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Dynamic message-passing equations for models with unidirectional dynamics

Andrey Y. Lokhov,1,* Marc Mézard,1,2 and Lenka Zdeborová3
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Understanding and quantifying the dynamics of disordered out-of-equilibrium models is an important problem
in many branches of science. Using the dynamic cavity method on time trajectories, we construct a general
procedure for deriving the dynamic message-passing equations for a large class of models with unidirectional
dynamics, which includes the zero-temperature random-field Ising model, the susceptible-infected-recovered
model, and rumor spreading models. We show that unidirectionality of the dynamics is the key ingredient that
makes the problem solvable. These equations are applicable to single instances of the corresponding problems
with arbitrary initial conditions and are asymptotically exact for problems defined on locally treelike graphs. When
applied to real-world networks, they generically provide a good analytic approximation of the real dynamics.
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I. INTRODUCTION

Over the past decade, there has been a growing interest in
building analytical tools for the study of out-of-equilibrium
dynamics in disordered problems defined on heterogeneous
networks. Particular attention has been devoted to the study
of cascading and avalanche processes in the cases where
the dynamics is not a relaxation dynamics related to a
Hamiltonian but instead is characterized by a set of stochastic
transition rules. Examples of such processes include epidemic
spreading [1–4]; propagation of information and innovations in
social media [5–9]; dynamics of magnetic and glassy systems
[10,11]; communication protocols, such as gossip algorithms
and peer-to-peer file sharing on computer networks [12,13];
activation cascades in biological and neural networks [14,15];
and news updates in financial markets [16,17]. A common
property shared by these processes is the unidirectional
nature of the corresponding dynamics: Once an elementary
constituent of the system under the influence of its neighbors
undergoes a transition to a certain state, it can never return to
the previous one.

Although the properties of diluted disordered systems have
been intensively investigated over the past several years, there
is still no well-established tractable method for solving the
corresponding dynamics in the general case. One category
of problems that has recently attracted a lot of attention is the
case of out-of-equilibrium dynamic processes on sparse graphs
[18–21]. Methods which are developed in this context can also
be used as sophisticated mean-field-type approximations for
problems defined on general graphs. The generating functional
analysis techniques [22], the dynamical replica analysis
[23,24], and the cavity method [25,26] have been recently
used for the construction of a general approach in terms of
time trajectories of variables. However, the general dynamics
remains intractable in this formalism except for only a few
time steps: the solution of the corresponding equations takes
in general a number of operations that grows exponentially
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with the duration of the process one wants to study. In a few
special cases, some progress has been recently made by a
number of authors who were able to write, using cavitylike
arguments, tractable asymptotically exact mean-field dynamic
equations for several models defined on locally treelike graphs,
such as the zero-temperature random field Ising model (RFIM)
[11], the susceptible-infected-recovered (SIR) model [27–31],
and the threshold models [32,33]. All these models share a
common property: They describe a unidirectional dynamics
involving one transition to the active state; the derivation of
the corresponding equations is typically based on identifying
correct dynamic variables that are required to obtain the closed-
form expressions. These examples lead to the hypothesis
that the microscopic irreversibility of the dynamics is a key
property that makes it possible to derive such equations
[30,34]. However, in general it is very difficult to guess the
right dynamic variables that should be used in the dynamic
equations for more complicated models, involving a larger
number of states and several nontrivial transitions. Probably
the simplest model of this kind is the so-called rumor spreading
model [35–37], which is a three-state dynamic model with two
neighbor-dependent transitions.

In this paper, we develop a systematic procedure for
deriving the dynamic message-passing (DMP) equations for
general models with unidirectional dynamics and arbitrary
number of states. They allow one to estimate the marginal
probabilities of each variable at each time on a given network of
contacts, using a number of operations that is polynomial both
in the size of the network and in the duration of the dynamic
process. These equations are applicable to single-instance
problems with arbitrary initial conditions, are asymptotically
exact on locally treelike networks, and typically provide a good
approximation for real-world networks. The DMP equations
are derived using the cavity method, also known in different
fields as the belief propagation (BP), or the sum-product
algorithm [26,38], starting from a BP equation that takes as
variables the time trajectories of nodes. Despite the similarity
with the BP equations that need to be iterated until conver-
gence, the iteration time in the DMP equations corresponds
to the physical time. We show that the unidirectional nature
of the dynamics is indeed a crucial element that makes the
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problem solvable. More precisely, the time trajectories in
these models can be fully parametrized with only a few
flipping times, leading to a significant simplification of the
corresponding dynamic BP formulation. As a result, these
BP equations can be rewritten in terms of closed-form DMP
equations with a computational complexity which turns out to
be reduced from an exponential in the duration of the process
to a polynomial. This simplification occurs thanks to the use
of dynamic variables that appear naturally to be the weighted
sums of messages of the BP equations on trajectories.

The structure of the paper is as follows. In Sec. II we
present a systematic framework for treating dynamic problems
on locally treelike graphs, writing a general dynamic belief
propagation equation for node trajectories in time. Then, in
Sec. III, we introduce an important class of considered models
with unidirectional dynamics. In the next sections, Secs. IV–
VI, we construct a general procedure for the derivation of DMP
equations for these models, thus obtaining the single-instance
form of the mean-field equations that for some cases have
already appeared in the literature and obtaining new equations
for more complicated models. Finally, we provide supporting
numerical results and discuss the possible applications of our
approach.

II. DYNAMIC BELIEF PROPAGATION

Belief propagation, or the cavity method, is an iterative
method that allows one to estimate efficiently marginal prob-
ability distributions in graphical models. It has been proven to
be very successful in some applications, e.g., error-correcting
codes [39], Bayesian networks [40], and optimization prob-
lems [41]. BP makes use of the assumption that the marginal
probabilities (called messages) defined on an auxiliary cavity
graph (a graph with a removed node) are uncorrelated. This
assumption is obviously exact if the underlying network is a
tree, in other cases it is an approximation of the mean-field
type (for more details, see Ref. [26]). The solution to the BP
equations can often be obtained by iterating the equations
until convergence. A formulation of this algorithm for static
problems is given for consistency in Appendix A.

Our motivation to seek a generalization of the cavity method
for dynamic problems has been inspired by the success of
belief propagation in static problems. The main idea behind the
dynamic belief propagation is to write usual cavity equations
using the time trajectories of nodes as variables. This idea has
been exploited in a number of previous works on the dynamics
of disordered systems [18–21].

Consider a graph G = (V,E), defined by a vertex set V

and a set of edges E. In the dynamic setting, each vertex
i ∈ V is characterized by a variable, taking the value σ t

i at
time t . We assume that the set of possible values of σ t

i is
of size K . We consider a generic dynamic process defined
in a discrete-time parallel dynamics and described by a local
transition probability wi(σ

t+1
i |{σ t

j }j∈∂i) that a node i takes

value σ t+1
i at time t + 1 given the values {σ t

j } of its neighbors
at time t . If we denote by �σi = (σ 0

i , . . . ,σ T
i ) the trajectory of

variable i at times t = 0, . . . ,T , where T is the stopping time,
the joint probability distribution of the trajectories P ({�σi}i∈V )

FIG. 1. An example of a factor graph of the graphical model
at two nearest times described by the joint probability distribution
P ({�σi}i∈V ). The check node a represents interaction between the
variable σ t+1

i and the variables {σ t
j }j∈∂i at a previous time step. This

factor graphs is characterized by systematic short loops.

can be written as follows:

P ({�σi}i∈V ) =
∏
i∈V

T −1∏
t=0

wi

(
σ t+1

i

∣∣{σ t
j

}
j∈∂i

)
P0, (1)

where P0 ≡ P ({σ 0
i }i∈V ) is the distribution of variables at initial

time.
It is a well-known fact that BP equations are exact for static

graphical models when the factor graph is a tree. However,
when we consider the factor graph (graph involving check
nodes that represent local interactions between variables) of
the model defined in (1), in which the variables are time
trajectories �σi , it turns out that the factor graph contains many
loops, even in the case where G is a tree, see Fig. 1.

