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Multiple transitions of the susceptible-infected-susceptible epidemic model on complex networks
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The epidemic threshold of the susceptible-infected-susceptible (SIS) dynamics on random networks having a
power law degree distribution with exponent γ > 3 has been investigated using different mean-field approaches,
which predict different outcomes. We performed extensive simulations in the quasistationary state for a
comparison with these mean-field theories. We observed concomitant multiple transitions in individual networks
presenting large gaps in the degree distribution and the obtained multiple epidemic thresholds are well described
by different mean-field theories. We observed that the transitions involving thresholds which vanish at the
thermodynamic limit involve localized states, in which a vanishing fraction of the network effectively contributes
to epidemic activity, whereas an endemic state, with a finite density of infected vertices, occurs at a finite
threshold. The multiple transitions are related to the activations of distinct subdomains of the network, which are
not directly connected.
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I. INTRODUCTION

Phase transitions involving equilibrium and nonequilibrium
processes on complex networks have begun drawing an
increasing interest soon after the boom of network science in
the late 1990s [1]. Percolation [2], epidemic spreading [3], and
spin systems [4] are only a few examples of breakthrough in
the investigation of critical phenomena in complex networks.
Absorbing state phase transitions [5] have become a paradig-
matic issue in the interplay between nonequilibrium systems
and complex networks [6–10] with epidemic spreading being
a prominent example where high complexity emerges from
very simple dynamical rules on heterogeneous substrates
[3, 11–15].

The existence or absence of finite epidemic thresholds
involving an endemic phase of the susceptible-infected-
susceptible (SIS) model on scale-free (SF) networks with a de-
gree distribution P (k) ∼ k−γ , where γ is the degree exponent,
has been target of a recent and intense investigation [11–17]. In
the SIS epidemic model, individuals can only be in one of two
states: infected or susceptible. Infected individuals become
spontaneously healthy at rate 1 (this choice fixes the time
scale), while the susceptible ones are infected at rate λni ,
where ni is the number of infected contacts of a vertex i.

Distinct theoretical approaches for the SIS model were
devised to determine an epidemic threshold λc separat-
ing an absorbing, disease-free state from an active phase
[11–19]. The quenched mean-field (QMF) theory [18] explic-
itly includes the entire structure of the network through its
adjacency matrix while the heterogeneous mean-field (HMF)
theory [3] performs a coarse-graining of the network grouping
vertices accordingly their degrees. The HMF theory predicts a
vanishing threshold for the SIS model for the range 2 < γ � 3
while a finite threshold is expected for γ > 3. Conversely, the
QMF theory states a threshold inversely proportional to the
largest eigenvalue of the adjacency matrix, implying that
the threshold vanishes for any value of γ [11]. However,
Goltsev et al. [12] proposed that QMF theory predicts the
threshold for an endemic phase, in which a finite fraction of
the network is infected, only if the principal eigenvector of
the adjacency matrix is delocalized. In the case of a localized

principal eigenvector, that usually happens for large random
networks with γ > 3 [20], the epidemic threshold is associated
to the eigenvalue of the first delocalized eigenvector. For
γ < 3, there exists a consensus for SIS thresholds: both HMF
and QMF are equivalent and accurate for γ < 2.5 while QMF
works better for 2.5 < γ < 3 [13,19].

Lee et al. [15] proposed that for a range λQMF
c < λ < λc

with a nonzero λc, the hubs in a random network become
infected generating epidemic activity in their neighborhoods
but high-degree vertices produce independent active domains
only when they are not directly connected. These independent
domains were classified as rare regions, in which activity can
last for very long times (increasing exponentially with the
domain size [21]), generating Griffiths phases (GPs) [21,22].
The sizes of these active domains increase for increasing λ

leading to the overlap among them and, finally, to an endemic
phase for λ > λc. However, on networks where almost all hubs
are directly connected, it is possible to sustain an endemic
state even in the limit λ → 0 due to the mutual reinfection
of connected hubs. Inspired in the appealing arguments of
Lee et al. [15], Boguñá, Castellano, and Pastor-Satorras
(BCPS) [14] proposed a semianalytical approach taking into
account a long-range reinfection mechanism and found a
vanishing epidemic threshold for γ > 3. They compared their
theoretical predictions with simulations starting from a single
infected vertex and a diverging epidemic lifespan was used
as a criterion to determine the thresholds. However, the
applicability of BCPS theory to determine a phase transition
involving an endemic phase has been debated [23].

