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Two-stage effects of awareness cascade on epidemic spreading in multiplex networks
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Human awareness plays an important role in the spread of infectious diseases and the control of propagation
patterns. The dynamic process with human awareness is called awareness cascade, during which individuals
exhibit herd-like behavior because they are making decisions based on the actions of other individuals [Borge-
Holthoefer et al., J. Complex Networks 1, 3 (2013)]. In this paper, to investigate the epidemic spreading with
awareness cascade, we propose a local awareness controlled contagion spreading model on multiplex networks.
By theoretical analysis using a microscopic Markov chain approach and numerical simulations, we find the
emergence of an abrupt transition of epidemic threshold S, with the local awareness ratio o approximating 0.5,
which induces two-stage effects on epidemic threshold and the final epidemic size. These findings indicate that
the increase of « can accelerate the outbreak of epidemics. Furthermore, a simple 1D lattice model is investigated
to illustrate the two-stage-like sharp transition at o, & 0.5. The results can give us a better understanding of why
some epidemics cannot break out in reality and also provide a potential access to suppressing and controlling the

awareness cascading systems.
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I. INTRODUCTION

Epidemic spreading is an important phenomenon that
has been extensively studied [1-10] in the field of com-
plex networks. There have been various models that can
be used to shed light on these dynamic processes, in-
cluding the classical susceptible-infected-susceptible model
(SIS) [11], susceptible-infected-recovery model (SIR) [12],
and so on [13,14]. These models have focused on various
factors that can affect epidemic spreading, e.g., the frequency
of contacts between people [15,16], duration of the dis-
ease [17,18], immunity of particular individuals [19], etc.

Recently, there has been growing interest in investigating
the interplay between human response and epidemic spread-
ing [14,20-23], especially the awareness, or risk perception,
which can be considered as a crucial feature in the reduction
of susceptibility when individuals become aware of the
epidemics. Funk et al. [24] found that in a well-mixed
population, awareness of epidemics can lead to a lower size
of the outbreak, but cannot affect the epidemic threshold.
Moreover, Wu et al. [25] classified the awareness into three
categories, the so-called local awareness, global awareness,
and contact awareness. They show that global awareness
cannot decrease the likelihood of an epidemic outbreak while
the other two types of awareness can decrease it.

Furthermore, as a natural way to describe the interre-
lated different interactions among people, multiplex network
[27-32] has been gaining more and more attentions in ex-
ploring epidemic spreading with respect to awareness [23,26].
Two interdependent networks can be used for modeling the
coevolution of disease and the awareness dynamic process.
By considering the dynamic interplay between awareness and
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epidemic spreading in multiplex networks, Granell et al. [26]
discovered the emergence of a metacritical point where the
diffusion of awareness is able to control the onset of epidemics.
A common feature of these models mentioned above is that the
dynamic process of the spreading of awareness and epidemics
is the same.

However, in real cases, the way awareness spreads is quite
different from the way epidemics do. For instance, when one
occasionally reads a message about epidemics on Facebook or
other social networks, he may not take actions, which means
he doesn’t become aware of it. But when the proportion of
his friends who have been aware of the epidemics surpasses a
critical point, he may take measures with high probability, in
other words, one can become aware of the epidemics according
to the states of his friends. This herd-like feature is just like
the way we make decisions to accept one idea or reject it
in our daily life [33-35]. Here, we introduce a threshold
model to describe this phenomenon and the threshold in the
transformation process of awareness state is named as local
awareness ratio in our work.

In this paper, we propose a local awareness controlled
contagion spreading (LACS) model on top of multiplex
networks to study the interplay between the spreading of
epidemic and awareness. In the model, we find an interesting
phenomenon that epidemic threshold may undergo an abrupt
transition when local awareness ratio is set to be 0.5. Moreover,
the final epidemic size also appears to display two distinct
phases around this critical value. When local awareness ratio
is smaller than 0.5, the epidemic threshold is the bigger one and
the final epidemic size is almost the same. Otherwise, the final
epidemic size increases significantly with the increasing of
local awareness ratio but the epidemic threshold is the smaller
one. Analytically, we extend the microscopic Markov chain
approach (MMCA) [26] to derive the epidemic threshold of our
model, and numerical simulations show that the MMCA has a
high accuracy for the prediction of the epidemic threshold.

