2,π/2[, there
exist two fold points, namely:

x1 = −1

2
arcsin

[
1

β

]
− φ, (11)

x2 = −π

2
+ 1

2
arcsin

[
1

β

]
− φ. (12)

The middle point between x1 and x2 is given by x0 =
−π/4 − φ. It should also be noted that x1 and x2 only exist
for β > 1: Hence, we conclude that df/dx < 0 if x ∈]x1,x2[,
and df/dx > 0 outside of this interval. Therefore, based
on the definition of attractive and repulsive branches given
in Refs. [25,27], the Liénard critical manifold SL has one
repulsive branch located within x1 and x2, that is,

Sr
L := x ∈ [x2,x1], (13)

while two attractive branches exist beyond x1 and x2 following

Sa
L := x ∈] − π/2,x2] ∪ [x1,π/2[ . (14)

The points x1 and x2 are marked by large dots in the figure.
These repulsive and attractive branches are represented in
Fig. 4. In the general case, it should be noted that the critical
manifold is a function of the bifurcation parameter β, as well
as of the delay. This situation makes the OEO more complex
than other usual systems that exhibit MMOs such as the Van
der Pol oscillator, as reported in Ref. [25]. In addition, the
S-shaped critical manifold shows the possibility of a return
mechanism in the nullcline which is favorable for the creation
of canard cycles in OEOs.

FIG. 4. (Color online) Phase portrait of Liénard form of the OEO
with and without delay (black and light gray curves, respectively).
The critical manifold from the Liénard without delay is displayed in
blue (dark gray). The fold points x1 (on the right) and x2 (on the left)
are marked by large dots. The value of the loop gain is β = 1.4.

Figure 4 presents the nullcline plotted after the numerical
simulation of Eqs. (4) and (5), when considering the delay
(black curve) and in the absence of the delay (xν → x, light
gray). In fact for low values of β, starting from an initial con-
dition away from the critical manifold, the OEO is quickly (al-
most horizontally) pushed towards the attractive branch of the
critical manifold Sa

L. The dynamics is then dominated by the
fast subsystem at this stage. By the time the trajectory passes
close to an ε neighborhood of Sa

L, the slow dynamics becomes
dominant. The orbit now evolves slowly along the attractive
branch until it reaches a first fold point; hence it reenters into
the fast transition and jumps to the other attractive branch.
Once on that branch, the slow motion along the branch occurs
until the trajectory reaches the second fold point. Later on, it
is reinjected to the first Sa

L and the cycle starts again. This cor-
responds to a canard cycle, as illustrated by the Liénard form.

FIG. 5. (Color online) Phase portrait of breathers (black) and of
the Liénard form without delay (light gray). The MMOs are induced
by the delay. The value of the loop gain is β = 2.0. The points in the
inset mark some inflection points of the oscillations.
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When β becomes large (enough to generate breathers),
a difference occurs at the moment the orbit reaches an ε

neighborhood of the attractive branch (see Fig. 5). The
amplitudes of oscillation become larger, and the slow motion
along the attractive branches is first dominated by the
damping behavior towards these branches. In this way, the
orbit accomplishes k damping SAO before decaying down
to Sa

L. Once these oscillations are damped, the system moves
slowly along Sa

L until it meets the fold point of the branch
(domination of the slow subsystem) where it is subjected to the
effect of fast dynamics. The orbit is suddenly projected towards
another attractive branch where it behaves like on the previous
attractive branch; however, it rather accomplishes s damping
SAO in this case. It is also noteworthy that SL is still a good
approximation of S, and no damping oscillation is observed
with the phase space from the Liénard form (see Fig. 5).