A way to fix this problem consists in exploiting the duality
between variables and interactions by putting the variables
on the edges. To this purpose we introduce a different
representation of the problem that uses auxiliary variables
(time trajectories) �σi→j on each directed edge (i,j ) ∈ E. For
a given i, all the variables �σi→j are supposed to be copies
of the original �σi . They should thus be all equal, and we
implement this by adding for each i an additional constraint
�σi→j = �σi→k for all j,k ∈ ∂i. The joint probability distribution
(1) of time trajectories hence can be written in terms of these
new variables:

P ({�σi→j ,�σj→i}(i,j )∈E)

=
∏
i∈V

T −1∏
t=0

⎡⎣wi

(
σ t+1

i→l

∣∣{σ t
k→i

}
k∈∂i

) ∏
k∈∂i\l

δσ t
i→l ,σ

t
i→k

⎤⎦ P0, (2)

where l is any of the variables influenced directly by i, and
k ∈ ∂i\l means the set of nodes neighboring node i, excluding
l. This new form of the probability distribution is described
by a factor graph which is very closely related to G: The new
variables �σi→j ,�σj→i live on each edge (ij ) ∈ E, and there
is a function node (interaction) associated with every vertex
i ∈ V . If the original graph G is a tree (respectively, is locally
treelike), the factor graph is a tree (respectively, is locally
treelike), see Fig. 2. This crucial property allows to use the
BP method in terms of this new description for studying the
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FIG. 2. An example of a factor graph of the graphical
model at all times described by the joint probability distribution
P ({�σi→j ,�σj→i}(i,j )∈E). The check node i represents interaction be-
tween trajectories �σi and {�σj }j∈∂i . This factor graph is characterized
by the underlying tree structure if the original graph is a tree.

dynamics, with the guarantee that the resulting equations are
exact if G is a tree.

Let us now write the BP equations. Using the fact that
�σi→j = �σi→k for all j,k ∈ ∂i, it is convenient to rename
the variables {�σi→j ,�σj→i}(i,j )∈E to {�σi,�σj }(i,j )∈E . The BP
equations for the joint probability distribution (2) in terms
of conditional messages mi→j (�σi |�σj ) read:

mi→j (�σi |�σj ) =
∑

{�σk}k∈∂i\j

[
T −1∏
t=0

wi

(
σ t+1

i

∣∣{σ t
k

}
k∈∂i\j ,σ

t
j

)]

×P
({

σ 0
i

}
i∈V

) ∏
k∈∂i\j

mk→i(�σk|�σi). (3)

Notice that, in general, there appears a normalization constant
in front of the BP equation. In our case, thanks to the Markov
property of the dynamics, we can explicitly compute the
normalization constant, see Appendix B for details.

The message mi→j (�σi |�σj ) has the meaning of the prob-
ability for the trajectory �σi given the trajectory �σj in the
transformed cavity graph, where the factor node j has been
removed. We denote the dynamics in the corresponding cavity
graph as Dj . Equation (3) can be iterated until convergence,
and the corresponding marginal probability of a time trajectory
�σi will be given by

mi(�σi) =
∑

{�σk}k∈∂i

[
T −1∏
t=0

wi

(
σ t+1

i

∣∣{σ t
k

}
k∈∂i

)]

×P
({

σ 0
i

}
i∈V

) ∏
k∈∂i

mk→i(�σk|�σi). (4)

Note that in the general case, it takes an exponential number
of operations in the duration of the process to solve Eqs. (3)
and (4), since each message has KT components, where K is
the number of values that each variable σ t

i may take, and the
sum in Eq. (3) is performed over KT (di−1) variables for each
node i, with di being the number of neighbors of i. However, a
crucial simplification occurs for the models with unidirectional
dynamics, introduced in the next section.

III. MODELS WITH UNIDIRECTIONAL DYNAMICS

Let us assume that in the expression for the transition
probability wi(σ

t+1
i |{σ t

j }j∈∂i), the value σ t
i takes one of the

K ordered discrete values that we denote �1,�2, . . . ,�K .
We call the dynamic process unidirectional if the node can
change its state only in a directed and irreversible way,
�1 → �2 → · · · → �K , and the transition to one of the
previous states is forbidden by the dynamic rules.

Among unidirectional processes with K = 2 states (σ t
i

can take one of the two values −1 ≡↓ or 1 ≡↑), one
can mention the zero-temperature random field Ising model
(zero-temperature RFIM) with homogeneous initial condition,
considered in Ref. [11]:

∏
i∈V δσ 0

i ,−1 = (↓↓ · · · ↓). Each spin
can flip only if the local field created by its neighbors is positive
(precise definitions will be given in the next section). Once
being flipped, the spins in this avalanche dynamics remain in
the position ↑ for all times, since the local field is a monotone
nondecreasing function of time. Therefore, this system has
a unidirectional dynamics with two ordered states, ↓ and ↑.
The model can be generalized to any initial condition if the
backward transition from ↑ to ↓ is explicitly forbidden by
the dynamic rules. The situation differs from the standard
Glauber dynamics of the Ising model with nonzero temperature
[42], or the majority dynamics of voters, that switch to one
of the alternative opinions according to the majority of their
neighbors [21], where each variable is free to flip an arbitrary
number of times. Note that the linear threshold model with
random thresholds studied in Refs. [32,34] is equivalent to
this formulation of the RFIM.

Another example of model with two states and unidi-
rectional dynamics is given by the susceptible-infected (SI)
model, in which the node can be in either of two states:
susceptible (S) or infected (I ). The propagation of infection
on this model occurs due to the pairwise interactions between
individuals: for instance, the S individual can be infected by
one of its I neighbors at each time step and then remains
infected forever. If there exists a recovery mechanism that
allows an infected individual to become susceptible again
after some time (it corresponds to the so-called susceptible-
infected-susceptible, or SIS model, that is used to model the
behavior of endemic diseases), the model does not belong to
the class of unidirectional models anymore.

Unidirectional dynamic processes with K = 3 states in-
clude the susceptible-infected-recovered (SIR) model, an
extension of the SI model that is widely used to model
epidemic spreading. In this model, the infected node can
switch to a recovered (R) state with a certain probability
at each time step, leading to a depletion of infected agents.
Another well-known model with unidirectional dynamics and
three states is given by the so-called rumor spreading, or
ignorant-spreader-stifler (ISS) model [4], which describes the
propagation of information by spreaders to ignorants that are
unaware of rumor and takes into account the possibility that
the spreader can become uninterested in the rumor under the
influence of its neighbors. The precise formulation of these
models will be given in Sec. V.

In what follows, we discuss the dynamic message-passing
equations for the models listed above, illustrating the general
method to derive such equations for other models with arbitrary
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K . Typically, these equations would allow us to answer the
following question: What is the probability that a certain node
i is in a certain state �a at time t? For some of these models, the
equivalent equations have already appeared in the literature,
however, in a form averaged over the ensemble of random
graphs and/or over the initial conditions, and not suitable to
the algorithmic purposes for single-instance problems. For
others, the DMP equations have never been stated previously;
the “naive” mean-field equations that exist for all models are
derived under assumptions of homogeneity of transmission
probabilities and complete-mixing hypothesis (ignoring the
actual topology of the interaction network and assuming that
each pair of nodes may interact) that are obviously unrealistic.
For each model considered in the following, we will discuss
the relation of our DMP equations to those existing in the
literature, if any.