©2015 American Physical Society


http://dx.doi.org/10.1093/comnet/cnt006
http://dx.doi.org/10.1093/comnet/cnt006
http://dx.doi.org/10.1093/comnet/cnt006
http://dx.doi.org/10.1093/comnet/cnt006
http://dx.doi.org/10.1103/PhysRevE.91.012822

GUO, JIANG, LEL LI, MA, AND ZHENG

The rest of this paper is organized as follows: In Sec. II,
we describe the LACS model and the dynamic process on it;
in Sec. III, we use MMCA to analyze the epidemic threshold
of our model; in Sec. IV, we present numerical simulations
and compare these with theoretical results. We also investigate
the effects of different local awareness ratios on the spread
of epidemics; meanwhile, a 1D lattice model is proposed to
investigate the two-stage effects; in Sec. V, we conclude the
paper and present some discussions.

II. THE LOCAL AWARENESS CONTROLLED
CONTAGION SPREADING MODEL

Our model is implemented on a multiplex network. To
illustrate it, we construct a two-layer network; see Fig. 1. The
first layer represents an individual’s awareness of epidemics.
On this layer, if one individual is aware of epidemics, its
state is aware (A); otherwise, its state is unaware (U). The
second layer corresponds to an individual’s physical states of
epidemics, which means if an individual is infected, its state
is infected (I); else, its state is susceptible (S). For the sake of
simplicity, we assume this multiplex network is unweighted
and undirected. The interconnection between two layers is
responsible for the coupled dynamic process of the spreading
of epidemics and awareness.

As mentioned above, individuals on the awareness layer
spread the awareness of epidemics while contagion process
takes place on the contagion layer. The evolution of the
awareness dynamic process is defined as follows: on the one
hand, unaware individuals become aware due to two reasons:

Awareness spreading

{ Threshold model }

| Contagion model

Epidemic spreading

FIG. 1. (Color online) Example of the structure of multiplex
network used in our work. The upper layer corresponds to the network
where the spreading of awareness happens; nodes on this layer have
two kinds of states: unaware and aware. The other layer represents
the epidemic spreading with two kinds of states: susceptible and
infected. Only three kinds of states can exist in this multiplex network:
unaware and susceptible; aware and infected; aware and susceptible.
The spreading models of awareness and epidemic are different, with
threshold model and contagion model for the upper and lower layer,
respectively.
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the ratio between their aware neighbors and their degrees,
number of links connected with them, reaches the critical value
(local awareness ratio «) or unaware individuals are already
infected. On the other hand, aware individuals change into the
state of unaware in two ways: the individual is susceptible
again or has forgotten the awareness (with a probability §).

Similar to the classical epidemic model (SIS), on the
contagion layer, a susceptible individual can be infected by
an infectious neighbor with probability 8 while infected ones
can recover to be susceptible with probability w at the same
time. If an individual is infected, it is natural that this individual
becomes aware of the epidemic. However, the infectivity 8 can
be reduced by a factor if one is aware of the epidemic. We use
BY and B* to represent the infection rates without and with
awareness, respectively. For the sake of simplicity, here we
assume B2 = 0, which corresponds to complete immunity of
individuals aware of the epidemic. It is worth noting that each
individual in this multiplex network can only have three kinds
of states: unaware and susceptible (US), aware and infected
(AI), aware and susceptible (AS).

III. THE MMCA METHOD ON THE LACS MODEL

In this section, to illustrate the use of MMCA
method [36,37], which is a discrete-time version of the
evolution of epidemics by means of Markov chain, we
introduce the probability tree method. In Fig. 2, we reveal the
possible states and their transitions in the LACS model, just as
defined in Ref. [26]. Here, let a;;,b;; be the adjacency matrices
of the awareness layer and the contagion layer, respectively.
Since individual i has to be one of the three states at time 7, we
denote the probabilities as pAl(r), p25(1), pYS(t), respectively.
Then on the awareness layer, we define the probability for
unaware individual i not changing from state U to state A as
r;(t); on the contagion layer, we define the probabilities for
individual i not being infected by any neighbors if i was aware
as g (1), and not being infected by any neighbors if i was
unaware as g, (1).

A #
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v " N \ f \
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FIG. 2. (Color online) Transition probability trees for the states.
The states include Al (aware and infected), US (unaware and
susceptible), AS (aware and susceptible). Note that p represents
transition probability from infected to susceptible, § represents
transition probability from aware to unaware, g represents transition
probability for individual not being infected by neighbors if it is
aware, gV represents transition probability for individual not being
infected by neighbors if it is unaware, r represents probability for
individual not changing from unaware to aware. The coupled dynamic
process takes place consecutive as time goes by.
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With respect to the above definitions, we have

. pA
S BTy
gty =101 —bjip} @8] (1)
g’ ) =T][1 - bjip}®)BY].