In this work, we performed extensive simulations and found
that the SIS dynamics on SF networks with exponent γ > 3 can
exhibit multiple transitions, with multiple thresholds, which
are clearly resolved when the degree distribution presents
outliers separated by large gaps. These gaps permits the
formation of nondirectly connected domains centered on hubs
with different connectivity and thus having distinct local acti-
vation thresholds. Thresholds consistent with those predicted
by QMF, HMF, and BCPS theories were found in our analysis.
Moreover, our finds indicate that the vanishing thresholds, as
those predicted by QMF [11] and BCPS theories [14], involve
long-term but still localized epidemics rather than an endemic
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state, in which a finite fraction of the network has nonvanishing
probability to be infected in the thermodynamic limit. We
propose that these localized long-term epidemics take place
in domains involving a few hubs with a very large degree and
their nearest neighbors. Finally, our numerical results show a
transition to the endemic state occurring at a finite threshold,
which is intriguingly described by the classic and simpler HMF
theory [3].

Our paper is organized as follows: in Sec. II we present
simulation procedures, discuss important technical details of
the quasistationary (QS) method used in this work, and provide
a comparison between the QS method and the lifespan simu-
lation method proposed in Ref. [14]. Section III is devoted to
describe the numerical results obtained from QS simulations,
and in Sec. IV we draw our concluding remarks. Finally, an
example where the lifespan method does not determine the
endemic phase in systems with multiple transitions while the
QS method does is presented in the Appendix.

II. SIMULATION METHODS

We implement the SIS model using a modified Gillespie
simulation scheme [24] provided in Ref. [13]: At each time
step, the number of infected nodes Ni and edges emanating
from them, Nk , are computed and time is incremented by1

�t = 1/(Ni + λNk). With probability Ni/(Ni + λNk) one
infected node is selected at random and becomes susceptible.
With the complementary probability λNk/(Ni + λNk) an
infection attempt is performed in two steps: (i) A infected
vertex j is selected with probability proportional to its degree.
(ii) A nearest neighbor of j is selected with equal chance and,
if susceptible, is infected. If the chosen neighbor is infected
nothing happens and simulation runs to the next time step.
Notice that λNk is the total infection rate emanating from
infected vertices and the frustrated attempts compensate this
exceeding rate. The frustrated attempts constitute the central
alteration in relation to the original Gillespie algorithm. The
numbers of infected nodes and related links are updated
accordingly, and the whole process is iterated.

The simulations were performed using the QS
method [10,25] that, to our knowledge, is the most robust
approach to overcome the difficulties intrinsic to the stationary
simulations of finite systems with absorbing states. In this
method, every time the system tries to visit an absorbing
state it jumps to an active configuration previously visited
during the simulation (a new initial condition). This method
reproduces very accurately the standard QS method where
averages are performed only over samples that did not visit
the absorbing state [25,26] and its convergence to the real
QS state was proved [27]. To implement the method, a list
containing M = 70 configurations is stored and constantly
updated. The updating is done by randomly picking up a
stored configuration and replacing it by the current one with

1In the original Gillespie algorithm for the simulation of stochastic
processes [24], the time increment is drawn from an exponential
distribution with mean dt . However, this stochasticity in time
increment did not play an important role in our analysis due to the
large averaging used.

probability pr�t . We fixed pr � 10−2 since no significant
dependence on this parameter was detected for a wide range of
simulation parameters. After a relaxation time tr , the averages
are computed over a time tav .

The characteristic relaxation time is always short for
epidemics on random networks due to the very small average
shortest path [28]. Typically, a QS state is reached for
t > 104 for the simulation parameters investigated. So, we
used tr = 105. The averaging time, on the other hand, must
be large enough to guarantee that epidemics over the whole
network were suitably averaged. It means that very long times
are required for very low QS density (subcritical phase in phase
transition jargon) whereas relatively short times are sufficient
for high density states. Since long times are computationally
prohibitive for highly infected QS states, we used averaging
times from 105 to 109; the larger the average time, the
smaller the infection rate. Notice that the simulation time step
becomes tiny for a very supercritical system (large number
of infected vertices) and a huge number of configurations are
visited during a unity of time. It is important to notice that
the QS method becomes expendable for a large part of our
simulations since the system never visits the absorbing state
for the considered simulation times.