IV. UNIDIRECTIONAL MODELS WITH K = 2 STATES

A. Zero-temperature RFIM

The RFIM Hamiltonian reads

H = −
∑
(ij )

Jijσiσj −
∑

i

(h + hi)σi, (5)

where Jij is a non-negative interaction between spins i and j ,
h is an external uniform magnetic field, and hi is a random
magnetic field on site i, extracted from some probability
distribution. At zero temperature spin i tends to be aligned
with its local magnetic field,

�t
i = h + hi +

∑
k∈∂i

Jkiσ
t
k . (6)

Consider an initial condition in the form P ({σ 0
i }i∈V ) =∏

i∈V δσ 0
i ,−1 (as mentioned in the previous section, one could

choose any initial condition, provided the dynamics is such
that the transition from ↑ to ↓ is forbidden). Define the
zero temperature stochastic dynamics respecting the following
property: spin σi = −1 with a positive local field �i flips
with rate 1/τ and does not flip otherwise. Each spin flips
at most only once, so the trajectory �σi has a typical form
|↓

0
↓↓↓↓↓↓↓↑

τi
↑↑↑↑↑↑↑

T
〉 and is in one-to-one correspon-

dence with the flipping time τi (τi is the first time for which
σi = 1). If the spin does not flip for all the times 0, . . . ,T − 1,
then by definition we set τi = T (T is the stopping time, i.e.,
the condition τi = T summarizes all the events that happen
after the time T ).

Using the representation in terms of flipping times, Eq. (3)
for τi < T can be expressed as follows:

mi→j (τi |τj ) =
∑

{τk}k∈∂i\j

WRFIM

∏
k∈∂i\j

mk→i(τk|τi), (7)

where

WRFIM =
τi−2∏
t ′=0

(
1 − 1

τ
1
[
�t ′

i > 0
]) 1

τ
1
[
�

τi−1
i > 0

]
. (8)

Here and in what follows we use a convention,
a−ε∏
t=a

(. . .) ≡ 1, (9)

for any fixed a and ε > 0. Using the fact that messages are
properly normalized, we choose

mi→j (T |τj ) = 1 −
T −1∑
τi=1

mi→j (τi |τj ). (10)

From the conditional messages mi→j (τi |τj ), we can define
two quantities:

pi→j (t) =
∑
τi>t

mi→j (τi |T ), (11)

qi→j (t) =
∑
τi�t

mi→j (τi |T ). (12)

These quantities characterize the marginals of the zero-
temperature RFIM in the cavity dynamics Dj , in which
σ t

j = −1 for every t and never flips, even if �j > 0. In this
dynamics, pi→j (t) is the probability that spin i stays in the state
σ t

i = −1 at time t , and qi→j (t) is defined to be the probability
that spin i has already flipped and hence σ t

i = 1.
Of course, we will be ultimately interested in writing a

closed equation for the marginals in the original dynamics,
defined as:

pi(t) =
∑
τi>t

mi(τi), (13)

qi(t) = 1 − pi(t), (14)

where mi(τi) are the marginal probabilities of trajectories (4) in
the original dynamics, following the same equation as (7), but
with ∂i\j replaced by ∂i, in the same way as (4) is related to
(3). The DMP equations for this model can be derived, starting
from Eq. (7), and using the definitions (11) and (12), as well as
elementary properties of the messages, such as normalization
and causality constraints. For details of the derivation see
Appendix C. After some algebra, the resulting DMP equations
can be shown to take the following form in discretized time
notations:

qi→j (t + 1) =
(

1 − 1

τ

)
qi→j (t)

+ 1

τ

∑
{σk}k∈∂i\j

1

⎡⎣h + hi +
∑

k∈∂i\j
Jkiσk − Jji > 0

⎤⎦
×

∏
k∈∂i\j :σk=+1

qk→i(t)
∏

k∈∂i\j :σk=−1

[1 − qk→i(t)].

(15)

Therefore, the marginal probability for spin i to be in the state
+1 at time t + 1 is given by qi(t + 1), which can be computed
according to the following expression:

qi(t + 1) =
(

1 − 1

τ

)
qi(t)

+ 1

τ

∑
{σk}k∈∂i

1

[
h + hi +

∑
k∈∂i

Jkiσk > 0

]

×
∏

k∈∂i:σk=+1

qk→i(t)
∏

k∈∂i:σk=−1

[1 − qk→i(t)].

(16)

012811-4



DYNAMIC MESSAGE-PASSING EQUATIONS FOR MODELS . . . PHYSICAL REVIEW E 91, 012811 (2015)

The probability that spin i is still in the state −1 at time t + 1
is then given by pi(t + 1) = 1 − qi(t + 1). Note that the DMP
equations (15) and (16) can now be run in real time, starting
with initial conditions qi(0) = qi→j (0) = 0 for each node i

and j ; these equations have a closed self-consistent form, so
we no longer need to compute the messages using (7). Note
that the computational complexity of the DMP equations for
the zero-temperature RFIM is reduced from exponential to
linear in time; in the most straightforward implementation, the
computation complexity of (15) and (16) is O(N2ct), where c

is the average degree of the graph.
The averaged form of the DMP equations was first derived

in Ref. [11] using a cavitylike argument for the dynamic
variables qi→j (t) and qi(t). The derivation, which is close
to ours, is provided in Ref. [32], where an equivalent liner
threshold model is investigated. This model has been also
studied in a different setting in a form of the voter model in
Ref. [21].

B. Generalized SI model

Let us now consider the most general case of a unidirec-
tional dynamic model with two states and pairwise interactions
between nodes; each of these independent interactions may
lead to a transition to the final state. The definition of the
generalized SI model in discrete time can be represented as
follows:

S(i) + S(j )
εji−→ I (i) + S(j ), (17)

S(i) + I (j )
λji−→ I (i) + I (j ), (18)

S(i)
νi−→ I (i). (19)

This diagram represents the dynamic rules at each time step.
Here i and j mean two neighboring nodes in the network, and
εji , λji , and νi correspond to transition probabilities at each
time step.

Again, since there are only two possible states and the
dynamics is unidirectional, the time trajectory of a node i

|S0SSSSSSI
τi
I I IIII

T
〉 can be parametrized by a single time

τi , when the spin flips from the state S to the state I (τi is
the first time for which σ

τi

i = I ). If the node i is initially in
the state I , we set τi = 0, and we put by definition τi = T

if the flipping happens after the observation time T or never
happens.

Therefore, the dynamic cavity equation (3) takes the
following form for the generalized SI model:

mi→j (τi |τj ) =
∑

{τk}k∈∂i\j

WSI

∏
k∈∂i\j

mk→i(τk|τi), (20)

where WSI is the kernel that resumes the dynamics of the model
up to the final time T and τi < T . See Appendix D for details.

The beliefs mi(τi), which can be obtained from (20) in the
same way as (4) is obtained from (3), allow one to define
the marginal probabilities describing the dynamics of the SI
model:

P i
S(t) =

∑
τi>t

mi(τi), (21)

P i
I (t) = 1 − P i

S(t). (22)

It is also useful to define the marginal probability that node i is
in the state S at a given time in the cavity graph Dj , in which
the node j is fixed to the state S for all times:

P
i→j

S (t) =
∑
τi>t

mi→j (τi |T ). (23)

After some algebra (see Appendix D for details of deriva-
tion), the DMP equations for the generalized SI model take the
following form:

P k→i
S (t) = P k

S (0)(1 − εik)t (1 − νk)t
∏

l∈∂k\i
θ l→k(t), (24)

θk→i(t) = θk→i(t − 1) − εkiφ
k→i
1 (t − 1) − λkiφ

k→i
2 (t − 1),

(25)

φk→i
1 (t) = (1 − εki)φ

k→i
1 (t−1)

−(1 − εki)
t
(
P k→i

S (t − 1) − P k→i
S (t)

)
, (26)

φk→i
2 (t) = (1 − λki)φ

k→i
2 (t−1)