Note that Eqgs. (1) are obtained supposing independence
on the contribution from the neighbors, which is the only
approximation in MMCA [23,26]. H(x) is a heaviside step
function, i.e., if x > 0, H(x) = 1, else H(x) = 0. In other
words, r;(t) can only be 0 when the fraction of its aware
neighbors surpasses local awareness ratio «, or 1 if the fraction
of its aware neighbors is less than local awareness ratio «.

Then, the evolution equations of three different states can
be described as follows by using the MMCA method [26]:

P+ pSOri(g” (1) + pSsql (1)
PO =) + pS[1 — ri)g )
+pS(1 = 8)gl )
p+1) = pM)1 — ) + pSOf[1 = r@1[1 — (1))
+r[1 =g’ O]} + pPO{s[1 — ¢ )]
+1 =81 —qtm]}. )

P+ 1) =
P +1) =

There exists an epidemic threshold B, for the coupled
dynamic process. The epidemic threshold indicates that
for infection strengths B below the epidemic threshold
Be, initial epidemics quickly die out. While for infection
strengths B above the epidemic threshold f., the epi-
demics can outbreak in the population. We use the sta-
tionary solution of the system of Egs. (2) to get 8. by
lettlngt — 00, which means pAI(t + 1)t_>OO = p; I(t)r_)OQ =
pz > Di S(t + )t~>oo = D; s(t)tﬁoo = p, > Di S(t + 1)t~>oo =
pl.US 1) = plUS. Near the epidemic threshold, the probabil-
ity for nodes being infected can be assumed as pM = ¢; < 1.
Then, the probabilities for individuals not being infected by
neighbors are described as follows according to the above
assumption:

gl = H (1—bjip}'B")

~ (1 —BAEbjie)), 3)
! =T —bip}'s")
~ (1 —BYE;bjie€)). )

Considering the stationary probabilities of three different
states, pY'S, piS, pAl, with respect to Eqs. (3) and (4), we obtain
the reduced stationary equations upon omitting higher-order
items:

pi® = p{®ri + pSs, )

S = pPS(L —r)) 4 pS - 8). (6)
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Furthermore, we get the probability for node i being infected
€.

pei =p I —r)BAE;bjie; +ri BT bjie)]

+ PISIBBUS bjie; + (1 — 9B T bjie;]
= (P8 + pi°BY) % bjie; @

It’s clear that pA + pAS + pUS =1, where P = pM+ .
Noting that p' = ¢; < 1, we get p ~ p* and p/® =1 —
pM — pAS =1 — pA. So Eq. (7) can be described as

pei = B (1 — p);bjie;, (8)

therefore, Eq. (8) is reduced to X;[(1 — )bj, — ﬁ%tj,-]ej =
0, where t;; are the elements of the 1dent1fy matrix.

As a self-consistent equation, the epidemic threshold S,
reduces to the solution of eigenvalue problem. The outbreak
of epidemic is the minimum value 8Y satisfying Eq. (8). Let
Amax be the maximal eigenvalue of S whose elements are

s =1~ plA)bﬂ. Then the critical point is written as [26]
U H
= . 9
IBC X max ( )

IV. SIMULATIONS OF THE EPIDEMIC THRESHOLD

In Sec. III, we analytically obtain the condition for the
outbreak of epidemic. Simulations of this coupled dynamic
process are performed using different networks in this section
to crosscheck our analytical results. In the following, see Fig. 3,
we show the comparison of Monte Carlo simulations with our
theoretical predictions of epidemic threshold BY.

We consider a two-layer SF network, of which the topology
structures of the two layers are the same. Besides, the initial
condition is set to be that 10% of nodes are infected. Iterate the
rules of the coupled dynamic process with parallel updating
until convergence to a steady state. The process is totally
evolved for 1000 time steps. In order to reduce the fluctuation
of the percent of nodes to be infected, we make time average
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FIG. 3. (Color online) The comparison of epidemic thresholds
BY using the MMCA approach [blue (upper) line] and Monte Carlo
simulations [red (lower) line] as a function of local awareness ratio
o with a fixed value of § = 0.8. The recovery probability p is set
to 0.6. The two layers of the multiplex network are the same SF
network generated by the configuration model with exponent 3. Each
layer has 10* nodes and the average degree (k) = 6. The Monte Carlo
simulations is averaged by 30 realizations.
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FIG. 4. (Color online) Monte Carlo simulations of two-layer Erd6s-Rényi networks. The size of infected individuals p' is shown as a
function of infectivity 8. In every panel, we plot this dynamic process on four different local awareness ratios o: o = 0.2 (circle lower line),
o = 0.4 (cross line), o = 0.6 (circle upper line), @ = 0.8 (diamond line). The values of the other two parameters are: (a) u = 0.8, 5 = 0.3,
(b)yu =0.6,6=0.5,(c)u=0.5,8 =0.6,(d) o = 0.3, 5 = 0.8, respectively. The Erds-Rényi network has 10* nodes and the average degree
(k) is 5. All these simulations begin with the initial state where 10% of the nodes are infected and average 10 realizations for each curve on the

same Erdds-Rényi networks.