Both equilibrium and nonequilibrium critical phenomena
are hallmarked by simultaneous diverging correlation length
and time, which microscopically reflect the divergence of
the spatial and temporal fluctuations [5], respectively. Even
though a diverging correlation length has little meaning on
complex networks due to the small-world property [29], the
diverging temporal fluctuation concept is still applicable. We
used different criteria to determine the thresholds, relying on
the fluctuations or singularities of the order parameters, as
explained below.

The QS probability P̄ (n), defined as the probability that the
system has n occupied vertices in the QS regime, is computed
during the averaging time and basic QS quantities, as lifespan
and density of infected vertices are derived form P̄ (n) [25].
Thus, thresholds for finite networks can be estimated using the
modified susceptibility [13]

χ ≡ 〈n2〉 − 〈n〉2

〈n〉 = N (〈ρ2〉 − 〈ρ〉2)

〈ρ〉 , (1)

that does exhibit a divergence at the transition point for
SIS [13,15,19] and contact process [9,30] models on networks.
The choice of the alternative definition, Eq. (1), instead of the
standard susceptibility χ̃ = N (〈ρ2〉 − 〈ρ2〉) [5] is due to the
peculiarities of dynamical processes on the top of complex
networks.2

It is expected that the QS state does not depend on the initial
condition. Figure 1 shows a comparison of QS simulations for
the same network with different initial densities ρ(0) = 10−3

to 0.5, randomly distributed. The network was generated with
the uncorrelated configuration model (UCM) [31], where the
vertex degree is selected from a power-law distribution3 with a

2See discussion in Ref. [9], Sec. 3.
3To generate the degree distribution we used the improved rejection

method provided in Ref. [32].
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FIG. 1. (Color online) Susceptibility against infection rate for
SIS model on a single network with different fractions of initially
infected vertices, which are randomly distributed in the network. The
network parameters are γ = 3.5, k0 = 3, and N = 106.

lower bound k0 = 3. The results are independent of the initial
condition. Also, the QS method was compared with the so-
called ε-SIS model [33] where a small rate ε of spontaneous
infection is assumed for each network vertex. The thresholds
involving long-term epidemics are the same as those of the QS
method [34].

Reference [14] claimed that the QS method is unreliable4

for networks with degree exponents γ > 3 and proposed a
different simulation strategy, which is referred to here as the
lifespan simulation method. In order to draw a comparison with
the QS method, we implemented the lifespan method exactly
as in Ref. [14]: The simulation starts with a single infected
vertex located at the most connected vertex of the network
and stops when either the system visits the absorbing state or
50% of all vertices (the epidemic coverage) were infected at
least once along the simulation. The duration of the epidemic
outbreak is computed and only runs that visited the absorbing
state are used to compute the average lifespan since those
that reached 50% of coverage are assumed to have an infinite
lifespan. The number of runs varies from 103, for largest N

and λ, to 106, for the smallest λ.
We applied both methods to the SIS model on UCM

networks with γ = 3.50, minimum degree k0 = 3, and upper
cutoff kmax = 〈kmax〉, in which 〈kmax〉 is the analytically
determined mean value of the most connected vertex kmax of a
random degree sequence with distribution P (k) without upper
bounds, to compare with the results of Ref. [14]. The constraint
kmax = 〈kmax〉 avoids fluctuations in the most connected vertex
and, consequently, in the largest eigenvalue of the adjacency
matrix and is useful for comparisons with the QMF theory [13].

4In private communications, authors of Ref. [14] clarified that
the multiple peaks observed in the susceptibility curves cannot
unambiguously define the lifespan divergence. However, they passed
over the fact that a lifespan is easily extracted from QS simulations
using Eq. (2).
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FIG. 2. (Color online) Numerical determination of the thresholds
for the SIS model on UCM networks with γ = 3.50, k0 = 3, and
kmax = 〈kmax〉 for network sizes N = 103, 104, 105, 106, 107, 3 ×
107, and 108, increasing from the right. The same network sample
for each size was used in both methods. Both (a) lifespan calculated
using the method of Ref. [14] and (b) susceptibility via QS method
are shown in the top panels. (c) Peak positions as functions of the
network size estimated with both methods.

We remark that the constraint kmax = 〈kmax〉 is only used in this
comparison.