+ (1 − εki)
t
(
P k→i

S (t − 1) − P k→i
S (t)

)
. (27)

The initial conditions are

θ i→j (0) = 1, (28)

φ
i→j

1 (0) = δσ 0
i ,S = P i

S(0), (29)

φ
i→j

2 (0) = δσ 0
i ,I = P i

I (0) = 1 − P i
S(0). (30)

As follows from their mathematical definitions, the intro-
duced dynamic variables can be given the following physical
interpretations (that follow from their explicit mathematical
form):

(a) θk→i(t) is the probability that neither of both ε and λ

infection signals has been passed from node k to node i up to
time t in the cavity dynamics Di ;

(b) φk→i
1 (t) is the probability that the ε infection signal has

not been passed from node k to node i up to time t in the cavity
dynamics Di and that k is in the state S at time t ;

(c) φk→i
2 (t) is the probability that neither of both ε and λ

infection signals has been passed from node k to node i up to
time t in the cavity dynamics Di and that k is in the state I at
time t ;

(d) P k→i
S (t) is the probability that k is in the state S at time

t in the cavity dynamics Di .
Finally, the marginal probabilities for nodes to be in states

S or I at time t are computed via

P i
S(t) = P i

S(0)(1 − νi)
t
∏
k∈∂i

θk→i(t), (31)

P i
I (t) = 1 − P i

S(t). (32)
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LOKHOV, MÉZARD, AND ZDEBOROVÁ PHYSICAL REVIEW E 91, 012811 (2015)

0

0.1

0.2

0.3

0 0.1 0.2 0.3

M
C

p
re

d
ic

ti
o
n

fo
r

P
i S
(t

)

DMP prediction for P i
S(t)

FIG. 3. (Color online) Comparison of prediction of the DMP
equations for the generalized SI model with the Monte Carlo
simulations. Marginal probabilities P i

S(t) are presented for five nodes
from a tree graph with N = 20 nodes and t = 5, the parameters of the
model are λ = 0.5, ε = 0.1, and ν = 0.1, and there is one infected
node at initial time. The MC average is performed over 107 instances.
The error bars are negligible and are not shown.

The exactness of DMP equations for generalized SI model
on tree graphs is illustrated in Fig. 3. Their computational
complexity is O(Nct), where c is the average degree of the
graph. Note that the complexity is linear in average degree
of the network; this is due to the pairwise nature of the
interactions, leading to a factorization of dynamic variables in
Eqs. (24) and (31). The same property will also hold for other
pairwise models, considered below. These dynamic equations
have never appeared in the literature. However, in some sense
this model is a straightforward generalization of the SIR model
that is considered further, see the next section.

V. UNIDIRECTIONAL MODELS WITH K = 3 STATES

A. SIR model

The dynamics of the SIR model is defined in discrete time
by infection and recovery probabilities, λij and μi . At each
time step, the following dynamics rules apply [4]:

S(i) + I (j )
λji−→ I (i) + I (j ), (33)

I (i)
μi−→ R(i). (34)

Note that the SIR model, defined by Eqs. (33) and (34),
represents in some sense a particular case of the generalized
SI model, with εij = 0 and νi = 0 for all i and j . At the same
time, a trivial (independent on the state of neighbors) transition
to the R state with probability μi is added. Now the time
trajectory for a node i can be fully parametrized by two flip-
ping times: �σi = |S0SSSSSSI

τi
I I IIIIR

ωi
RRRRRR

T
〉 ←→

(τi,ωi). This leads to the following equations, already derived
in a different way (with a correct choice of dynamic variables

that have to be used) in Ref. [31]:

P
i→j

S (t + 1) = P i
S(0)

∏
k∈∂i\j

θk→i(t + 1), (35)

θk→i(t + 1) − θk→i(t) = −λkiφ
k→i(t), (36)

φk→i(t) = (1 − λki)(1 − μk)φk→i(t − 1)

− [
P k→i

S (t) − P k→i
S (t − 1)

]
. (37)

The initial conditions are given by θk→i(0) = 1 and φk→i(0) =
δσ 0

k ,I . Similarly to the SI model, a concrete physical sense
may be given to the dynamic variables P k→i

S (t), θk→i(t), and
φk→i(t) (see Ref. [31] for details). The marginal probabilities
that node i is in a given state at time t are then given as

P i
S(t + 1) = P i

S(0)
∏
k∈∂i

θk→i(t + 1), (38)

P i
R(t + 1) = P i

R(t) + μiP
i
I (t), (39)

P i
I (t + 1) = 1 − P i

S(t + 1) − P i
R(t + 1). (40)

The computational complexity of DMP equations for SIR
model is O(Nct). The details of the derivation of DMP
equations for the SIR model using dynamic belief propagation
are given in Appendix E. A numerical study of these equations
has been provided in Ref. [31] for different type of networks.

Equations reminiscent of (38)–(40) were first derived in
Ref. [27] for a more general SIR model with nonexponential
transmission and recovery distributions. For this more general
case, no easily tractable Markovian form of the DMP is known:
the equations in Ref. [27] are presented in a convolutional form
that is complicated for numerical resolution. For a simpler case
of constant recovery and transmission rates, the equations of
Ref. [27] simplify. For an ensemble of random graphs with a
given probability distribution it is possible to write the mean-
field equations on the fraction of nodes in the states S, I ,
and R [28–30]. These equations are exact in the ensemble
of diluted random graphs in the thermodynamic limit N →
∞ and differ markedly from the naive mean-field equations
[4] that completely ignore the topology of the network and
therefore provide only a crude approximation to the dynamics.
The recent work [33] presented a generalization of the SIR
model to the threshold models where a transition happens
only if the information is received from a certain number A of
neighbors. This model can also be readily solved within the
DMP approach. Indeed, the expression (38) for the marginal
probability that node i is in the state S would take a form
similar to the second term in the right-hand side of Eq. (16) in
the RFIM, with qk→i(t) replaced by θk→i(t + 1): One would
need to sum over all the subsets of ∂i that correspond to the
transmission of information by at least A neighbors. Hence,
this model represents a three-state model with a RFIM-like
nontrivial transition to the infected state.

B. Rumor spreading model

The definition of the rumor spreading model can be
summarized as follows [4]. For the sake of simplicity, we
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keep the same notations for the states as those used in the
SIR model. Each node i ∈ V at discrete time t can be in
one of three states σ t

i : ignorant, σ t
i = S; spreader, σ t

i = I ;
or stifler, σ t

i = R. At each time step, an “infected” node i

will recover with probability 1 − ∏
k∈∂i(1 − αkiδσ t

k ,I
), and a

“susceptible” node i will become infected with probability
1 − ∏

k∈∂i(1 − λkiδσ t
k ,I

), where ∂i is the set of neighbors of
node i. The recovered nodes never change their state. These
rules can be summarized by the following scheme:

S(i) + I (j )
λji−→ I (i) + I (j ), (41)

I (i) + I (j )
αji−→ R(i) + I (j ). (42)

The interpretation of this model is as follows: a spreader node
can either inform one of its ignorant neighbors on the rumor,
in which case they start to communicate the rumor to their
neighbors, or become uninterested in the rumor and turn to the
R state if the rumor loses its “news value.” This happens in a
directed way when the spreader gets in contact with another
spreader. Note that some rumor spreading models include an
additional modeling of such a spreading decay, described by
a contact of a spreader with a stifler with the same probability
α. This additional transition can be easily included in our
approach, but for the purpose of this paper we stick to this
“minimal” version of the ISS model that captures the main
features of the rumor spreading process and its difference with
respect to epidemiological spreading models, such as the SIR
model considered before.

As in the previous cases, the irreversibility of dynamics of
the rumor spreading model makes it possible to parametrize
the time trajectory of a node i by only two flipping times,
�σi = (τi,ωi): τi , indicating a transition from S to I (the first
time to be in the state I ), and ωi , corresponding to a I to R

transition (the first time in the state R). If the node i is initially
in the state I , we set τi = 0, and we put by definition τi = T

if the flipping happens after the termination time T or never
happens.