IV. SYMMETRY OF BREATHERS

The symmetry of breathers depends on the offset phase
operating point φ. According to the value of φ, oscillations
can be more important on one attractive branch than another.
Symmetric oscillations are observed only when the middle

FIG. 6. Frontiers between breathers and stability corresponding
to x1 = 0 and x2 = 0 are marked by light gray. The vertical dark
gray line represents the boundary φ = −π/4 for which the breathers
are symmetric. (a) Symmetry breathers with k = s ≈ 9. (b) and (d)
Asymmetric breathers. (c) Decay towards the trivial fixed point. All
the time traces are plotted with the same value of β = 2.0. (a) φ =
−π/4, (b) φ = −0.275, (c) φ = −0.12, (d) φ = −1.30. The point of
Fig. 2 is indicated.

point x0 = 0, which corresponds to φ = −π/4. In that case,
s = k as can be seen in Fig. 6(a). This assertion is identical
to the condition of symmetry observed for the square-wave
oscillation in the same system [14].

When φ moves away from −π/4, the shift has a significant
influence for the number of oscillations in the attractive
branches. In fact as x0 moves towards the left (this corresponds
to φ moving from −π/4 to the upper boundary 0), the fold
points x1 and x2 decrease in absolute value. The fixed point x1

progressively comes closer to zero, whereas x2 moves away
from zero. When x1 coincides with the origin, β and φ satisfy
the condition β sin(−2φ) = 1, which is a good approximation
of the critical value around which the oscillations arise through
a Hopf bifurcation [7,36].

Hence, when x1 moves to zero, it dynamically means that
one fold point (x1 in this case) is approaching the trivial
fixed point of the system. The result is that more damping
oscillations will appear in the attractive branch connected to x1

[see Fig. 6(b)]. From that value of φ, any increase immediately
leads the system to the fixed point [see Fig. 6(c)]. On the
contrary, if φ decreases from −π/4 to the lower boundary
−π/2, it is now x2 that approaches the origin [note that at the
origin, x2 = 0 also corresponds to β sin(−2φ) = 1]: In this
case, SAO are now mainly localized on the bottom as shown
in Fig. 6(d).

The frontiers corresponding to x1 = 0 and x2 = 0 are
plotted in Fig. 6, and therefore three domains are created:
The domains 1 and 2 correspond to oscillations mainly
located on the bottom and the top, respectively, while the
domain 3 represents the trivial fixed point. The domains 1
and 2 are separated by the point φ = −π/4 (the vertical dark
gray line).

V. CONCLUSION

In this work, we have proposed an analytical framework for
the study of the dynamics of breathers in slow-fast optoelec-
tronic systems. We have demonstrated that the dynamics of
these breathers consists of oscillations on attractive branches
of a critical manifold. These oscillations are connected one
to another by a fast transition that characterizes the repulsive
branch of the critical manifold. Using an appropriate Liénard
form of the model, we have analyzed the mechanisms leading
to the emergence of these breathers in the phase space. We have
shown that the bifurcation diagram of an OEO is subdivided
into several areas, including the stability basin of the trivial
fixed points, canard limit-cycles, breathers which build up
with an increase of the number of inner damping oscillations,
and finally hyperchaos. Another major conclusion of this
work is that delayed systems can also be investigated within
the framework of mixed-mode oscillations, and future work
will focus on the investigation of other architectures, such as
multiple-delay systems.
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JIMMI H. TALLA MBÉ et al. PHYSICAL REVIEW E 91, 012902 (2015)

ERC project NextPhase, from the project ORA of the Agence
Nationale de la Recherche (ANR), from the project SHYRO

of the Centre National d’Etudes Spatiales (CNES), and from
the Labex ACTION.

[1] K. Ikeda, Opt. Commun. 30, 257 (1979).
[2] L. Larger, Philos. Trans. R. Soc., A 371, 20120464 (2013).
[3] X. S. Yao and L. Maleki, J. Opt. Soc. Am. B 13, 1725

(1996).
[4] Y. K. Chembo, L. Larger, H. Tavernier, R. Bendoula, E. Rubiola,

and P. Colet, Opt. Lett. 32, 2571 (2007).
[5] Y. K. Chembo, L. Larger, and P. Colet, IEEE J. Quantum

Electron. 44, 858 (2008).
[6] Y. K. Chembo, A. Hmima, P. A. Lacourt, L. Larger, and J. M.

Dudley, J. Lightwave Technol. 27, 5160 (2009).
[7] Y. C. Kouomou, P. Colet, L. Larger, and N. Gastaud, Phys. Rev.