Figures 2(a) and 2(b) show the lifespan and susceptibility
against infection rate for networks of different sizes. The peak
positions against network size are compared in Fig. 2(c). As
can be clearly seen, the right susceptibility peaks are very close
to the lifespan ones showing that the susceptibility method is
able to capture the same transitions as the lifespan method
does but going beyond as discussed in the rest of the paper. It
is worth noticing that if larger values of λ are simulated, other
peaks will emerge in susceptibility curves even using the cutoff
k � 〈kmax〉. These multiple peaks were not reported in previous
works dealing with the same network model [13,14,19].

Moreover, a lifespan is also obtained in the QS method
as [25]

τqs = 1

P̄ (1)
. (2)

We checked that the lifespans obtained in the QS method and
those of Ref. [14] diverge around the same threshold; the basic
difference is that the former is “infinite” above the threshold
whereas the latter remains finite.

In a partial summary, we verified that the lifespan method
predicts an epidemic threshold when an activity survives for
long times, but there is no guarantee that it is necessarily
an endemic phase (see the Appendix for a concrete coun-
terexample). On the other hand, the QS analysis is able to
simultaneously determine transitions involving endemic as
well as localized states and the one involving a diverging
lifespan is resolved using Eq. (2). So, we conclude that the
lifespan method must not be used alone in systems with
multiple transitions since it captures the first transition with
a long-term activity.
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FIG. 3. (Color online) (a) Susceptibility, (b) stationary density,
and (c) its logarithmic derivative vs infection rate for a SF network
with 3 × 107 vertices, degree exponent γ = 3.5, minimum degree
k0 = 3, and kmax unconstrained. The degree distribution is shown in
panel (d). Different immunization strategies are shown: Black circles
represent no immunization; red squares represent the immunization of
three largest outliers [inner box in panel (d)]; blue triangles represent
the immunization of eight most connected vertices [outer box in
panel (d)].

III. NUMERICAL RESULTS

Two peaks on susceptibility against infection rate for SIS
were reported in Ref. [13], which focused on the analysis of
the peak at low λ and showed that it is well described by the
QMF theory (see also Ref. [19]) but did not realize that the
peak at higher λ is the one associated to a diverging lifespan
(Fig. 2). However, depending on the network realization,
the susceptibility curves can exhibit much more complex
behaviors with multiple peaks for values of λ larger than those
reported in Refs. [13,19]. These complex behaviors become
very frequent for large networks. From now on, we scrutinize
such a complex behavior to unveil its origin and implications
to the epidemic activity.

Figure 3(a) shows a typical susceptibility curve (black)
exhibiting such a complex behavior for an UCM network.
The degree distribution is shown in Fig. 3(d). Multiple peaks
are observed only if the degree distribution exhibits a few
large gaps, in particular in the tails. These few vertices5 with
degree k � 〈kmax〉 are hereafter called outliers. Notice that the
multiple peaks are not detected by the lifespan simulation
method [14]. The role played by outliers is evidenced by
their immunizations6 as illustrated in Fig. 3. For instance, the
immunization of the three most connected vertices is sufficient
to destroy two peaks and to enhance others. The stationary
density varies abruptly close to the thresholds determined via

5The number of outliers can be estimated as N
∫

k�〈kmax〉 P (k)dk ∼
O(1).

6Immunized vertices cannot be infected, which is equivalent to
removing them from the network.
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FIG. 4. (Color online) Main: PR as a function of the infection
rate for the same network and immunization strategies as in Fig. 3.
Symbols as in Fig. 3. Inset: Logarithmic derivative of the PR as a
function of the infection rate.

susceptibility peaks, Figs. 3(b) and 3(c), which is an evidence
of the singular behavior of the order parameter ρ.

The presence of gaps is a characteristic of large degree
sequences with a power law distribution. The statistical rep-
resentativity of specific properties of a finite set of networks,
generated under the same conditions, in relation to the entire
ensemble is a complex issue [35], but the existence of gaps
can be understood with a simple nonrigorous reasoning. Using
extreme value theory one can show that the most connected
vertex has an average 〈kmax〉 ∼ N1/(γ−1) [36]. However, this
mean value is not representative of the highest degree since
the dispersion σmax = √〈k2

max〉 − 〈kmax〉2 diverges as7 σmax ∼
N1/(γ−1) for γ > 3. Outliers should behave in this same
way and therefore we expect larger dispersion in outlier
connectivity as network size increases.