that satisfies p! = +Z/=0+" " '51(¢) and take T = 20 (that is,
to = 981).

As can be seen from Fig. 3, we find good agreement
between the MMCA method and simulations in calculating the
epidemic threshold BY and the discrepancy between MMCA
and Monte Carlo can also be shown in our simulations.
The reason why the analytic results always overestimate
the Monte Carlo is that we suppose independence on the
contribution from the neighbors in MMCA [23,26]. Due to the
assumption, the value of r;(¢) in MMCA is somehow smaller
than that in Monte Carlo simulations. Therefore, it is easier
for the outbreak of epidemics in Monte Carlo simulations.
Furthermore, we find that the epidemic threshold has an abrupt
transition when the local awareness ratio « is set to be 0.5. It is
of interest for us that the local awareness ratio « has two-stage
effects on the epidemic threshold Y. The two-stage is divided
at a fixed point o = 0.5, with the first stage occurring in the
range of o € [0,0.5) and the second stage happens when «
belongs to [0.5,1]. In each stage, the change of « has little
effect on the epidemic threshold. In order to explore if the
critical point is related to the structure of multiplex network or
the values of other parameters, including recovery probability
w and the probability of forgetting the awareness &, we perform
large amounts of simulations on different multiplex networks
with different values of p and é.

In the following, we apply our LACS model to the case
of two-layer Erd6s-Rényi networks, of which the two layers
are the same Erd6s-Rényi networks. In Fig. 4, we examine the
effect of local awareness ratio o on the change of epidemic
threshold BY.

Similar to SF networks, as can be seen from Fig. 4, in
the case of Erd6s-Rényi networks, it is found that the local
awareness ratio also has the two-stage effects on epidemic
threshold no matter what value § and pu is. On this occasion,
these simulations confirm that the two-stage effects appears

invariably in our model, irrespective of the value of § and u
and the structure of networks as well. We have also explored
other different structures of multiplex networks for the sake
of completion, and in all of them, the two-stage effects
exist. Besides, we have compared the UAU-SIS model [26]
with LACS model (for more details, see the Appendix).
All these simulations state one conclusion, that the coupled
dynamic process induces the appearance of two-stage effects
on epidemic threshold. That is to say, this phenomenon
suggests that the two-stage effects on epidemic threshold is
a result of our LACS model with one layer being a threshold
model and the other layer being a contagion model. In the
next section, so as to explore this critical point, within the
framework of LACS model, we use a 1D lattice model to
analyze this phenomenon.

A. Analysis of the critical point on 1D lattice model

We consider a 1D lattice model in which each node has
two neighbors with a total number of 10* nodes on each layer;
see Fig. 5. As the degree of each node is 2, there exist only
three cases of awareness states of its neighbors. The first case is
none of them is aware of the epidemics, the second case is only
one of them is aware of the epidemics, and the last one is both of
them are aware of the epidemics. When 0 < « < 0.5, if none
of the two neighbors is aware of the epidemics, the probability
of an unaware node to be aware is 0, otherwise, the probability
is 1; when o > 0.5, if both of the two neighbors are aware
of the epidemics, the probability of an unaware node to be
aware is 1, otherwise, the probability is 0. In the following, we
still use the MMCA method to study the epidemic threshold
of the 1D lattice model. Furthermore, through the analysis,
we illustrate the reason why two-stage effects on epidemic
threshold occur at o = 0.5.

To derive the epidemic threshold of the 1D lattice model, we
recall that the fraction of unaware nodes is Py, thus the fraction
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FIG. 5. (Color online) Example of LACS model on 1D lattice
model. In this figure, we describe the transitions of one unaware
node under different local awareness ratios: when 0 < « < 0.5.
(1) represents the two different cases where unaware node becomes
aware. (2) represents the unique case where unaware node remains
unaware; when o > 0.5, (1) represents the unique case where
unaware node becomes aware. (2) represents the two different cases
where unaware node remains unaware.
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of aware nodes is P» = 1 — Py. Because of the homogeneity
of lattice, we assume that the probability for one node being
aware is P and the probability for one node being unaware is
Py. According to these definitions, let PY),j = 0,1,2 be the
probability that one node has i neighbors, of which the state is
aware. Therefore, we have P© = P2, PV = 2P Py, P? =
Pﬁ. Then, we obtain the probability tree of the lattice as Fig. 6.

