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We study the problem of a particle or message that travels as a biased random walk towards a target node in
a network in the presence of traps. The bias is represented as the probability p of the particle to travel along the
shortest path to the target node. The efficiency of the transmission process is expressed through the fraction fg of
particles that succeed to reach the target without being trapped. By relating fg with the number S of nodes visited
before reaching the target, we first show that, for the unbiased random walk, fg is inversely proportional to both
the concentration c of traps and the size N of the network. For the case of biased walks, a simple approximation
of S provides an analytical solution that describes well the behavior of fg , especially for p > 0.5. Also, it is
shown that for a given value of the bias p, when the concentration of traps is less than a threshold value equal
to the inverse of the mean first passage time (MFPT) between two randomly chosen nodes of the network, the
efficiency of transmission is unaffected by the presence of traps and almost all the particles arrive at the target.
As a consequence, for a given concentration of traps, we can estimate the minimum bias that is needed to have
unaffected transmission, especially in the case of random regular (RR), Erdős-Rényi (ER) and scale-free (SF)
networks, where an exact expression (RR and ER) or an upper bound (SF) of the MFPT is known analytically. We
also study analytically and numerically, the fraction fg of particles that reach the target on SF networks, where
a single trap is placed on the highest degree node. For the unbiased random walk, we find that fg ∼ N−1/(γ−1),
where γ is the power law exponent of the SF network.
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I. INTRODUCTION

An important process usually associated with random walks
is trapping. Trapping reactions have been widely studied as part
of the general reaction-diffusion scheme. The trapping reaction
can be formulated as A + T → T , where T is a static trap and
A is a diffusing species that is annihilated irreversibly when it
comes in contact with the trap. The problem has been studied
in a variety of geometries, such as regular lattices, in fractal
spaces [1–5], and recently, in small-world [6], Erdős-Rényi
(ER) [7,8], and scale-free (SF) networks [7–9].

Such trapping processes can be related to the efficiency
of message transmission in networks in the presence of one
or more traps. The problem can be regarded as an analog
for the propagation of information in certain communication
networks in the form of packets. This follows since in
some cases data packets traverse the network in a random
fashion (for example, in wireless sensor networks [10], ad-hoc
networks [11], and peer-to-peer networks [12]). A trap acts as
a node which is malfunctioning and where information is lost,
e.g., like a router which can receive but not transmit data due to
a malfunction or an e-mail server unable to forward incoming
mails. However, information about the structure of the network
might provide an opportunity to send a message with a bias
towards the target. In [13], it was shown that using such a bias
significantly reduces the time of diffusion from the source to
the target. In ER networks there exists a threshold value of
the bias parameter delimiting a power law and a logarithmic

scaling of the mean first passage time (MFPT) with the size N

of the network. In SF networks, the scaling of the MFPT with
network dimensions is always less than a power of ln N , i.e.,
the gain of time is very important in SF networks, even for
a small value of the bias parameter. When a certain number
of nodes or a single important node, such as a hub, lose their
functionality and act like traps, since some messages going
through these nodes will never arrive at their target, it is of
interest to know the percentage of messages that are lost. It is,
therefore, important to see if and how applying a bias towards
the target nodes can help in saving messages.

II. MODEL AND METHODS

Our model can be described as follows: Messages start
to be transmitted from a source node, with a target node as a
destination. Both source and target nodes are chosen randomly
from the total number of network nodes, but always on the giant
connected component. Messages may diffuse on the network
randomly, or with a bias toward the target node. Traps act
as malfunctioning nodes in which information is lost (e.g., a
router which cannot transmit data due to some failure). We use
Monte Carlo computer simulations. As described in [13], at
each step, the particle travels either on a shortest path towards
the target, with a probability 0 � p � 1, or randomly to one
of its node neighbors with a probability 1 − p. The particle
may be trapped before it arrives on the target. The efficiency
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of transmission from the source to the target node is given by
fg , which is the fraction of particles that arrive from the source
to the target. Obviously, the closer this value is to 1, the more
efficient the transmission process is.

The algorithm of the model may be described as follows:
(1) A pair of random nodes is selected as source and target

nodes. A particle begins moving on the network from the
source node.

(2) At each time step the particle hops to an adjacent
node along the shortest path (between source and target) with
probability p, or to a random node (including those on the
shortest path) with probability 1 − p.

(3) If the particle is trapped or arrives on target, go to step
1; else go to step 2 (i.e., perform another time step).