It is interesting to observe that while the peaks at small λ can
or not appear depending on the presence of outliers and gaps,
the rightmost one essentially does not change its position from
a network realization to another, such that it should depend
on network properties representative of the entire ensemble of
networks with a specified set of parameters. Indeed, later we
will see that the behavior of the rightmost peak is qualitatively
described by the HMF threshold which depends only on 〈k2〉
and 〈k〉.

A deeper physical explanation for the multiple peaks can
be extracted using another order parameter in the QS state, the
participation ratio (PR), defined as


 = 1

N

( ∑
i ρi

)2

∑
i ρ

2
i

, (3)

where ρi is the probability that the vertex i is infected in the
stationary state. The inverse of the PR is a standard measure for
localization or delocalization of states in condensed matter [37]

7This result can be derived using the same steps to obtain 〈kmax〉 in
Ref. [36].
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FIG. 5. (Color online) (a) PR against size for a fixed distance
λ − λp = 0.012 to either lifespan (circles) and rightmost (squares)
peaks. (b) The same analysis of panel (a) for QS density. Lines are
power regressions. At least ten network samples were used to perform
averages for λ > λ

right
p (top curves) and at least 20 for λls

p < λ < λ
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(bottom curves).

and has been applied to statistical physics problems [38]
including epidemic spreading on networks [12,39,40]. The
limiting cases of totally delocalized (ρi = ρ ∀i) and localized
(ρi = ρδi,0 where 0 is the vertex where localization occurs)
states are 
 = 1 and 
 = 1/N , respectively.

The PR as a function of the infection rate is shown in
Fig. 4. The PR is an estimate of the fraction of vertices that
effectively contribute to the present epidemic activity. Thus,
the multiple transitions are related to the rapid delocalization
processes of the epidemics as λ increases, hallmarked by the
singular behavior of 
 around distinct values of λ. When the
PR corresponds to a finite fraction of the network in an active
phase one has an authentic endemic state, since a finite fraction
of nodes has a nonvanishing probability of being infected at
the same time. The logarithmic derivative of the PR exhibits
several peaks in analogy to susceptibility peaks, as shown in
the inset of Fig. 4. Indeed, PR can be seen as a susceptibility
but from an origin different than χ . The latter is a measure
of stochastic fluctuations of the order parameter (density of
infected vertices) whereas the former is measure of stationary
spatial fluctuations that make sense only for heterogeneous
substrates.

The PR against network size for a fixed distance to either
λls

p (the threshold marking the lifespan divergence) and λ
right
p

(the threshold referent to the rightmost peak observed for
susceptibility) are shown in Fig. 5(a). In the presented size
range, the PR decays as a power law for a fixed distance
to the lifespan peaks. Analogous results are obtained for
ρ̄ vs N curves [see Fig. 5(b)]. The power law regressions
yield approximately 
 ∼ N−0.8 and N−1 for γ = 3.5 and
4, respectively, ρ ∼ N−0.8 for both γ = 3.5 and 4. These
decays constitute a strong evidence for epidemic localization
at λ � λls

p whereas the constant dependence on N observed

for λ � λ
right
p represents an endemic phase.8

8Notice that a scaling ρ̄ ∼ (λ − λp)β , independent of the size, is
expected for a usual endemic phase transition in the thermodynamic
limit [5].

104 105 106 107 108

N
10-2

10-1

th
re

sh
ol

ds

λp
right

λp
ls

λp
left

pair QMF
pair HMF

104 105 106 107 108

N

FIG. 6. Thresholds for SIS dynamics on SF networks with degree
exponents γ = 3.5 (left) and γ = 4.0 (right). The results predicted
by pair QMF [19] and pair HMF [9] theories are shown as dashed
and doted lines, respectively. Solid lines are power law regressions.
Averages were done over at least five samples for the statistics of
the rightmost peaks and at least 20 samples for lifespan and leftmost
peaks.

Figure 6 shows the positions λleft
p (the leftmost peak), λ

right
p

and λls
p against the network size. One can see that λ

right
p

reaches a constant value for large N whereas the other ones
neatly decay with N . In a nutshell, our results show that the
case γ > 3 may concomitantly exhibit transitions predicted
by three competing mean-field theories: (i) At λ = λleft

p , one
has a transition to an epidemic highly concentrated at the
star subgraph containing the most connected vertex and its
nearest neighbors. The threshold dependence on size is very
well described by QMF theories [11,13,19]. (ii) At λ = λls

p , a
transition with a threshold described by the BCPS theory [14]
is observed but our numerics indicate that it is not endemic
since PR and ρ decay with N above this threshold. Notice
that the threshold λls

p decays with N much slower than
λleft

p . This interval is characterized by the mutual activation
of star subgraphs centered on the outliers by means of the
reinfection mechanism proposed in the BCSP theory [14].
(iii) For λ = λ

right
p , a transition involving an authentic endemic

phase with a finite threshold is observed as formerly, and now
surprisingly, predicted by the HMF theory [3]. Here, the bulk of
the network acts collectively in the epidemic spreading through
the whole network characterizing a real phase transition.