0<a<0.5
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FIG. 6. (Color online) Transition probability trees of 1D lattice
model. The probability trees that Al and AS states transform into
other states are the same with SF networks. As for the US state,
because of the existence of critical awareness ratio @ = 0.5, there are
two kinds of trees according to different local awareness ratios. In
this figure, red node means that this node is aware and white means
the node is unaware. P is the probability that the awareness states
of two neighbors are unaware, and P® is the probability that the
awareness states of two neighbors are aware. The other parameters
represent the same meanings as described in Sec. III.
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Hence, through analyzing the states of the two neighbors
of node i, using the MMCA method, we can get PiUS(t) and
PAS(¢), which represent the probabilities for node i being US
state or AS state, respectively:

(HD0<a <05

PU @+ 1) = PM(us + PP 0)sq” + PS)PVq!
PP+ 1) = PN = 8) + P01 = 8)g
+ PP (01 = PO, (10)

2)a =05
P+ 1) = PM(Ops + PP 0q + PE @)1 — PP)g
P+ 1) = PNyl — 8) + P01 - 8)g

+ PP PPqg. (11)

Among Eqgs. (10) and (11), Pl.AI is the probability for node
i being Al state and other parameters have the same meanings
with our definitions of the LACS model in Sec. III. We use
the same assumption as Eq. (7) to derive stationary solution of

Egs. (10) and (11). Thus, Eqgs. (10) and (11) can be described
as follows:

MH0<a <05
})iUS — })iASS _|_ })iUSP(O)
(12)
PiAS — PiAS(] _ 8) 4 PiUS(l _ P(O))7
2)a >=0.5
PUS = PASs 4 PUS(1 — P?)
1 1 1 (13)

PiAS — PiAS(l _ 5) + })iUSP(z).

Noting that P© = P2, P® = P} and inserting them in
Egs. (12) and (13), we obtain
MO0<a<0.5

PYS = PS5 + PGPS ~ PMSs. (14)

Since we have PUS+ PAS 4+ PA=1 and PM=¢ « 1
around the epidemic threshold B., we can approximately
get Pl.US + Pl.AS = 1. Therefore, it is clear for us that when
0<a<0.5,PiUS:#

I3 °
2)a =05
PUS = PASs + (1 — PP)PYS ~ PASs + PS5, (15)

which means that when o > 0.5, Pl.AS ~ 0 and then PiUS ~ 1.
In Fig. 7, we show our analysis about the final size of unaware
nodes around the epidemic threshold ..

Equations (14) and (15) mean that when « € [0.5,1],
the final fraction of unaware nodes PUS = L 3% pUS ~ |
around the epidemic threshold ., whereas when o € [0,0.5),

PUS ~ PAS§ ~ 7. These results lead to the two-stage
8

effects on the epidemic threshold BV for the reason that
the more individuals know the epidemics, the bigger the
epidemic threshold is. Therefore, as a result of different
fractions of unaware individuals around 0.5, there exists an
abrupt transition for the epidemic threshold. That is to say,
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FIG. 7. (Color online) Plot of the epidemic threshold BY as a
function of local awareness ratio «. The two-stage effects on epidemic
threshold occur at o« = 0.5, whereas the inset shows the comparison
of theoretical analysis of PUS = L %; PYS (green and red dotted line)
and the Monte Carlo sunulatlons (blue dotted line) with § = 0. 8

1

Note that when § = 0.8, our theoretical analysis of PUS = —L- =2
3

if o € [0,0.5), otherwise PUS = 1 on the 1D lattice model.

the awareness cascade on upper layer leads to the two-stage
effects of the epidemic threshold.

As to an epidemic, the epidemic threshold and the final
epidemic size are two important characteristics to describe
it. From the analysis above, we explore the two-stage effects
of our LACS model on the epidemic threshold. Hence, in
order to have a comprehensive understanding of the effects
of LACS model on epidemics, in the following section, we
study the effect of local awareness ratio on the final epidemic
size.