We consider the process only on the largest cluster of the
network. We perform a total of 105 realizations using 100
different networks, while performing walks between 1000
pairs of random source-target nodes on each network.

III. RESULTS FOR THE CONCENTRATION OF TRAPS

A key quantity for solving the problem of trapping is the
number of distinct nodes S visited before reaching the target.
Indeed, fg is in reality the survival probability of the particles
until meeting the target. If we denote by qS=m the probability
that the number of distinct nodes visited before reaching the
target is equal to m, then the fraction fg of particles that
succeed to reach the target without being trapped can be

expressed exactly as the following sum:

fg =
m=N∑
m=1

qS=m(1 − c)m−1. (1)

For the unbiased random walk, since each node of the
network (except the source) has the same probability of being
the target, fg can be easily estimated:

fg =
m=N∑
m=1

qS=m(1 − c)m−1 ≈ 1

N − 1

∫ m=N

m=1
e−c(m−1)dm

≈ 1

Nc
. (2)

First, we plot the transmission efficiency of the biased
random walk in the presence of a concentration c of traps
in ER networks obtained by simulations. In Fig. 1(a), we plot
the fraction of particles that arrive on targets fg , as a function
of the concentration of traps c for different values of the bias
parameters in ER networks. Equation (1) is tested in Fig. 1(c)
by plotting both the results from simulations with traps (full
symbols) and the evaluation of Eq. (1) (continuous lines) where
qS=m is obtained from simulations without traps [see Fig. 1(d)].
As expected from Eq. (2), we see in Figs. 1(a) and 1(b) that the
probability that the unbiased particle will arrive at the target
before meeting a trap is inversely proportional to both the
size of the system and the concentration of traps. However,
the situation is different for biased random walks. Indeed, in

(a) (b)

(c) (d)

FIG. 1. (Color online) (a) Log-log plot of fg vs c for various values of p in ER networks with 〈k〉 = 10, N = 100 000. (b) For p = 0, fg

scales as 1/N . (c) Comparison of results for N = 20 000 (full symbols) with results from Eq. (1) (continuous lines) where (d) the probability
qS=m for having m distinct nodes visited for different p values is obtained from simulations without traps on similar networks.
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FIG. 2. (Color online) Log-log plot of fg vs cTD for ER networks
with 〈k〉 = 10 where TD is the MFPT in the case with no traps
calculated from Eqs. (4) and (5). Here, we vary the trap concentration
c and N = 100 000, for various values of p.

Fig. 1 we see that, for low values of c, the particle may not hit
the traps even with a relatively very small bias, and practically
all particles arrive at their target. For a higher concentration of
traps, one needs stronger bias to survive and reach the target.
This follows, because a stronger bias towards the target makes
the path length shorter which helps to encounter less possible
traps. Note that for small bias p, and for intermediate range
of c, fg is almost parallel to fg at p = 0. This suggests that in
this range also the survival fg of biased particles is inversely
proportional to c. We hypothesize that this crossover is due to
two competing time scales. One is the typical time a walker
does not encounter traps, 1/c, and the second is the MFPT
from source to target without the presence of traps. We test
this hypothesis in the scaling of Fig. 2.

In Fig. 2, we plot the same data as in Fig. 1 but instead of
c on the x axes we use cTD , where TD is the MFPT from the
source to the target in the case with no traps calculated from
Eqs. (4) and (5). Indeed, except from a very high concentration
of traps (order 1) the curves collapse into a single curve.
This collapse clearly suggests the above discussed two distinct
time scales and a crossover point corresponding to a threshold
concentration

cth
∼= T −1

D . (3)

For c < cth the concentration of traps does not affect at
all the transmission efficiency and practically fg ≈ 1. This
seems reasonable since 1/c can be considered as the mean
time spent between traps, and if the time to reach the target is
less than the time to diffuse from one trap to the other, then the
particle practically will not meet the traps. This result gives
us a relation that connects directly the concentration of traps
in a network of size N with the value of the minimum bias
parameter pm that is needed to have completely full efficiency.
In [13], the MFPT was found analytically for random regular
(RR) and ER networks for every value of the bias parameter
[see Eqs. (4) and (5)]. Thus, in both RR and ER networks with
a concentration c of traps, pm can be found easily by solving

the following equation:

TD = D

2p′
m − 1

+ 1 − p′
m

(2p′
m − 1)2

[(
1 − p′

m

p′
m

)D

− 1

]
= 1

c
,

(4)

where p′
m = pm + (1 − pm)/〈k〉 (k is the degree of a node,

i.e., the number of its connections) and

D = ln [1 + (〈k〉 −2)(N − 1)/ 〈k〉]
ln(〈k〉 − 1)

≈ ln [(〈k〉−2)N/ 〈k〉]
ln(〈k〉 − 1)

.