The co-existence of localized and endemic transitions in a
same network can be explained in a double random regular
network (DRRN), Fig. 7. These networks are formed by two
random regular networks (RRNs)9 of sizes N1 and N2 = Nα

1
(α < 1 ⇒ N2/N1 → 0 in the thermodynamical limit) and
degree m1 and m2, respectively, connected by a single edge.
The DRRN has two epidemic thresholds corresponding to the
activations of single RRNs. Choosing m1 = 4 and m2 = 6, the
thresholds determined for single RRNs are λ(1)

c = 0.314 52
(m1 = 4, present work) and λ(2)

c = 0.2026 (m2 = 6 [30]). By
construction, the former involves an endemic and latter a
localized transition since the smaller RRN constitutes itself

9In a single RRN all vertices have the same degree m but connections
are done at random avoiding multiple and self-connections [13].
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FIG. 7. (Color online) Left: Schematics of a double random
regular network (DRRN). Right: Susceptibility against infection rate
for DRRNs with using m1 = 4, m2 = 6, α = 1/2 and different sizes.
Dashed lines are thresholds predicted for DRRNs.

a vanishing fraction of the whole network. Figure 7 shows
the susceptibility plots for α = 0.5 with peaks converging
exactly to the expected thresholds. The threshold obtained
via the lifespan method, which is in principle fitted by the
BCPS theory, converges to the localized one (see the Appendix
for additional data and discussions). This network model can
be generalized to produce an arbitrary number of transitions
providing a clearer analogy with multiple transitions observed
for random networks with γ > 3.

An additional property can be derived for random networks
with γ > 3: outliers have negligibly low probability to be con-
nected to each other. Due to the absence of degree correlation,
the probability that a vertex of degree k is connected to an
outlier of degree kout is given by P (k|kout) = kP (k)/〈k〉 [41]
irrespective of the outlier’s degree. Therefore the probability
that an outlier is connected to other outlier is given by

Pout �
∫

k�〈kmax〉
P (k|kout)dk ∼ 〈kmax〉−γ+2,

which goes to zero for large networks permitting the formation
of nondirectly connected domains centered on the outliers.
This conclusion can be obtained rigorously using hidden
variable formalism [42]. We have now a simple physical
explanation for multiple thresholds and its connection with
the lifespan simulation method: The core containing the
outliers plus its nearest neighbors form a subgraph with
N2 ∼ ∑

k>〈kmax〉 NP (k)k ∼ N1/(γ−1) 
 N . This domain size
diverges as the network increases and is able to sustain a
long-term epidemic activity, but still represents a vanishing
fraction of the whole network. Above the activation of this
domain but still below the endemic phase, the epidemic is
eventually transmitted to any other vertex of the network due
to the small-world property, but this activity dies out quickly
outside this core since there the process is locally subcritical.
However, all network vertices will be infected for some while
since the active central core acts as a reservoir of infectiousness
to the rest of the network.

Our conjecture is confirmed in Fig. 8 where SIS dynamics
in a large network (N = 3 × 107 vertices) is compared with
the dynamics restricted to either its core of outliers (seven
most connected vertices) plus their nearest neighbors (≈13 200
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FIG. 8. (Color online) Susceptibility (top) and QS lifespan (bot-
tom) against infection rate for SIS dynamics on a network with
N = 3 × 107, k0 = 3, and degree exponent γ = 3.50 restricted to
different domains (see text for definitions). The lifespan is considered
infinite if greater than the averaging time tav = 107.

vertices) or to its outer shell excluding the core.10 The multiple
peaks for the core are observed approximately at the same
places as those for the whole network but the outer shell
exhibits a single peak around λ

right
p . However, the lifespan

determined via the QS method (see Sec. II) diverges at λ ≈ λls
p

for both the core and the whole network whereas the divergence
coincides with λ

right
p for the outer shell.

