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Assortative and disassortative mixing investigated using the spectra of graphs
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We investigate the impact of degree-degree correlations on the spectra of networks. Even though density
distributions exhibit drastic changes depending on the (dis)assortative mixing and the network architecture,
the short-range correlations in eigenvalues exhibit universal random matrix theory predictions. The long-range
correlations turn out to be a measure of randomness in (dis)assortative networks. The analysis further provides
insight into the origin of high degeneracy at the zero eigenvalue displayed by a majority of biological networks.
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I. INTRODUCTION

The past two decades have witnessed a rapid advancement
in the field of complex networks [1–3]. The prime idea govern-
ing this framework is to consider a system made of interacting
units. To categorize and understand real-world systems based
on interacting units, many models have been proposed, among
which the Erdös-Rényi (ER) random model [4], the scale-free
(SF) model [5], and the small-world model [6] are the most
popular. In addition, degree-degree correlations have also been
used as one of the key properties of network characteriza-
tion [2,7–18], and they are known to confer robustness to
biological networks [19]. The tendency of (un)like degree
nodes to stick together is termed (dis)assortativity. Various
social networks are known to be assortative, while few of
the biological and technological networks have been reported
to be disassortative [13–18]. Despite its importance for real
networks, (dis)assortativity does not appear in any of the
model networks discussed above, and it is driven by some
other mechanism, for example the reshuffling algorithm [20].
While the spectral behavior of uncorrelated networks has been
quite well understood [21], despite real-world systems being
highly correlated [9], such an understanding for the correlated
networks still needs to be developed.

Spectral graph theory is an established branch of mathe-
matics, and eigenvalues of corresponding adjacency matrices
are known as fingerprints of the underlying graphs [22–25].
With recent advancement in the network theory, the spectral
graph theory, traditionally used in investigations of random and
regular graphs, got extended to studies of graphs motivated
by real-world systems. These spectral studies, apart from
presenting bounds for extremal eigenvalues, highlight their
importance by relating them with the various structural as well
as dynamical properties of the networks [26,27]. The studies
of networks further reveal a key impact of assortativity on
the extremal eigenvalues [28], which has been explored in the
context of disease spreading [29] and diffusion processes [30],
thereby exhibiting the importance of spectral studies of
networks for a more comprehensive understanding of complex
systems. This paper presents a systematic analysis of the
impact of degree-degree correlations on the spectral properties
of various networks under the random matrix theory (RMT)
framework. Since its introduction in the 1960s, in the context
of nuclear spectra, the theory has been successfully applied to

a wide range of complex systems ranging from quantum chaos
to a galaxy [31,32]. Recently, with a spurt in the activities of a
network framework, the RMT was extended in an analysis of
the spectral properties of various model networks [33,34] as
well as those arising from real-world systems [35,36].

II. METHODS AND TECHNIQUES

To quantify the degree-degree correlations of a network, we
consider the Pearson (degree-degree) correlation coefficient,
given as [7,9]
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where ji,ki are the degrees of nodes at both ends of the ith
connection, and M represents the total connections in the
network.

The random network of size N and average degree 〈k〉 is
constructed using the ER model by connecting each pair of
nodes with the probability p = 〈k〉/N [4]. These networks
have an assortativity coefficient (r) that is close to zero or ex-
actly zero. To generate the networks with various assortativity,
we use the reshuffling algorithm [20]. In this algorithm, after
selecting two pairs of nodes randomly, we sort them according
to degree. The highest degree node is then connected to the
second highest degree node with the reshuffling probability pr ,
which governs the (dis)assortative mixing, i.e., we reconnect a
high degree node to a (low) high degree one and a low degree
node to a (high) low degree one. With the probability 1 − pr ,
we rewire them randomly. If a new connection resulting from
this rewiring already exists, it is discarded and the previous
steps are performed. The process is carried out until a steady
value of r is attained. For assortative networks, with the k

degree nodes forming a complete graph with the value of
r being 1, the network should have at least (k + 1 + 2n)
nodes, where n can be any integer starting from 0. As this
condition is not satisfied for all the degrees present in the
network, the network takes a value smaller than 1. Similarly,
the disassortative network can have a value of r less than −1.0.