Lett. 95, 203903 (2005).
[8] M. Peil, M. Jacquot, Y. K. Chembo, L. Larger, and T. Erneux,

Phys. Rev. E 79, 026208 (2009).
[9] A. B. Cohen, B. Ravoori, T. E. Murphy, and R. Roy, Phys. Rev.

Lett. 101, 154102 (2008).
[10] K. E. Callan, L. Illing, Z. Gao, D. J. Gauthier, and E. Scholl,

Phys. Rev. Lett. 104, 113901 (2010).
[11] B. Ravoori, A. B. Cohen, J. Sun, A. E. Motter, T. E. Murphy,

and R. Roy, Phys. Rev. Lett. 107, 034102 (2011).
[12] L. Weicker, T. Erneux, O. D’Huys, J. Danckaert, M. Jacquot,

Y. Chembo, and L. Larger, Phys. Rev. E 86, 055201(R)
(2012).

[13] R. Martinenghi, S. Rybalko, M. Jacquot, Y. K. Chembo, and
L. Larger, Phys. Rev. Lett. 108, 244101 (2012).

[14] L. Weicker, T. Erneux, O. D’Huys, J. Danckaert, M. Jacquot,
Y. K. Chembo, and L. Larger, Philos. Trans. R. Soc., A 371,
20120459 (2013).

[15] S. M. Baer, T. Erneux, and J. Rinzel, SIAM J. Appl. Math. 49,
55 (1989).

[16] E. M. Izhikevich, Int. J. Bifurcation Chaos Appl. Sci. Eng. 10,
1171 (2000).

[17] Y. Ji and Q. Bi, Phys. Lett. A 374, 1434 (2010).
[18] H. Simo and P. Woafo, Mech. Res. Commun. 38, 537 (2011).

[19] L. T. Abobda and P. Woafo, Commun. Nonlinear Sci. Numer.
Simulat. 17, 3082 (2012).

[20] S. T. Kingni, G. S. M. Ngueuteu, and P. Woafo, Nonlinear Dyn.
76, 1169 (2014).

[21] M. Wechselberger, SIAM J. Appl. Dyn. Syst. 4, 101 (2005).
[22] M. Krupa, N. Popovic, N. Kopell, and H. G. Rotstein, Chaos 18,

015106 (2008).
[23] A. Milik and P. Szmolyan, in Multiple Time-Scale Dynamical

Systems, The IMA Volumes in Mathematics and its Applications
Vol. 122, edited by C. K. R. T. Jones and A. I. Khibnik (Springer,
New York, 2001), pp. 117–140.

[24] C. B. Muratov and E. Vanden-Eijnden, Chaos 18, 015111 (2008).
[25] M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn,

H. M. Osinga, and M. Wechselberger, SIAM Rev. 54, 211
(2012).

[26] M. T. M. Koper, Physica D 80, 72 (1995).
[27] M. Desroches and M. R. Jeffrey, Proc. R. Soc London, Ser. A

467, 2404 (2011).
[28] N. Fenichel, J. Differ. Equations 31, 53 (1979).
[29] M. Brons, T. J. Kaper, and H. G. Rotstein, J. Chem. Phys. 97,

6191 (1992).
[30] V. Petrov, S. K. Scott, and K. Schowalter, Chaos 18, 015101

(2008).
[31] T. Hauck and F. W. Schneider, J. Phys. Chem. 97, 391 (1993).
[32] T. Vo, R. Bertram, J. Tabak, and M. Wechselberger, J. Comput.

Neurosci. 28, 443 (2010).
[33] M. Sekikawa, N. Inaba, T. Yoshinaga, and T. Hikihara, Phys.

Lett. A 374, 3745 (2010).
[34] J. Duhram and J. Moehlis, Chaos 18, 015110 (2008).
[35] S. H. Strogatz, in Nonlinear Dynamics and Chaos (Persus

Books, Reading, MA, 1994), p. 210.
[36] G. R. G. Chengui, A. F. Talla, J. H. Talla Mbé, A. Coillet,
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