B. The effect of local awareness ratio on the final epidemic size

In order to explore what effect the local awareness ratio has
on the spreading of epidemics, we illustrate the spreading
process in Figs. 8 and 9. In the two figures, we plot the
stationary fraction of infected individuals p' as a function of
infectivity BV and « using the SF multiplex networks defined
in Fig. 3 with different values of recovery probability u and
the probability of forgetting the awareness §.

I

7
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FIG. 8. (Color online) The stationary fraction of infected individ-
ual p' as a function of infectivity BV and the local awareness ratio o
with the same value of § = 0.4 in every panel. Recovery probability ©
is set as follows: (a) u = 0.5, (b) u = 0.6, (c) u = 0.7, (d) u = 0.8,
from top left to bottom right. The four full phase diagrams S—« for the
same multiplex network described in the legend of Fig. 3 are obtained
by averaging 20 realizations for each point in the grid 100 x 100.

PHYSICAL REVIEW E 91, 012822 (2015)

7
), 05 (b)! Sy
08 025 08 025
06 02 06 02
04 015 S o4 0.15
% o2 05 08 1 1° % 02 05 08 1 [°

FIG. 9. (Color online) The stationary fraction of infected indi-
vidual p' as a function of infectivity B8V and the local awareness ratio
o with the same value of © = 0.9 in every panel. The probability
of forget the awareness § is set as follows: (a) § = 0.5, (b) 6 = 0.6,
(¢) § =0.7, (d) 6§ = 0.8, from top left to bottom right. The four full
phase diagrams S—« for the same multiplex network described in the
legend of Fig. 3 are obtained by averaging 20 realizations for each
point in the grid 100 x 100.

As can be seen from Figs. 8 and 9, it’s clear that the effects
o has on the spreading of epidemics can be classified into
two categories, of which one is the final epidemic size o'
and the other is the epidemic threshold BV. As for the final
epidemic size, we find that local awareness ratio « plays two
roles under different recovery probability © and probability of
forget the awareness §. On the one hand, when « € [0,0.5),
it has little effect on the final epidemic size; on the other
hand, however, if « € [0.5,1], it has obvious effect on the
final epidemic size, especially when o becomes larger and
larger (also see Appendix). Furthermore, with a smaller §
and bigger u, the final size of epidemic becomes smaller
and smaller. It is obvious that the increasing of w leads to
a faster decreasing of final epidemic size than the decreasing
of §. This is because u is the recovery probability, which can
directly effect the percentage of infected individuals, whereas
8 is the probability of forgetting awarenes, which effects
the percent of infected individuals through coupled dynamic
process. At the same time, in all these cases, similar to Figs. 3
and 4, the epidemic threshold BY has an abrupt transition
at = 0.5, which has been discussed above on 1D lattice
model.

Here let us go back to our LACS model to explore the reason
of two-stage effects on final epidemic size. As « is the local
awareness ratio, then if « becomes larger, the probability of
unaware individuals to become aware becomes smaller. This
can also lead to the probability for individuals being infected
to become bigger, becuase individuals cannot take measures
if they are unaware of the disease. But the bigger infectivity
probability leads more individuals to become aware, which
can in turn promote the spreading of awareness. The coupled
dynamic process determines the final epidemic size and it is
balanced by the two factors’ effects. Owing to the two-stage
effects on the epidemic threshold, the epidemic threshold is
grouped into two situations. When o < 0.5, the effect of larger
« on the promotion of epidemic spreading can be balanced by
the effect of increasing popularity of awareness. However,
when o > 0.5, larger o shows a strong effect on promoting
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the spreading of epidemic and leads to a larger fraction of
infected individuals. Hence, the dynamic process of the two
layers with different spreading models helps us understand the
difference of final epidemic size when « is set to be various
values.

V. CONCLUSIONS

In summary, we have studied the effects of awareness
spreading on the outbreak of epidemics in the framework of
multiplex networks. Our results show that the local awareness
ratio « has two-stage effects on epidemic threshold and leads
to different final epidemic sizes, regardless of the structure
of networks or the values of other parameters. That is to say,
when « is in the range of [0,0.5), the epidemic threshold is
a fixed and larger value; however, in the range of [0.5,1], the
epidemic threshold is also a fixed but smaller value. As for
the final epidemic size, it increases as the local awareness
ratio « increases. But if « € [0,0.5), the increasing speed is
much more slower than the speed when o € [0.5,1]. These
phenomena give us an interesting way to understand the
epidemics in reality for they can somehow explain why some
epidemics cannot outbreak or reach the epidemic threshold.
In reality, for some epidemics, if an individual is easy to take
measures even though less than half of his friends know or
are infected by some epidemics, which means that in our
awareness-spreading layer the local awareness ratio o < 0.5.
Since on the point the epidemic threshold is bigger, this leads
to the outbreak failure of epidemics.