We note in addition that at high assortativity values,
all the similar degree nodes that are connected among
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themselves form groups [20]. As we decrease the assortativity,
the connections within the groups of similar degree nodes
decrease and the connections between different groups of
similar degree nodes increase. For disassortative networks,
connections between different groups of similar degree nodes
exist, giving rise to a bipartite-like structure [20].

The SF networks of size N and average degree 〈k〉 are
generated using the Barabási-Albert algorithm by starting
with a completely connected network seed and adding new
nodes one by one that connect with existing nodes using the
preferential attachment method [1].

The networks are represented in the form of an adjacency
matrix by defining Aij = 1 if i and j nodes are connected,
otherwise Aij = 0. For an undirected and unweighted network
with N nodes, the adjacency matrix is an N × N symmetric
square matrix entailing all real eigenvalues. We denote the
eigenvalues as λi, i = 1,2, . . . ,N and λi � λi+1, and we
analyze them under the RMT framework. The random matrix
studies consider two properties of a spectra: (i) global proper-
ties such as spectral distribution of the eigenvalues ρ(λ), and
(ii) local properties such as eigenvalue fluctuations around λ̄.
In RMT, calculations of spectral fluctuations are done using the
unfolded eigenvalues λ̄i = N̄ (λi), where N̄ (λ) = ∫ λ

λmin
ρ(λ́) dλ́

is the average integrated eigenvalue density [37]. By using
these unfolded eigenvalues, nearest-neighbor spacings are
calculated as si = λ̄i+1 − λ̄i . For symmetric random matrices
with mean 0 and variance 1, the nearest-neighbor spacing
distribution (NNSD) follows Gaussian orthogonal ensemble
(GOE) statistics given as

P (s) = π

2
s exp

(
− πs2

4

)
, (2)

which shows a level repulsion at small spacing values with an
exponential fall for larger spacings, indicating that nearest-
neighbor eigenvalues are correlated [37]. In contrast, the
spacing distribution of a matrix whose diagonal elements
are Gaussian-distributed random numbers and the remaining
elements are zero exhibit Poisson statistics [P (s) = exp(−s)],
indicating that eigenvalues are uncorrelated [37].

The intermediate of these two distributions can be charac-
terized using the Brody equation [38]:

Pβ(s) = Asβ exp(−αsβ+1), (3)

where A and α are determined by the parameter β as
A = (1 + β)α and α = [�( β+2

β+1 )]β+1. The value of the Brody
parameter lies in the range (0 � β � 1). The value of β being 0
indicates the Poisson distribution, whereas β = 1 corresponds
to the GOE distribution. Other values of β indicate that the
distribution lies between these two.

The NNSD provides a correlation measure of subsequent
eigenvalues, whereas the �3(L) statistic measures how the
eigenvalues that are L distance apart are correlated, and
they can be estimated using the least-square deviation of the
spectral staircase function representing the average integrated
eigenvalue density N̄ (λ) from the best fitted straight line for a
finite interval of length L of the spectrum given by [32]

�3(L; x) = 1

L
min
a,b

∫ x+L

x

[N (λ̄) − aλ̄ − b]2 dλ̄, (4)

where a and b are regression coefficients obtained after a
least-square fit. The average over several choices of x gives
the spectral rigidity, i.e., �3(L). For the GOE statistics, �3(L)
depends on L in the following manner:

�3(L) ∼ 1

π2
ln L. (5)

For the network spectra considered in this paper, there is no
analytical form of N̄ , and we perform unfolding by numerical
polynomial fitting using the smooth part of the spectra by
discarding eigenvalues toward both ends as well as degenerate
eigenvalues, if any [31,32]. This renders the dimension of the
unfolded eigenvalues less than the dimension of the network.