(5)

Furthermore, in Figs. 1 and 2 we see that for c > cth(p)
the transmission efficiency is strongly affected by traps and all
the curves follow the unbiased one that has a slope of −1 in
the log-log plot except for very large c of order 1.

We also study fg for scale-free networks with degree
distribution p(k) ∼ k−γ [14–16], where γ is the slope of
the power law distribution, typically between 2 and 3 in real
networks. We find in SF networks similar behavior (see Fig. 3),
and there is a similar abrupt decay of fg above cth. However,
in this case the MFPT is not known analytically for every
value of p. Instead, it is possible to use the upper bound
value of the MFPT [13]. It will not give the minimum value
pm, but a certainly secured value with applicability to real
networks. Our results on SF networks suggest that it is possible
to secure almost all the messages by only applying a minimum,
often very small, bias. What is needed for this is a minimal
knowledge of the structure of the network or a strategy to
increase the probability to get closer to the target at each step.
In comparison with ER networks, we see that in SF networks
a smaller bias is needed to have a significant improvement in
fg . This is mainly due to the MFPT, which is significantly
smaller in SF networks compared to ER networks when a bias
towards the target is applied [13]. This is since, due to hubs,
the distances between sources and targets are smaller on the
order of ln(ln N ) [17] compared to ER networks for which the
distances scale as ln N [18].

According to Eq. (1), the key quantity is the distribution
qS of the number of distinct nodes S visited before meeting
the target. Even if it is difficult to find an analytic expression
of the function qS for all cases, we can still approximate
qS in two regimes. For a sufficiently large value of the bias
parameter p and low concentration of traps, c < cth, the
distribution of S is not so broad. In this case, we can find an
approximation for the mean value of S by considering the
typically treelike structure of ER networks (see Fig. 4). When
the particle deviates from the shortest path, we assume that it
passes twice the same nodes and the mean number of distinct
nodes visited can then be approximated by

S � D + 1
2 (TD − D) = 1

2 (TD + D), (6)

where TD and D are the known MFPT and mean shortest
distance in the network, respectively. Thus, using Eq. (1), fg

can be approximated by the following expression:

fg � (1 − c)
1
2 (TD+D) (c < cth). (7)
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(a) (b)

FIG. 3. (Color online) (a) Log-log plot of fg vs c for various values of p for SF networks with γ = 2.5 and N = 20 000. (b) Log-log plot of
fg vs cTD for the same SF networks where TD is the MFPT for the case of no traps. Results are for different trap concentrations c, N = 20 000,
and for various values of p.

For c > cth, the probability to hit the target before any other
trap is proportional to 1/c,

fg � A(p)

c
, (c > cth), (8)

where A(p) can be calculated for each p by solving

A(p)

cth
= (1 − cth)

1
2 (TD+D). (9)

Since we know analytically both D and TD for ER networks,
it is possible to test the validity of this approximation. In
Fig. 5, we compare simulation results (symbols) and the
corresponding approximated curves obtained by using Eqs. (7)
and (8). We see that very simple arguments give a surprisingly
good analytic approximation, even for relatively small bias.

It is also useful to investigate the dependence of the average
time of the survived particles to reach the target, 〈ttarget〉, on
p in the presence of traps. In Fig. 6 we analyze 〈ttarget〉 and

FIG. 4. (Color online) For a sufficiently large value of p, we
assume that the mean number of distinct nodes S can be approximated
by D(dashed blue)+ 1

2 (TD − D)(dashed-dotted red)= 1
2 (TD + D).

find that the bias p has a significant effect on the average time,
decreasing it, only for values of p above a certain threshold,
which depends on the concentration of traps (higher values
for higher concentrations). When the bias is low, since only
very few walks reach the target, representing the case where
the target is very close to the source, we get a MFPT which is
constant in p and N and depends only on c (as 1/c, which is
the average time between traps). This contains only the case
in which we hit the target by chance, with no bias towards it,
and thus the time is independent of p and N . Thus, when
the bias is low, the process is controlled by the presence
of traps and the distance between the traps is the important
parameter controlling the diffusion time, 〈ttarget〉 ∼ 1/c; see
dotted lines in Fig. 6. On the other hand, when the bias becomes
important the average time to diffuse to the target becomes
less than 1/c and the process is controlled by the dependence
of the MFPT on the bias parameter p (red bold curve in
Fig. 6).