The rumor spreading model, defined via the transition rules
(41) and (42), is notably more complicated than the SIR model
because it has two nontrivial transitions, dependent on the
state of neighbors. As we will see, it is not easy to obtain
the corresponding DMP equations for this model by guessing
the correct dynamic variables since the computation of the
very DBP messages is required. On the other hand, they appear
automatically in the dynamic cavity approach. Let us first state
the DMP computational scheme for this model.

The marginal probabilities P i
S(t + 1), P i

I (t + 1), and
P i

R(t + 1) that node i is in a state S, I , and R respectively
at time t are given by the following equations that can be
iterated in time starting from initial conditions at time t = 0:

P i
S(t + 1) = P i

S(0)
∏
k∈∂i

θk→i(t + 1), (43)

P i
R(t + 1) = P i

R(t) +
∑
τi�t

mi(τi,t + 1), (44)

P i
I (t + 1) = 1 − P i

S(t + 1) − P i
R(t + 1), (45)

where mi(τi,t + 1) has a physical meaning of the marginal
probability that the node i has switched to the state I at
time τi and to the state R at time t + 1. The remaining
computational scheme serves to compute this probabilities
explicitly. To this purpose, we introduce a number of auxiliary
dynamic messages that can be computed iteratively. Again,
these messages may be given a physical interpretation and
are defined in the corresponding cavity dynamics. As an
illustration, consider the message P

i→j

S (t), defined as the
probability for node i to be in the state S at time t in the cavity
graph, in which all the connections of the node j , except to i,
has been removed. It is updated as follows:

P
i→j

S (t + 1) = P i
S(0)

∏
k∈∂i\j

θk→i(t + 1), (46)

θk→i(t + 1) − θk→i(t) = −λkiφ
k→i(t), (47)

φk→i(t) = (1 − λki)φ
k→i(t − 1) + P k→i

S (t − 1) − P k→i
S (t)

−
∑

τk�t−1

(1 − λki)
t−τkmk→i(τk,t |T ,T ). (48)

In these equations, the dynamic messages θk→i(t + 1),
φk→i(t), and mk→i(τk,t |T ,T ) have the following phys-
ical sense (for precise mathematical expressions, see
Appendix F):

(i) θk→i(t + 1) is the probability that the infection signal λ

has not been passed from node k to node i up to time t + 1 in
the cavity dynamics Di ;

(ii) φk→i(t) is the probability that the infection signal λ has
not been passed from the node k to the node i up to time t in
the cavity dynamics Di and that k is in the state I at time t ;

(iii) mk→i(τk,t |T ,T ) is the marginal probability that node
k has the trajectory (τk,t) in the cavity dynamics Di .

Hence, the last term in Eq. (48) represents a contribution to
the change of φk→i(t) due to the recovery of the node k exactly
at time t in the cavity dynamics Di . The initial conditions are
given by θk→i(0) = 1 and φk→i(0) = δσ 0

k ,I .
So far, Eqs. (46)–(48) are not in a closed form, we still need

to know how to compute mi→j (τi,t |T ,T ) for τi < t . We have
for each t

mi→j (0,t |τj ,T )

= P i
I (0)

[
f i→j

ρ1,χ1
(−2,t − 2|τj ) − f i→j

ρ1,χ1
(−2,t − 1|τj )

]
, (49)

mi→j (τi,t |τj ,T )

= P i
S(0)

[
f i→j

ρ1,χ1
(τi − 2,t − 2|τj ) − f i→j

ρ1,χ1
(τi − 2,t − 1|τj )

−f i→j
ρ2,χ2

(τi −1,t−2|τj ) + f i→j
ρ2,χ2

(τi −1,t − 1|τj )
]
, (50)

for 1 � τi � t − 1 and 0 � τj � t . The functional
f

i→j
ρ,χ (t1,t2|τj ) is defined as follows:

f i→j
ρ,χ (t1,t2|τj ) = ρj→i(t1,t2|τj )

∏
k∈∂i\j

χk→i(t1,t2), (51)
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where the τj -dependent coefficients, characterizing the influ-
ence of node j on the dynamics of i, read as follows for
t2 = t − 2 or t2 = t − 1:

ρ
j→i

1 (τi − 2,t2|τj )

= (1 − λji)
τi−τj −1

⎛⎝ t2∏
t ′=τi

(1 − αji1[τj � t ′])

⎞⎠ , (52)

ρ
j→i

2 (τi − 1,t2|τj )

= (1 − λji)
τi−τj

⎛⎝ t2∏
t ′=τi

(1 − αji1[τj � t ′])

⎞⎠ . (53)

Let us note at this point that the convention (9) is used here and
in the following. Note that in the updated equation (48) we are
only interested in the messages of the form mi→j (τi,t |T ,T )
that correspond to τj = t and for which the j influence is not
present: In this case ρ

j→i

1 (τi − 2,t2|τj ) and ρ
j→i

2 (τi − 1,t2|τj )
are simply equal to 1. Still, in the computation scheme for
χk→i

1 (τi − 2,t1) and χk→i
2 (τi − 1,t1), all the values 0 � τj �

t − 1 are also required, since the remaining update equations
read

χk→i
1 (τi − 2,t − 1)

= χk→i
1 (τi − 2,t − 2) − αkiψ

k→i
1 (τi − 2,t − 1), (54)

χk→i
2 (τi − 1,t − 1)

= χk→i
2 (τi − 1,t − 2) − αkiψ

k→i
2 (τi − 1,t − 1), (55)

and

ψk→i
1 (τi − 2,t − 1)

= P k→i
S (t − 2|τi) − P k→i

S (t−1|τi)

+ (
1−αki1τi �=t−1

)
ψk→i

1 (τi − 2,t − 2)

−
∑

τk�t−2

(1 − λki)
τi−τk−1

⎛⎝ t−2∏
t ′=τi

(1 − αki1[τk � t ′])

⎞⎠
× mk→i(τk,t − 1|τi,T ), (56)

ψk→i
2 (τi − 1,t − 1)

= P k→i
S (t − 2|τi) − P k→i

S (t − 1|τi)

+ (
1 − αki1τi �=t−1

)
ψk→i

2 (τi − 1,t − 2)

−
∑

τk�t−2

(1 − λki)
τi−τk

⎛⎝ t−2∏
t ′=τi

(1 − αki1[τk � t ′])

⎞⎠
× mk→i(τk,t − 1|τi,T ). (57)

The conditional quantity P k→i
S (t1|τi) is defined as

P k→i
S (t1|τi) = P k

S (0)(1 − λik)t1−τi

∏
l∈∂k\i

θ l→k(t1). (58)

The necessary initial conditions are given by χk→i
1 (−2,

−1) = 1 and ψk→i
1 (−2,0) = φk→i(0). The following border

conditions are used for τi = t − 1:

χk→i
1 (t − 3,t − 2) = θk→i(t − 2), (59)

χk→i
2 (t − 2,t − 2) = θk→i(t − 1), (60)

ψk→i
1 (t − 3,t − 2) = φk→i(t − 2), (61)

ψk→i
2 (t − 2,t − 2) = (1 − λki)φ

k→i(t − 2), (62)

and χk→i
1 (t − 3,t − 1), χk→i

2 (t − 2,t − 1), ψk→i
1 (t − 3,t −

1), ψk→i
2 (t − 2,t − 1) follow Eqs. (54)–(57).