III. RESULTS

The bulk part of the spectra of ER random networks with
the value of r close to 0 follows the well-known semicircular
law [39,40] [Fig. 1(f)]. The extremal eigenvalues deviate from
the random matrix predictions and indeed provide various
pieces of information about the structural and dynamical
properties of corresponding systems [11,26,27,29,41]. In the
following, we present results pertaining to the impact of
assortativity on the spectral properties of networks. It turns out
that with an increase in the assortativity, the semicircular distri-
bution, as observed for the uncorrelated ER random networks,
remains unchanged [Figs. 1(a)–1(e)]. The largest eigenvalue
exhibits an increasing trend, as already discussed in [28,29]. As
the network is rewired, entailing disassortativity, the spectral
distribution [ρ(λ)] acquires a very different structure from
those of the assortative networks. The networks start exhibiting
a high degeneracy at zero, with the overall spectra resembling
a double-humped structure [Fig. 1(h)], which becomes more
pronounced as the disassortativity becomes higher or the
value of r becomes more negative [Fig. 1(i)]. This increase
in disassortativity is also accompanied with a larger number
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FIG. 1. (Color online) Spectral density for Erdös-Rényi random
networks with different values of assortativity coefficient r . All graphs
are plotted for the networks with size N = 1000 and connection
probability p = 0.01, averaged over 20 different realizations of the
networks.
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of degenerate eigenvalues at zero. There could be various
reasons for this high degeneracy. The few that are appropriate
in the present context are as follows: First, as was discussed,
disassortativity supports a bipartite-like structure [20], and a
complete bipartite network has all zero eigenvalues except
two. Hence the bipartite-like behavior of the disassortative
networks is one of the reasons for the occurrence of high
degeneracy at zero. Second, a treelike structure has been
demonstrated to yield degeneracy at zero eigenvalue [42], and
disassortativity encourages a treelike structure [20], which in
turn indicates high degeneracy at zero. We remark that for
large N , the limiting shape of ρ(λ) is known for various
cases, which for sufficiently dense matrices tend to follow
the Wigner semicircular law typical for the Gaussian matrix
ensembles [39,40], whereas an ensemble of sparse random
matrices of finite size is known to yield states beyond the
semicircular law in the tails of the distribution [43–45]. For
sparse random graphs, i.e., matrices with 0 and 1 entries
having smaller p values, while the density distribution ρ(λ)
of an ensemble exhibits singularities, with the height of
the peaks being the corresponding multiplicities, the bulk
is still shown to comply with random matrix predictions of
Wigner’s semicircular law [46,47]. Moreover, investigations of
various model networks mimicking real-world properties have
revealed that the spectra of these networks exhibit degeneracy
at zero [37], as observed for the sparse random matrices. In
that regard, despite the degeneracy at zero, it is not surprising
that most of the assortative networks follow a semicircular
distribution.

The spectral density only provides the global behavior
of eigenvalues. Therefore, in order to get insight into local
fluctuations, we further analyze the short-range and long-range
correlations in eigenvalues. The NNSD follows GOE statistics
of RMT [Eq. (2)] for all values of r except for very high values
corresponding to the highly assortative networks (Fig. 2).
What is interesting is that at the values of r for which ρ(λ)
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FIG. 2. (Color online) The NNSD for Erdös-Rényi random net-
works with different values of assortativity coefficient r . All graphs
are plotted for the networks with size N = 1000 and connection
probability p = 0.01. Histograms are from the data points, and the
solid line is for fitting with the Brody distribution [Eq. (3)].

exhibits a very similar behavior, except for a change in the
value of the largest eigenvalue, the NNSD captures crucial
structural changes reflected through the value of the Brody
parameter. For the highest achievable value of the assortativity
coefficient for the particular network parameter for which
results are presented, the value of β comes out to be close to
0.3 [Fig. 2(a)], and as the assortativity decreases, we witness
a smooth transition to the GOE statistics with the value of
β becoming 1. Depending on the network size, the average
degree, and the degree sequences, the highest achievable value
of r for that network may be different (as discussed in Sec. II),
which might lead to a different value of β. Figures 1(a)–1(d)
show that a very small change in the value of r is capable
of entailing a profound change in the statistics; in fact, they
change from Poisson statistics to GOE statistics. Since a very
small randomness is known to be sufficient when introducing
the short-range correlation in eigenvalues [48], a very small
deviation from the highest assortativity entails GOE statistics.
Since the assortativity in the network supports the groups
having similar degree nodes, and as assortativity decreases,
these distinct groups of nodes observed for very high values of
r get destroyed, leading to a transition from Poisson to GOE
statistics. As soon as the value of r is decreased, and sufficient
random connections among the groups of similar degree nodes
are induced, the value of the Brody parameter β becomes 1,
and no further signature of structural changes to the value of
β is found with a further decrease in the assortativity.