Furthermore, our results give us useful suggestions on the
prevention of epidemics through different strategies. For some
serious epidemics, the local awareness ratio « of an individual
locates in [0,0.5) with large probability, which indicates that
they don’t need half of their neighbors to tell them about the
epidemics. Therefore, as the epidemic threshold is the bigger
one and decreasing the local awareness threshold has little
effect on the final epidemic size, what we should do is to try our
best to separate and cure the infected individuals. But for some
other epidemics, the bigger local awareness ratio « along with
the smaller epidemic threshold sheds light on what measures
we should take to lower the popularity of epidemics. We
should broadcast epidemics through various social networks
to catch individuals’ attention and then decrease the local
awareness ratio, which cannot only make the final epidemic
size become smaller but also increase the epidemic threshold.
Finally, our LACS model can also be applied to various
spreading processes, including rumor spreading, to have a
better understanding of them.
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where 10% of the nodes are infected on the two-layer Erdds-Rényi
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APPENDIX

In this Appendix, we apply LACS model on various
multiplex networks to explore the effects of local awareness
ratio on the spreading of epidemics.

In Fig. 10, we explore the spreading process on the
two-layer Erd6s-Rényi network, of which the two lay-
ers are the same Erdds-Rényi networks. Meanwhile, the
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FIG. 11. (Color online) The stationary fraction of infected indi-
vidual p! as a function of infectivity BY and the local awareness
ratio «. The parameters are set as follows: (a) u =0.3,5 =0.8,
b) £u=05,8=06, (c) n=0.6,6=0.5, (d n=0.8,6=0.73,
from top left to bottom right. The four full phase diagrams S—«
are obtained by averaging 20 Monte Carlo simulations for each point
in the grid 100 x 100. All these simulations begin with the initial
state where 10% of the nodes are infected on the multiplex network
with two different layers.
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FIG. 12. (Color online) Monte Carlo simulations of LACS model (blue circle and red plus sign lines) and the UAU-SIS model (green
triangle line); the initial fraction of infected nodes is set to be 10%. In the four panels, we plot the stationary fraction of infected individual p'
as a function of infectivity BV for a fixed value of A = 0.2, & = 0.2, o = 0.8. The other parameters are set as follows: (a) 4 = 0.3, 8 = 0.8,
b)yu=0.5,§=0.6,(c) u =0.6,5§ =0.5, (d) u = 0.8, 5§ = 0.3, respectively.

Erdés-Rényi network has 10* nodes and the average degree
(k) is 5.

In Fig. 11, we also explore the spreading process on one
multiplex network with two different layers. The awareness
layer is Erd6s-Rényi network defined above and the contagion
layer is SF network, which consists of 10* nodes generated by
the configuration model with exponent 3. Besides, the average
degree of the SF network is 6.

It is clear that the two-stage effects also exist in these
multiplex networks, no matter what kinds of networks the two
layers belong to. It is also interesting that increasing 8 in a
certain range, the awareness cascade overcomes the infection
cascade when u > §, such as, Figs. 8(d), 10(d), and 11(d).
In addition, as can be seen from these figures, the overcome
phenomenon is especially remarkable on the two-layer Erd&s-
Rényi multiplex network. Hence, in order to explore the reason
why there exists this interesting phenomenon, let’s consider the
details of the coupled spreading process. As described in the
main text, u is the probability of recovering from epidemics
for infected node and § is the probability of being unaware
for aware node, respectively. Therefore, with the increasing
of B, more and more nodes become infected, at the same
time, larger u leads more nodes to become susceptible, and
smaller § makes more nodes stay aware. This coupled dynamic
process produces more and more nodes whose states are AS,
which can slow down the speed of the spreading process. If the
promotion effect of lager 8 is not so strong to overcome the
effect of 1 and 8, the fraction of infected nodes p! becomes
smaller instead of increasing with B. With respect to the
difference between Erd&s-Rényi multiplex network and SF
multiplex network, it is important to compare the different
structures of these two kinds of network. Because of the
preferential attachment, SF network has a more widely degree

distribution than ER network. According to our LACS model,
it is somehow difficult for unaware hub nodes being aware on
SF network, which means that larger u and smaller § produces
more US nodes instead of AS nodes. Since the AS nodes
cannot only decrease p' but also promote the spreading of
awareness, the slowing down effect on the spreading process of
SF network is not so strong as Erd6s-Rényi network. This can
also be seen through comparing Fig. 8(d), which is a two-layer
SF network, with Fig. 11(d), of which the awareness layer is
Erd6s-Rényi network and the other is SF network. Although
the difference between these two multiplex networks is just
the structure of awareness layer, the overcome phenomenon
of SF multiplex network is much less obvious than the one
including one Erd6s-Rényi layer. Therefore, the phenomenon
also indicates the importance of awareness spreading on the
coupled dynamic process.