Therefore, the computation of mi→j (τi,t |T ,T ) for τi < t

involves messages mi→j (τi,t − 1|τj ,T ) for τi < t − 1 and
τj � t − 1, computed at a previous step. Finally, the marginal
probabilities mi(τi,t + 1) are computed via Eqs. (49) and
(50), with replacement of the indices i → j simply by i, and
the corresponding change of product over k ∈ ∂i\j in the
definition (51) by the product over all the neighboring nodes
k ∈ ∂i. The computational complexity of DMP equations for
the rumor spreading model is O(Nct3), where c is the average
degree of the graph. The details of the derivation are presented
in Appendix F.

The validity of these equations has been checked numeri-
cally via comparison with the Monte Carlo (MC) simulation:
the marginals given by the DMP equations appear to be exact
on any tree graph. Although a priori the DMP equations are
not guaranteed to be exact on networks that do not have a
locally treelike structure, they provide remarkably accurate
predictions even for small and loopy networks. For example,
we have tested the performance of the DMP equations for the
rumor spreading model on two real-world networks. The first
example is a Facebook-like social network with 1899 nodes
and 20 296 edges that represents an online community for
students at University of California, Irvine [44]; the predictions
for the marginals given by DMP are compared with the values
obtained from 104 MC simulations, see Fig. 4. Another test has
been performed for the small Zachary’s karate club network
of friendships between 34 members of a karate club at a US
university [45], the results are presented in the Fig. 5. In both
cases, the predictions of the DMP equations appear to be very
accurate with respect to the true values of the marginals.

The DMP equations for the rumor spreading model have
never been reported so far. The existing approaches include
the naive mean-field equations [4] that are derived under
the complete-mixing assumption and completely neglect the
topology of the network or the so-called heterogeneous
mean-field equations [46] that assume equivalent behavior for
different nodes of the same degree; they are averaged over the
ensemble of random graphs and are not applicable on a single
instance of the network.

VI. UNIDIRECTIONAL MODELS WITH K > 3 STATES

The DMP equations for the rumor spreading model,
described in the previous section, can be easily generalized to
a more complicated pairwise model with three states, similar
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FIG. 4. (Color online) Top right: Comparison of prediction of the
DMP equations for the rumor spreading model with the Monte Carlo
(MC) simulations in a typical case. Marginal probabilities P i

S(t) are
presented for the Facebook-like social network with N = 1899 nodes
and t = 10, the parameters of the model are λ = 0.3, α = 0.2, and
there is one infected node at initial time. Top left: A representation
of the topology of the network, generated with Gephi [43]. The high-
degree nodes (hubs) are placed on the periphery. Bottom: Study of the
average prediction error per node for marginal probabilities P i

S(t) as
a function of λ. In this plot, t = 10 and α = 0.2, so the point λ = 0.3
corresponds to the comparison above. For both plots, the MC average
is performed over 104 instances. The error bars are smaller than the
symbol size on the plots and are not shown.

to the generalized SI model. In this section we will illustrate
the procedure for deriving the DMP equations for pairwise
models with a larger number of states, using as an example
a “minimal” model with K = 4 states, which is an extension
of the rumor spreading model with an additional nontrivial
transition to the final state. The procedure for deriving these
equations from the general dynamic cavity Eq. (3) is very
similar to the derivation of the DMP equations for the rumor
spreading model. A generalization for any larger number of
states seems to be straightforward. Note that the models with
K � 3 states that include direct transitions that skip some
number of intermediate states can also be taken into account
in this approach.

Let us consider four states S, I1, I2, and R and the following
dynamic rules:

S(i) + I1(j )
λji−→ I1(i) + I1(j ), (63)

I1(i) + I1(j )
αji−→ I2(i) + I1(j ), (64)

I2(i) + I2(j )
βji−→ R(i) + I2(j ). (65)
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FIG. 5. (Color online) Top right: Comparison of prediction of the
DMP equations for the rumor spreading model with the Monte Carlo
(MC) simulations in a typical case. Marginal probabilities P i

S(t) are
presented for the Zachary’s karate club network with N = 34 nodes
and t = 10, the parameters of the model are λ = 0.3, α = 0.2, and
there is one infected node at initial time. Top left: A representation
of the topology of the network, generated with Gephi [43]. This
network has a block structure and contains many loops of small length.
Bottom: Study of the average prediction error per node for marginal
probabilities P i

S(t) as a function of time t . In this plot, λ = 0.3 and
α = 0.2, so the point t = 10 corresponds to the comparison above.
For both plots, the MC average is performed over 104 instances. The
error bars are smaller than the symbol size on the plots and are not
shown.

Now the time trajectory of the node i can be parametrized
by three flipping times: τi (first time in I1), ωi (first time in
I2), and εi (first time in R). The trajectory of the spin i is
hence described by �σi(t) = (τi,ωi,εi), and the corresponding
marginal of the dynamic cavity equation (4) could be written
as mi(τi,ωi,εi). Similarly to the SI, the SIR, and the rumor
spreading model, we might expect that the expressions for
the marginal probabilities at time t could be written in the
following form:

P i
S(t + 1) = P i

S(0)
∏
k∈∂i

θk→i(t + 1), (66)

P i
R(t + 1) = P i

R(t) +
∑

ωi � t

τi + 1 � ωi

mi(τi,ωi,t + 1), (67)
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P i
I2

(t + 1) = P i
I2

(t) +
∑
τi � t

εi > t + 1

mi(τi,t + 1,εi), (68)

P i
I1

(t + 1) = 1 − P i
S(t + 1) − P i

I2
(t + 1) − P i

R(t + 1). (69)

The apparent difficulty in Eq. (68) is that the sum runs over
all the flipping times εi > t + 1, and the number of terms can
potentially be very big, of the order of the stopping time T . In
Appendix G it is shown that this difficulty can be overcome if
one defines a new sort of message:

μk→i(τk,t |T ,T ) =
∑

εk�t+1

mk→i(τk,t,εk|T ,T ,T ). (70)

The evolution of μk→i(τk,t |T ,T ) follows the same equations as
for the rumor spreading model (49)–(62), except that now we
will require the computation of μk→i(τk,t |τi,ωi). The details
of derivation for this case is presented in Appendix G.

The generalization of this model may describe different
models with four states, for example, the generalization of
the SIR model that includes immunized or exposed states [2].
As it has been expected, the computational complexity for
this K = 4 model is higher: O(Nct5), where c is the average
degree of the graph. From the structure of the solution for
this minimal model, which makes use of the equations for
the model with a lower number of steps, we conjecture that a
general model with unidirectional dynamics and M nontrivial
transitions will have the computational complexity growing as
t2M−1. Note that M is not always equal to K − 1, for instance,
compare the SIR (K = 3, M = 1) and the rumor spreading
(K = 3, M = 2) models.

VII. CONCLUSION

In this paper we have developed a general approach for
deriving the dynamic message-passing equations that describe
models with unidirectional dynamics and an arbitrary number
of states. These equations can be iterated in physical time
starting from arbitrary initial conditions and allow one to
estimate the exact values of marginal probabilities on locally
treelike graphs, providing good approximation for real-world
networks. These closed-form equations can be derived starting
from the dynamic belief propagation equation on time trajecto-
ries and using the causality and the normalization properties of
messages. The dynamic variables that appear in the resulting
DMP equations are typically represented by the weighted sums
of dynamic BP messages and emerge automatically in this
approach.

Importantly, although the general formulation of dynamic
BP on trajectories is of exponential complexity, it takes only a
polynomial number of steps t2M−1 (where M is the number of
nontrivial transitions in the considered models) to solve the
corresponding DMP equations. The growth of the number
of operations with the number of states of the model in
the DMP equations is essentially due to the local effects of
retroaction that have to be taken into account. It would be
interesting to understand whether there is a way to reduce
further this computational complexity or to prove that this is
the minimal number of operations required in order to provide
exact equations for these models on tree networks.