For disassortative networks that are characterized by neg-
ative values of r , what is remarkable is that despite these
networks displaying spectral distributions distinguishable
from those of the assortative networks, the NNSD yields
the value of the Brody parameter (β = 1) bringing them
into the universality class of GOE. This is not surprising as
NNSD is analyzed by taking the nondegenerate part of the
spectra, and high degeneracy at a particular value, for instance
at zero, does not account for any effect in the NNSD. As
long as the underlying network has some random connections,
the NNSD displays GOE statistics [48]. We remark that
all the networks considered here form a single connected
cluster, because for disconnected networks, even though each
individual subnetwork follows GOE statistics, the spectra
taken together may lead to a different spacing statistics [33].

To gain further insight into the structural changes arising
due to the changes in r values, we probe the long-range
correlations in eigenvalues for those sets that yield a β value
of 1. We find that for all these values of r , the long-range
correlations, measured using the �3(L) statistic [Eq. (4)],
follow the universal GOE statistics as given by Eq. (5) for
a certain value of L (denoted as L0), and they deviate from
this universality afterward (Fig. 3).

Note that a regular network, for instance a 1D lattice with
a periodic boundary condition, follows a Poisson distribution.
As connections are rewired, thereby increasing the randomness
in the network, the value of the Brody parameter increases
with an increase in the rewiring probability, and it becomes
1 at the onset of the small-world transition, demonstrating
that nearest-neighbor eigenvalues are correlated [48]. For such
a small change in the network structure, there is no visible
change in the density distribution, but the Brody distribution
detects even such a small change in the number of random
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FIG. 3. (Color online) The �3(L) statistic for Erdös-Rényi ran-
dom networks with different values of assortativity coefficient r .
All graphs are plotted for the networks with size N = 1000 and
connection probability p = 0.01. The solid line is the prediction from
GOE statistics [Eqs. (4) and (5)], and open circles are calculated from
the network.

connections, and hence it has been proposed to be used as a
measure of randomness at a fine scale [48]. After the Brody
parameter attains a value of 1, the �3(L) statistic has been
shown to measure the randomness (in terms of L0 in this paper)
in the underlying network [49]. As the rewiring probability
increases further, the value of L0 for which the �3(L) statistic
follows RMT predictions increases, demonstrating that the
eigenvalues that are L0 distance apart are also correlated. Since
L0 provides a measure of randomness in a network [49], for
the networks under investigation in the present work, it turns
out that the highest assortative network is the least random,
as the value of L0 is the lowest for that particular r value
[Fig. 3(a)]. As assortativity of the network is decreased, the
randomness of the network increases, as reflected in the higher
value of L0. This increase in the size of L0 continues up to r

being 0, supporting the idea that the network reaches maximum
randomness. The value of L0 then remains steady for a further
decrease in the value of assortativity to the smallest possible
value of r , i.e., to the maximum disassortativity [Fig. 3(c)].
As most of the real-world networks have been reported to
possess a certain level of disassortativity [9], based on the
�3(L) results, we can argue that real-world systems attempt
to have more randomness, thereby leading to disassortativity.
What follows is that as the value of r increases, by keeping
the network size and the average degree the same, the value
of L0 for which the �3(L) statistic follows RMT predictions
increases, indicating an increased amount of randomness in the
underlying network. Figure 4 demonstrates that the behavior of
various spectral properties remains unchanged as the network
size increases. Figures 4(a)–4(c) indicate that the value of the
Brody parameter β becomes 1 with a very small decrease in
the value of r . With a further decrease in the value of r , the
value of L0 for which the �3(L) statistic follows the GOE
statistic increases, indicating an increase in randomness, as
discussed earlier. With a further decrease in the value of r in the
disassortativity regime, there occurs a peak at zero eigenvalue
that becomes more pronounced as the network becomes more
dissociative, which is also accompanied by the deviation from
the semicircular distribution at very low values of r .
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FIG. 4. (Color online) Parts (a)–(c) represent the NNSD, (d)–(f)
represent the �3(L) statistic, and (g)–(i) depict the spectral density
distribution of ER random networks. All graphs are plotted for the
networks with size N = 2000, 〈k〉 = 10 and for the average over 20
different realizations of the network.