We also analyzed the lifespan using the QS method, Eq. (2),
for a fixed distance to both leftmost and lifespan peaks.
For the investigated size range N < 108, the lifespan values
are relatively short (<102) and increase algebraically with
system size in the interval λleft

p < λ < λls
p while long and

exponentially diverging lifespans, granting long-term activity
for large networks [43], are obtained for λls

p < λ < λ
right
p . The

algebraic dependence for the former case is almost certainly a
finite-size effect. We calculated the lifespan for λleft

p < λ < λls
p

for the SIS model on star graphs with k leaves and an algebraic
growth of the lifespan with N is also obtained for k < 2000
which coincides with the range size of typical star subgraphs
obtained for UCM networks investigated here. However, a
crossover to an exponential growth is obtained for larger star
graphs (k > 104) showing that this structure is itself able
to sustain alone a long-term epidemic activity. So, if one
could simulate the SIS model on much larger UCM networks
(N > 1012) the threshold λleft

p would define a transition to
a localized but long-term epidemic and the lifespan method
would detect the transition given by the QMF theory.

Outliers play a central role even not being able to produce
separately a genuine endemic phase where the whole network
has a nonvanishing probability of being infected. To highlight
such a role, we introduce a hard cutoff in the degree distribution
as kmax = k0N

0.75/(γ−1), which suppresses the emergence

10To restrict the epidemics to the core we immunize the shell and
vice versa.
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FIG. 9. (Color online) (a) The tail of the degree distributions for
networks with γ = 4, k0 = 3, and N = 108 vertices and either rigid
or natural cutoff. The curve for rigid cutoff was shifted to enhance
visibility. (b) QS density against infection rate for a network degree
exponent γ = 4.0 using different cutoffs.

of outliers as shown in Fig. 9(a). This choice is because
random networks without a rigid upper bound have a highly
fluctuating natural cutoff, as discussed above. Figure 9(b)
compares the QS density for rigid and natural cutoffs. The
infectiousness for λ < λendemic

c is highly reduced in the absence
of outliers. The susceptibility no longer exhibits multiple peaks
for a hard cutoff, as can be seen in Fig. 10(a), confirming
the existence of a single transition. Also, the thresholds
for hard cutoff networks are quite close to λ

right
p obtained

with the natural cutoff, as shown in Fig. 10(b). Such an
observation is in agreement with the HMF theory where the
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FIG. 10. (Color online) (a) Susceptibility curves for two net-
works with rigid cutoff, k0 = 3, N = 108 vertices, and differ-
ent degree exponent [symbols are the same used in panel (b)].
(b) Threshold against system size for rigid and natural cutoffs. The
averages were done over at least six samples for rigid cutoff but error
bars are smaller than symbols. Averages for natural cutoffs are the
same as in Fig. 6.

thresholds for γ > 3 are asymptotically independent of how kc

diverges [3,9].

IV. CONCLUSIONS

In summary, we thoroughly simulated the dynamics of
the SIS epidemic model on complex networks with power
law degree distributions with exponent γ > 3, for which
conflicting theories discussing the existence or not of a finite
epidemic threshold for the endemic phase have recently been
proposed [11,12,14,15]. We show that the SIS dynamics
can indeed exhibit several transitions associated to different
epidemiological scenarios. Our simulations support a picture
where the threshold obtained recently in the BCPS mean-field
theory [14] represents a transition to localized epidemics in
random networks with γ > 3 and that the transition to an
authentic endemic state, in which a finite fraction of network
is infected, possibly occurs at a finite threshold as formerly
and now surprisingly foreseen by the HMF theory [3]. The
multiple transitions are associated to large gaps in the degree
distribution with a few outliers, which permits the formation
of nondirectly connected domains of activity centered on these
outliers. If the number of hubs is large, as in the case of SF
networks with γ < 3, every vertex of the network is “near”
some hub and the activation of hubs implies the activation of
the whole network, as previously reported in [13,19]. Our finds
are consistent with the conjecture proposed by Lee et al. [15]
since the lifespans of independent domains involving outliers
grow exponentially fast with the domain sizes implying that
long-term epidemic activity is possible even in the nonendemic
phase. Our findings also do not rule out the mean-field analysis
of Ref. [12]. The intermediary transitions can be associated to
distinct localized eigenvectors that are centered on the outliers
while the endemic threshold involves a delocalized eigenvector
with a finite eigenvalue.