The DMP approach opens a way to a number of applications
aimed at a better control of the cascading processes on
networks. Since the transmission probabilities can be time
dependent, the DMP equations can be used for the dynamically
changing graphs. The fact that the DMP equations can be
applied to a single instance of a graph has been recently
used for the algorithmic application to the inverse problem
in the context of the epidemic spreading: the inference of
the epidemic origin of an epidemic outbreak [31]. The DMP
equations are also promising for optimization and control in
models that incorporate the changes of individuals’ behavior
during the dynamical process [4,46]. Polynomial-complexity
DMP equations for the forward dynamics could be used
on their own in these potential applications. Another pos-
sible strategy would consist in adding extra check nodes
(corresponding to the optimization constraints) directly in
the factor graph, exemplified in Fig. 2. This may, however,
lead to convergence issues of the corresponding dynamic BP
equations for sufficiently complex optimization problems; the
discussion of this point is beyond the scope of the present
work. These and other applications of the DMP approach to
optimization problems are left for future work.
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APPENDIX A: BELIEF PROPAGATION EQUATIONS
FOR STATIC PROBLEMS

Let us assume that a static problem is formulated in terms of
a graphical model, defined on a tree graph by a joint probability
distribution,

P (σ ) = 1

Z

M∏
a=1

ψa(σ ∂a), (A1)

where Z is the normalization constant. Note that this expres-
sion is given in a factorized form, each factor ψa representing a
local interaction weight. Very often it is convenient to represent
the graphical model in a form of a corresponding factor graph
that reflects this structure of the model (A1). The factor graph
can be thought of as a bipartite graph G = (V,F,E): V is
a list of variables, σ = {σi}i∈V , and F represents a list of
interactions, or function nodes, so an edge (i,a) ∈ E is present
if the interaction a ∈ F involves a variable σi in the node i ∈ V .
We assume here that the set of possible values of σi is a finite
set of size K (K = 2 for binary spins or boolean variables,
K > 3 for Potts spins or colors, etc.). The neighboring nodes
in the factor graphs are denoted by ∂i and ∂a for the variables
and function nodes, correspondingly. The marginal probability
distribution (also called belief) that the variable on the site i

takes value σi is defined as

mi(σi) =
∑
σ \i

P (σ ). (A2)
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The basic idea of the belief propagation method (also known
as the sum-product algorithm) consists in the following
observation: Since the model is defined on a tree, when one
removes a site i from the graph G and cuts the corresponding
connection to the neighboring interactions, the resulting cavity
graph G(i) is given by a collection of independent and
statistically uncorrelated branches of a tree. Therefore, the
marginal mi(σi) can be expressed simply as a product over
the conditional probabilities that represent the contributions of
these branches:

mi(σi) = 1

Zi

∏
a∈∂i

m̂a→i(σi). (A3)

In this expression, Zi is the normalization factor that ensures
that

∑
σi

mi(σi) = 1 and ∂i stands for the neighbors of i in the
factor graph. The probability m̂a→i(σi), called the message, is
defined as the marginal probability that node i takes value σi

in the modified graph, in which all the interactions around i

except a have been cut out. Now, in order to compute mi(σi),
one needs to know the values of m̂a→i(σi). These quantities
obey the coupled self-consistency equations [26,38]

mi→a(σi) = 1

Zi→a

∏
b∈∂i\a

m̂b→i(σi), (A4)

m̂a→i(σi) = 1

Za→i

∑
σ ∂a\i

ψa(σ ∂a)
∏

k∈∂a\i
mk→a(σk), (A5)

where we have also introduced another sort of messages,
mi→a(σi), which is defined as the marginal probability that
node i takes value σi in the modified graph, in which the
interaction a has been deleted. In these equations, Zi→a

and Za→i are the normalization constants. The coupled
equations (A4) and (A5) are usually solved by iteration: first,
one initializes all the messages to some value and iterates
Eqs. (A4) and (A5) until convergence. Then the final values
for the messages m̂a→i(σi) are used in Eq. (A3) for computing
the exact values of the marginal probability distributions
mi(σi). This procedure explains the fine terminology of the
BP algorithm: The iteration of equations (A4) and (A5) can

be thought of as a message-passing protocol, each message
holding a conditional information on the probability of the
corresponding variable; the marginal is then given by a belief
shaped by the information contained in all the messages
arriving to the node.

Note that although Eqs. (A3)–(A5) have been derived for
a tree graph, they can be viewed as an algorithm that can
be run on an arbitrary interaction graph. They will provide
accurate estimations of the marginals as long as the replica
symmetric assumption holds for the interaction graph, i.e.,
that the correlations induced by loops decay fast enough, so the
approximation (A3) as a product over neighboring interactions
is correct (see Ref. [26] for more details). In particular, the BP
equations (A3)–(A5) give asymptotically exact (in the ther-
modynamic limit N → ∞) expressions for the beliefs on the
only locally treelike networks; sparse random graphs, as well
as many real-world networks of interest, fall into this category.

Sometimes, it is easier to eliminate one sort of messages
in (A4) and (A5) and to use a single iteration equation for
messages instead of two:

m̂a→i(σi) = 1

Z→i

∑
σ ∂a\i

ψa(σ ∂a)
∏

k∈∂a\i

∏
b∈∂k\a

m̂b→k(σk), (A6)

with Z→i = Za→i
∏

k∈∂a\i Z
k→a . This expression further sim-

plifies in the important case of pairwise models, when the
variables interact pairs by pairs, and the joint probability
distribution factorizes over the links in the graph:

P (σ ) = 1

Z

∏
(ij )

ψij (σi,σj ). (A7)

In this case, the updated equation (A6) can be rewritten
exclusively in terms of messages mi→j (σi), a shortcut for
mi→(ij )(σi):

mi→j (σi) = 1

Zi→j

∏
k∈∂i\j

∑
σk

ψik(σi,σk)mk→i(σk). (A8)

APPENDIX B: PROPERTIES OF THE DYNAMIC BELIEF PROPAGATION EQUATIONS

The exact BP equation for the joint probability distribution of pairs of time trajectories (2) in terms of messages mi→j (�σi,�σj )
reads:

mi→j (�σi,�σj ) = 1

Zi→j

∑
{�σk}k∈∂i\j

[
T −1∏
t=0

wi

(
σ t+1

i

∣∣{σ t
k

}
k∈∂i\j ,σ

t
j

)
P

({
σ 0

i

}
i∈V

)] ∏
k∈∂i\j

mk→i(�σk,�σi). (B1)

The normalization constant Zi→j can be calculated explicitly for the Markovian dynamics from the normalization condition,∑
�σi ,�σj

mi→j (�σi,�σj ) = 1. (B2)

For example, in the case of general Markov dynamics we use the fact that mk→i(�σk,�σi) does not depend on σT
i and perform the

summation first over σT
j , then over σT

i , and so on for the times T − 1, . . . ,0. Finally, we get the normalization factor

Zi→j = 1

2(T +1)(di−2)
(B3)

for this case, where di is the number of neighbors of the node i in the initial graph.
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The message mi→j (�σi,�σj ) has a meaning of probability for the trajectories �σi,�σj in the transformed cavity graph, where the
factor node j has been removed. We can also rewrite the equation (B1) in terms of conditional probabilities mi→j (�σi |�σj ) on the
cavity graph. Thus, for the dynamics obeying the Markov property we get∑

�σi

mi→j (�σi,�σj ) = 1

2T +1
, (B4)

and hence recover Eqs. (3) and (4):

mi→j (�σi |�σj ) =
∑

{�σk}k∈∂i\j

[
T −1∏
t=0

wi

(
σ t+1

i

∣∣{σ t
k

}
k∈∂i\j ,σ

t
j

)
P

({
σ 0

i

}
i∈V

)] ∏
k∈∂i\j

mk→i(�σk|�σi), (B5)

mi(�σi) =
∑

{�σk}k∈∂i

[
T −1∏
t=0

wi

(
σ t+1

i

∣∣{σ t
k

}
k∈∂i

)
P

({
σ 0

i

}
i∈V

)] ∏
k∈∂i

mk→i(�σk|�σi). (B6)