FIG. 5. (Color online) Log-log plot of fg vs c in ER networks
with 〈k〉 = 10 and N = 20 000. The symbols represent simulation
results while the lines correspond to the approximated analytic
expressions Eqs. (7) and (8). Note that we assume that Eq. (3) can be
approximated by cth = 1.1/TD .
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FIG. 6. (Color online) 〈ttarget〉 vs p for ER networks with 〈k〉 =
10, N = 20000, for various values of c. The dotted lines correspond
to the 1/c values and the red bold curve to the p dependence of the
MFPT without traps according to Eq. (4).

IV. SINGLE TRAP—SF NETWORKS

We are now interested in a scenario where a central hub of
the network fails, as may be the case with real world networks
since this kind of node is very prone to attacks. In this case,
we assume that a single trap is placed on the highest degree
node kmax of the network. When only one trap is present on
the highest connected node of the network, we can use the
following simple argument to evaluate fg . We consider that all
the kmax nodes that are connected with the hub act like traps
since they drive the particle to the trap. Thus, for the unbiased
case, we can use kmax/N instead of c in Eq. (2). Thus, we
assume

fg ∼ 1

kmax
. (10)

The scaling of kmax with the size of the network is known for

all γ values to be kmax ∼ N
1

γ−1 [19]. Thus, for the random walk
case, without bias, we have

fg ∼ N
− 1

γ−1 . (11)

FIG. 8. Equation (11) suggests that ln fg ∼ A ln N where A =
−1/(γ − 1). The line represents the theoretical A = −1/(γ − 1).
The symbols are slopes from simulations of the unbiased case (p = 0)
obtained from figures like Figs. 7(a) and 7(b).

In Figs. 7(a) and 7(b) we see the results for the scaling of fg

with system size N for various p values in SF networks with
γ = 2.2 and 3, respectively, when a single trap is present on the
most connected node. For the unbiased walk the dependence
of the slope on γ is in very good agreement with Eq. (11) (see
also Fig. 8). This relation shows the increasing role of the hub
when γ is decreased. For small γ , most particles traversing
the network need to pass through the hub and are subsequently
trapped while for higher γ values, the particle is more likely
to find the target without passing from through the hub. When
considering a biased random walk, the general picture from
Figs. 7(a) and 7(b) is that when the size of the network becomes
sufficiently large, fg remains almost unaffected by system size
for every value of p. This means that in a SF network with
failure of the most connected node, even a small bias can
vastly improve the transmission process in comparison with
the unbiased case, and the effect is more pronounced the larger
the network. In a SF network with large γ values, the effect is
less pronounced; however, a small bias still offers a significant
improvement in the fraction of particles that successfully arrive
on target.

(a) (b)

FIG. 7. (Color online) Log-log plots of fg vs N when the largest hub is a trap for SF networks with (a) γ = 2.2 and (b) γ = 3. Note that
the slopes for the unbiased case agree well with Eq. (11).

012817-5



SKARPALEZOS, KITTAS, ARGYRAKIS, COHEN, AND HAVLIN PHYSICAL REVIEW E 91, 012817 (2015)

V. CONCLUSIONS

We propose a model to study the efficiency of biased
random walks in ER and SF networks to reach their targets
in the presence of traps. We find that in the presence of a
concentration c of randomly distributed traps, for the unbiased
random walk, the dependence of the fraction of particles that
arrive on target fg on c is fg ∼ c−1 in both ER and SF
networks. For biased walks, there exists a threshold value
of the concentration cth which depends on the bias p. For
c < cth almost all the particles arrive on target without being
trapped, i.e., fg ≈ 1. For c > cth, fg decreases significantly
approximately as 1/c. This threshold value cth corresponds
to the inverse of the MFPT of the biased diffusion process
without traps, and thus it is possible for any concentration of
traps to find the needed minimum bias parameter p in order to
have unaffected transmission. Also, by a simple approximation
of the mean numbers of distinct nodes visited, we obtain an
analytic expression that adequately describes the function fg

for a broad range of values of p. We have also investigated the

efficiency of the process in SF networks after the failure of the
most connected node which behaves as a trap. In the case of
the unbiased random walk, we find that fg ∼ 1/kmax and thus
fg ∼ N−1/(γ−1). In the case of biased walks, even a small bias
can vastly improve the efficiency of the transmission process
in comparison with the unbiased case. The improvement
is more pronounced the larger is the size of the network,
since the effective concentration of traps, kmax/N , decreases
with N .
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