In the following, we also compare the UAU-SIS model [26]
with LACS model on a two-layer SF multiplex network as
defined in the legend of Fig. 3. Since unaware nodes in
the UAU-SIS model can become aware with a probability
A through communication with their neighbors, which is
different with threshold model, we have compared these two
models on different conditions of A and local awareness ratio
o, as can be seen from Figs. 12 and 13.

As shown in Figs. 12 and 13, the dynamic processes of
these two models are different from each other according
to the value of A: When A < 1, the epidemic threshold of
the UAU-SIS model BUAY satisfies &1 < BYAY < B2, where

o1 B2 represents the small and large epidemic threshold of
LACS model, respectively. Therefore, through considering the
awareness layer as a threshold model, abundant details about
the outbreak of epidemics have been obtained. Besides, with
the increasing of §, final epidemic size of the UAU-SIS model
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FIG. 13. (Color online) Monte Carlo simulations of LACS model (blue circle and red triangle lines) and the UAU-SIS model (green plus
sign line); the initial fraction of infected nodes is set to be 10%. In the four panels, we plot the stationary fraction of infected individual o'
as a function of infectivity BY for a fixed value of A = 0.8, @ = 0.2, « = 0.8. The other parameters are set as follows: (a) u = 0.3,8 = 0.8,
®)pu=05,6=0.6,(c)u=0.6,6§ =0.5,() nu=0.8,8§ = 0.3, respectively.

increases more quickly than LACS model, whatever « is.
However, when A — 1, the dynamic process of the UAU-SIS
model is almost the same as that of LACS model with small
«. Noting that the difference between these two models is the
definition of the probability of unaware node being aware.
Thus, when A — 1, this means that the probability of unaware
node i being aware is almost 1 if node i has aware neighbors. At
the same time, since when « is smaller than 0.5, the spreading
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process on LACS model is almost the same, for simplicity, we
consider an critical point that @ — 0. It is obvious that when
a — 0, the probability for unaware node i being aware is also
almost 1 if node i has aware neighbors. This induces that the
dynamic processes on these two models are almost the same.

In order to verify our analysis, we have also compared
the UAU-SIS model with LACS model on different multiplex
networks in Figs. 14 and 15. The results show that when A — 1
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FIG. 14. (Color online) Monte Carlo simulations of LACS model [green circle (upper) and red plus sign (lower) lines] and the UAU-SIS
model [yellow circle (lower) and blue plus sign (upper) line] on two-layer ER network defined in the legend of Fig. 4; the initial fraction of
infected nodes is set to be 10%. In the four panels, we plot the stationary fraction of infected individual p' as a function of infectivity Y
for a fixed value of A = 0.2, A = 0.8, = 0.2, « = 0.8. The other parameters are set as follows: (a) u = 0.3,5 = 0.8, (b) u = 0.5, = 0.6,

(©)u=0.6,6=0.5, () n=0.8,8 = 0.3, respectively.
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FIG. 15. (Color online) Monte Carlo simulations of LACS model [green circle (upper) and red plus sign (lower) lines] and the UAU-SIS
model [yellow circle (lower) and blue plus sign (upper) line] on one multiplex network defined in Fig. 11, of which the awareness layer is ER
network and the other layer is SF network. The initial fraction of infected nodes is set to be 10%. In the four panels, we plot the stationary
fraction of infected individual p' as a function of infectivity BV for a fixed value of A = 0.2, A = 0.8, & = 0.2, @ = 0.8. The other parameters
are set as follows: (a) u = 0.3,6 =0.8,(b) u =0.5,8 = 0.6, (c) u = 0.6, = 0.5, (d) u = 0.8, 8 = 0.3, respectively.

and « is smaller than 0.5, the dynamic processes of the two
models are always almost the same no matter what structure
the multiplex network is. Therefore, through the comparison
between the UAU-SIS model with LACS model, we have

also crosschecked LACS model. From the analysis above, we
find that the LACS model gives us a better understanding of
the UAU-SIS model and reveals abundant details of epidemic
spreading.
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