Further, in order to demonstrate the robustness of the
universal RMT predictions against changes in the network
architecture, we present results for the SF networks for various
values of r . For r close to 0, the density distribution of the
SF networks exhibits a triangular shape [40], which, with an
increase in the assortativity, tends to display a flattening of
the peak. The range of the distribution also shrinks as the
assortativity increases [Figs. 5(a)–5(e)]. On the other hand,
as we decrease assortativity, i.e., make the network more
disassortative, the shape of the density distribution starts
changing from its signature triangular distribution, with the
peak at zero eigenvalue being more pronounced [Figs. 5(f)
and 5(g)]. As we further increase the disassortativity, the
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FIG. 5. (Color online) Spectral density for scale-free networks
with different values of assortativity coefficient r . All graphs are
plotted for the networks with size N = 1000, 〈k〉 = 10 for 20 different
realizations.
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eigenvalues distribute themselves symmetrically and adopt a
double-hump shape for highly disassortative networks, clearly
visible in Fig. 5(i), which is accompanied by a high peak at the
zero eigenvalue similar to that of the ER random networks. It is
noteworthy that for highly disassortative networks, the spectral
density of ER and SF model networks behaves similarly,
deviating from their respective signature distributions. Further,
the β value exhibits a transition from the Poisson to the
GOE statistics with a decrease in the r value. Despite the
overall spectral density being different from that of the ER
networks, the NNSD and �3(L) statistic display a similarity in
behavior, which is in line with the argument that the eigenvalue
fluctuations are calculated from the smooth homogeneous part
of the spectra by not taking degeneracy into account, and
density is not known to be a real test of GOE statistics [50].

We would like to remark here on the impact and reliability
of network size considered in the present investigation. In
RMT, different quantities are calculated by averaging an
ensemble of matrices. However for real systems, calculations
are made as running averages over part of the whole spectrum.
The random matrix predictions can be applied to real-world
systems if the above two are equivalent, a property known as
ergodicity. More explicitly, it means that all members of the
ensemble, except for a set of measure zero, satisfy the above
equivalence [51,52]. Due to the ergodicity, one can construct
matrix ensembles in different ways: (a) large dimensional
random matrices with fewer realizations, or (b) smaller
dimensional matrices with a larger number of realizations.
We consider an ensemble of 20 network realizations with a
large dimension, which is already shown to be good enough
to study various structural properties of networks, such as
degree distributions, clustering coefficients, etc. [6]. Moreover,
individual entities of each ensemble follow RMT predictions
for NNSD with good accuracy, characterized by χ2 values.
As we increase the realizations, accuracy increases (see Fig. 2
and the Appendix). Consideration of an ensemble consisting of
many more network realizations would not lead to significant
betterment or a difference in the following properties of the
network spectra: (i) the Brody parameter smoothly turning 1
with a decrease in the value of r at a very fine scale; (ii) a
further decrease in the values of r leading to an increase in
the value of L for which spectra follow GOE statistics; and
(iii) increasing height of the peak at zero eigenvalues with
an increase in the disassortativity, due to the bipartite-like
structure of the network.