Our results are in consonance with a recent line of
investigation in which the topological disorder in networks
with heterogeneous degree distribution may produce rare
regions and Griffiths phases leading to anomalous behaviors
in the subcritical phase [15,40,44,45]. Such an anomaly is
characterized by localized activity that survives for long times,
even though the network is macroscopically absorbing. Very
recently, the possibility of rare regions effects from pure
topological disorder in the SIS dynamics on unweighted
SF networks as well as multiple transitions were suggested
in Ref. [20]. Our results may, thus, be a fingerprint of
GPs. However, more detailed analyses are demanded for
a conclusive relation. Also, very recently, multiple phase
transitions were found in percolation problems on SF networks
with high clustering [46] and on networks of networks [47].
In both cases transitions were hallmarked by multiple singular
points in the order parameter in analogy with our results for
epidemics.

Our final overview is that apparently competing mean-field
theories [3,11,12,14,15] can be considered, in fact, comple-
mentary, describing distinct transitions that may concomitantly
emerge depending on the network structure. In particular,
the transitions involving localized phases, as possibly the
one predicted by the BCPS theory [14], are not negligible
since they become long term and an epidemic outbreak

012816-7



ANGÉLICA S. MATA AND SILVIO C. FERREIRA PHYSICAL REVIEW E 91, 012816 (2015)

103 104 105 106

N

0.20

0.25

0.30

0.35

0.40

λ p

right peak(QS)
left peak (QS)
lifespan

104 105 106

N

10-3

10-2

10-1

λ p-λ
c

N
N

)b()a(

FIG. 11. (Color online) Threshold analysis for DRRN with α =
1/2, m1 = 4, and m2 = 6. (a) The thresholds estimated as the peaks in
the susceptibility or lifespan curves. The dashed lines are thresholds
obtained on single RRNs with the respective mi . (b) Difference
between peaks and the thresholds for single RRNs with m = 4
(lifespan and left susceptibility peaks) or m = 6 (right susceptibility
peak).

may eventually visit a finite fraction of the network. This
peculiar result is unthinkable for other substrates rather than
complex networks sharing the small-world and scale-free
properties. Actually, it is well known that some computer
viruses can survive for long periods (years) in a very low
density (below 10−4) [48], exemplifying the importance of
metastable nonendemic states. Our numerical results call
for general theoretical approaches to describe in a unified
framework the multiple transitions of the SIS dynamics on
SF networks.
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profitable discussions and R. Dickman for useful suggestions.

APPENDIX: QUASISTATIONARY VERSUS
LIFESPAN METHODS

Let us show that the QS method succeeds whereas the
lifespan method fails in predicting the endemic phase for a
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FIG. 12. (Color online) (a) The lifespan according Ref. [14] and
(b) the QS density of infected vertices against infection rate for SIS
model on DRRNs with α = 1/2, m1 = 4, m2 = 6, N1 = 103, 3 ×
103, 104, 3 × 104, 105, 3 × 105, and 106 [increasing to left or bottom
in (a) or (b), respectively]. Dashed vertical lines indicate the activation
thresholds in each subgraph.

DRRN (Fig. 7). The susceptibility peaks in Fig. 7 clearly
converge to the respective thresholds of single RRNs as
highlighted in Figs. 11(a) and 11(b). Notice that the mean-field
theory for the finite-size scaling of the contact process, which
in the case of strictly homogeneous networks is exactly the
same as SIS model with a rescaled infection rate λ/m,
predicts that the threshold approaches its asymptotic values
as λp − λc ∼ S−1/2, where S is the graph size [9]. So, the
endemic threshold is expected to scale as λp − λ(1)

c ∼ N
−1/2
1 ∼

N−1/2 and the localized one as λp − λ(2)
c ∼ N

−1/2
2 ∼ N−α/2.

These power laws are confirmed in Fig. 11(b). The lifespan
curves, obtained using as the initial condition only the most
connected vertex infected (the one connecting subgraphs),
have single peaks that converge to the threshold corresponding
to a localized epidemic and interestingly following the same
scaling law as the left QS peak as shown in Figs. 11 and 12(a).
The central point here is that the lifespan method detected
the first threshold where the absorbing state becomes globally
unstable (an exponentially long-term activity) which, in this
case, is not the endemic one as shown in Fig. 12(b), in which
the QS density is shown as a function of the infection rate.

It is worth noticing that the QS simulations around the peaks
are orders of magnitude computationally more efficient than
the lifespan method.
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