Next, in order to investigate whether the degree-degree
correlations in a real-world system have different spectral
behavior from those of the model networks discussed above,
we consider the protein-protein interaction (PPI) networks of
six different species. These networks have already been shown
to follow universal RMT predictions of GOE statistics [53].
We concentrate here on the occurrence of high degeneracy
at the zero eigenvalue. The assortativity coefficient and the
fraction of degenerate eigenvalues are tabulated in Table I. As
all the PPI networks possess negative value of r as well as
having a high degeneracy at zero, we expect disassortativity
to be one of the factors governing the degeneracy in the
real-world networks. To probe more into the correlation
between disassortativity and degeneracy at zero, we compare
the corresponding configuration model for all PPI networks

TABLE I. Comparison of the number of zero eigenvalues of PPI
networks of different species and their corresponding configuration
models. r0 denotes the value of the assortativity coefficient for the
PPI networks. N0 (PPI) denotes the number of zero eigenvalues in the
spectra of the PPI networks. N0 (r = 0) stands for zero degeneracy
for the configuration model with r = 0, whereas N0 (r = r0) denotes
the same for the configuration models taking r values equal to the
corresponding PPI network.

PPI networks N r0 N0 (PPI) N0 (r = 0) N0 (r = r0)

H.pylori 709 −0.243 317 115 152
C.elegans 2386 −0.183 1354 465 1124
S.cerevisiae 5019 −0.088 976 717 1149
H.sapiens 2138 −0.084 864 423 643
D.melanogaster 7321 −0.083 2311 1389 1975
E.coli 2209 −0.012 487 487 497

presented above (Table I). It is clearly indicated that as soon as
the value of r becomes negative (close to the corresponding PPI
network), while keeping all other parameters of the system the
same, there is an increase in the degeneracy at zero eigenvalue.

IV. DISCUSSION AND CONCLUSIONS

The density distribution of the random networks for the
value of r being 0 follows the Wigner semicircular distribution.
Even with a change in the assortativity (0 � r < 1), the bulk
part of the spectra keeps displaying a semicircular distribution
[Figs. 1(a)–1(f)], whereas an increase in the disassortativity
(−1 � r < 0) leads to a double hump, which is symmetrically
distributed around a peak at zero eigenvalue [Fig. 1(i)].
The height of the peak increases with an increase in the
disassortativity of the network.

The NNSD of the networks with the various
(dis)assortativity values (1 < r < −1) reveals that there is
a smooth transition in the β-value around the very high
assortativity regime. For very high assortativity values, β

values lie close to 0, and as the network becomes less
assortative, β progresses to 1. This may be because the
networks with the highest assortativity has groups of similar
degree nodes that get perturbed as r decreases by making
random connections among these different groups. For the
rest of the assortativity values, β remains fixed at 1, which
corresponds to the universal GOE distribution as the value of
r becomes negative.

Furthermore, the property of the Brody parameter being
able to detect changes in the network structure at a fine scale,
and the increase in L0 of the �3(L) statistic after the value of
β becomes 1, have several implications. The implication that
pertains to the present work is that the value of β distinguishes
two networks based on the random connections present, while
the other implication is that more assortativity in the network
corresponds to less randomness. Decreasing the assortativity
leads to an increase in randomness, which continues up to
the value of r = 0, for which the network is most random
(the L0 value being maximum). Then the value of L for
which the �3(L) statistic follows the GOE prediction starts
decreasing and remains steady for a further decrease in the
value of assortativity up to the lowest possible value of r (i.e.,
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up to the maximum disassortativity case). The SF networks
also exhibit eigenvalue fluctuation statistics similar to those
for ER random networks, where the density distribution for
r = 0 and for lower |r| values exhibits a triangular instead
of a semicircular shape. Both networks, however, exhibit
high degeneracy at zero for the disassortative networks. By
considering different PPI networks, we further demonstrate the
role of disassortativity governing the appearance of degeneracy
at zero eigenvalue.

In spectral graph theory, most of the works concentrate
on extremal eigenvalues [22], whereas RMT research focuses
on the distribution of various spectral properties of random
matrices with an extension to random graphs, largely ignoring
many graph properties that exist in real-world systems. The
analysis carried out here is a step toward bridging this gap
by considering the two most popular tools of random matrix
theory, i.e., density and spacing distributions, in order to
understand the impact of one of the important properties of
graphs, i.e., assortativity. This property has been increasingly
realized as a characteristic of a system [54–56]. Our analysis
is another demonstration of the importance of spacing analysis
in understanding the impact of degree-degree correlation on
a network detected through the spectra, as for very minute
changes in r there are no visible changes in the spectral
density. However, this leads to very drastic changes in
eigenvalue fluctuations, demonstrating the impact of r values
on randomness in a network.

Furthermore, the �3(L) statistic provides insight into
why social networks tend to be assortative while biological
and technological networks tend to be disassortative, as
randomness, measured in terms of L0 for which the �3(L)
statistic follows the RMT prediction, increases with a decrease
in r . A direct implication of this result can be seen in the case of
social networks, where entities are known to be associated in
an ordered fashion (people with similar ages or educational
profiles are often more connected) [57], thus providing a
probable reason as to why social networks tend to assume an
assortative topology. On the other hand, it has been reported
that most biological and technological networks possess a
certain level of disassortativity [7,9,18]. Also, biological
networks, e.g., PPI networks, exhibit varying amounts of
randomness in their underlying networks detected through
different values of L0 for which the �3(L) statistic follows
GOE statistics [53]. This randomness has been attributed
to mutations occurring over the course of evolution [58].
Relating the disassortative nature of the PPI networks and
the randomness they possess with the results obtained from
our analysis of the model networks suggests that biological
networks tend to become more disassortative in order to
comply with their underlying randomness.

To conclude, we present a systematic analysis of the
spectral properties of networks with varying (dis)assortativity.
We find that assortativity has a profound impact on the
spectral properties of the underlying networks. At a very
high assortativity regime, even with a slight decrease in the
value of r , the Brody parameter smoothly becomes 1. A
further decrease in the values of r leads to an increase in
the value of L0 of the �3(L) statistic for which the spectra
follow GOE statistics. The Brody parameter β captures the
changes in the assortativity coefficient at a fine scale [48] and

L0 at a large scale [49], which further suggests that when r

decreases, randomness increases. With a further decrease in
r , at around r = 0, the density distribution starts exhibiting a
peak at zero eigenvalue, which becomes more pronounced as r

decreases further. Interestingly, most of the studies on network
spectra report that the bulk part of the spectra of the networks
with a Gaussian and scale-free degree distribution follow
semicircular and triangular distributions [39,40], respectively,
but for highly disassortative networks, the spectral density of
both degree distributions can have entirely different behavior.

Recently, the realm of assortativity has been realized in un-
derstanding adaptive synchronization [55], which, combined
with our results of varying the amount of randomness for
various values of r , can be explored further to understand
the dynamical processes in networks. Furthermore, Table I
indicates that disassortativity is one of the factors contributing
to zero degeneracy. The prevalence of zero degeneracy has
been implicated in terms of gene duplication [59]. This, along
with the impact of a change in the topology of a network
brought about by assortativity, leading to a profound change in
the spectral density, provides a direction in which to explore the
evolutionary origin of real-world systems [60,61]. Lastly, since
randomness or random connections in a network have already
been emphasized for the proper functioning of corresponding
systems [62], the profound role of the assortativity parameter
revealed through the sophisticated random matrix technique
is not only important for a network community attempting to
model complex systems, but it is interesting for random matrix
communities at the fundamental level as well.
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APPENDIX

Numerical calculations pertaining to assortative mixing,
eigenvalues calculations, and �3(L) statistics are done using
FORTRAN code written by the authors. The eigenvalues are
calculated by calling LAPACK (Linear Algebra PACKage) sub-
routines into the FORTRAN code. The calculation of spacings
and polynomial fittings are done using MATLAB.

We present the χ2 values as a measure of the goodness
of fit of the model to data, with a lower value of χ2

indicating a better fitting. As depicted in Fig. 6, the χ2

values consistently decrease with an increase in the number of
network realizations in the ensemble, implicating an increase
in accuracy up to the value of χ2 being less than 1 lying
in the acceptable range [63]. For assortative networks, as
few as three realizations in the individual ensemble are
sufficient to bring χ2 within the acceptable range, whereas
for r taking negative values, the number of realizations
in the ensemble increases a bit more [five as depicted in
Fig. 6(ć)] in order to bring χ2 within the acceptable range.
This happens because for disassortative networks, there is
high degeneracy at zero eigenvalue leading to a less effective
dimension of the unfolded spectra (refer to discussions in
Sec. II), and hence more realizations of the networks are
required.
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