The message mi→j (�σi |�σj ) has a meaning of probability for the trajectory �σi given the trajectory �σj in the transformed cavity
graph, where the factor node j has been removed. The normalization factor in this equation is exactly equal to 1, due to the
Markov property of the dynamics. Note that, again, by construction, mk→i(�σk|�σi) does not depend on σT

i , so this variable can be
erased. Then, as far as

∏T −1
t=1 wi(σ

t+1
i |{σ t

k }k∈∂i\j ,σ t
j ) does not depend on σT

k , we can perform the sum over σT
k in the right-hand

side of Eq. (B5), which gives exactly the Kanoria-Montanari expression [21]:

m
i→j

T +1(�σi |�σj ) =
∑

{σ 0
k ,...,σ T −1

k }k∈∂i\j

[
T −1∏
t=0

wi

(
σ t+1

i

∣∣{σ t
k

}
k∈∂i\j ,σ

t
j )P

({
σ 0

i

}
i∈V

)] ∏
k∈∂i\j

mk→i
T (�σk|�σi), (B7)

where we denote m
i→j

T +1(�σi |�σj ) = mi→j (�σi |�σj ) and m
i→j

T (�σi |�σj ) = ∑
σT +1

i
m

i→j

T +1(�σi |�σj ).

1. Purely directed case

In the purely directed case, the direct influence between neighboring nodes i and j runs only in one direction. It means that
mi→j (�σi |�σj ) does not depend on the variable �σj , and Eq. (B5) is reduced to

mi→j (�σi) =
∑

{�σk}k∈∂ini

[
T −1∏
t=0

wi

(
σ t+1

i

∣∣{σ t
k

}
k∈∂ini

)
P

({
σ 0

i

}
i∈V

)] ∏
k∈∂ini

mk→i(�σk), (B8)

where ∂ini denotes the set of neighbors of i that have a direct influence on i. Therefore, writing the marginal in a factorized form

mi(�σi) =
∏

t

mi
t

(
σ t

i

)
, (B9)

we immediately get from (B5) for t > 0

mi
t+1

(
σ t+1

i

) =
∑

{σ t
k }k∈∂ini

wi

(
σ t+1

i

∣∣{σ t
k

}
k∈∂ini

) ∏
k∈∂ini

mk
t

(
σ t

k

)
. (B10)

Note, however, that in the case of the dynamics in which the state of a node depends on the state of the same node at previous
time, the factorization (B9) does not lead to a decoupled expression, and we have

∏
t

mi
t+1

(
σ t+1

i

) =
∏

t

⎡⎣ ∑
{σ t

k }k∈∂ini

wi

(
σ t+1

i

∣∣{σ t
k

}
k∈∂ini

,σ t
i

)
P

({
σ 0

i

}
i∈V

) ∏
k∈∂ini

mk
t

(
σ t

k

)⎤⎦ . (B11)

APPENDIX C: DERIVATION OF THE DMP EQUATIONS FOR THE ZERO-TEMPERATURE RFIM

Using the dynamic properties of the model, Eq. (3) for τi < T can be expressed as follows:

mi→j (τi |τj ) =
∑

{τk}k∈∂i\j

WRFIM

∏
k∈∂i\j

mk→i(τk|τi), (C1)

where

WRFIM =
τi−2∏
t ′=0

(
1 − 1

τ
1
[
�t ′

i > 0
]) 1

τ
1
[
�

τi−1
i > 0

]
. (C2)
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Recall that here and in what follows we use a convention

a−ε∏
t=a

(. . .) ≡ 1 (C3)

for any fixed a and ε > 0. We define the marginal probabilities in the cavity dynamics Dj as

pi→j (t) =
∑
τi>t

mi→j (τi |T ), (C4)

qi→j (t) =
∑
τi�t

mi→j (τi |T ), (C5)

and the probabilities of interest in the original dynamics as

pi(t) =
∑
τi>t

mi(τi), (C6)

qi(t) = 1 − pi(t). (C7)

The corresponding DMP equation for this model can be derived, starting from Eq. (C1) and using elementary properties of the
messages, such as normalization and causality constraints. First, let us rewrite (C1) in an equivalent form, explicitly using the
monotonicity of the local field (6),

mi→j (τi |τj ) = 1

τ

τi−1∑
�∗

i =0

(
1 − 1

τ

)(τi−1−τ ∗
i ) ∑

{τk}k∈∂i\j

1
[
�

τ ∗
i −1

i < 0
]
1
[
�

τ ∗
i

i > 0
] ∏

k∈∂i\j
mk→i(τk|τi), (C8)

where τ ∗
i appears explicitly as the moment when the local field becomes positive for the first time and the convention 1[�−1

i <

0] ≡ 1 is used. In what follows, we use two natural properties of messages.
Property 1. The norm conservation. For every fixed τj

T∑
τi=0

mi→j (τi |τj ) = 1. (C9)

Property 2. If τj > τi, then for every t ′ > τi

mi→j (τi |τj ) = mi→j (τi |t ′). (C10)

Using the definition (C4), we get

pi→j (t + 1) =
∑

τi�t+1

τi−1∑
τ ∗
i =0

1

τ

(
1 − 1

τ

)(τi−1−τ ∗
i ) ∑

{�k}k∈∂i\j

1
[
�

τ ∗
i −1

i < 0
]
1
[
�

τ ∗
i

i > 0
] ∏

k∈∂i\j
mk→i(τk|τi). (C11)

An important observation that can be made on this expression is that nothing changes if we replace in the right-hand side of the
equation above the messages mk→i(τk|τi), conditioned on the flipping time τi , by the messages conditioned on the stopping time
T , mk→i(τk|T ). The easiest way to see it consists in observing that the value of the probability pi→j (t + 1) should not depend
on the value of the stopping time provided that T > t + 1 and can be assigned to an arbitrary value. Since in Eq. (C11) we are
only interested in τi > t + 1, we can in particular choose T = t + 2, and since the stopping time by definition comprises all the
events that happen after the time T , we get

pi→j (t + 1) =
∑

τi�t+1

τi−1∑
τ ∗
i =0

1

τ

(
1 − 1

τ

)(τi−1−τ ∗
i ) ∑

{τk}k∈∂i\j

1
[
�

τ ∗
i −1

i < 0
]
1
[
�

τ ∗
i

i > 0
] ∏

k∈∂i\j
mk→i(τk|T ). (C12)

The sums over τi and τ ∗
i in this expression can be split into two terms:

∑
τi>t+1

τi−1∑
τ ∗
i =0

=
∑

τi>t+1

δτ ∗
i ,τi−1 +

∑
τi>t+1

τi−2∑
τ ∗
i =0

, (C13)
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and we get

pi→j (t + 1) =
∑

τi>t+1

1

τ

∑
{τk}k∈∂i\j

1
[
�

τi−2
i < 0

]
1
[
�

τi−1
i > 0

] ∏
k∈∂i\j

mk→i(τk|T )

+
∑

τi>t+1

τi−2∑
τ ∗
i =0

1

τ

(
1 − 1

τ

)(τi−1−τ ∗
i ) ∑

{τk}k∈∂i\j

1
[
�

τ ∗
i −1

i < 0
]
1
[
�

τ ∗
i

i > 0
] ∏

k∈∂i\j
mk→i(τk|T )

= 1

τ

∑
{τk}k∈∂i\j

1
[
�t

i < 0
] ∏

k∈∂i\j
mk→i(τk|T ) +

(
1 − 1

τ

) ∑
τ ′
i >t+1

τ ′
i −1∑

τ ∗
i =0

1

τ

(
1 − 1

τ

)(τ ′
i −1−τ ∗

i )

×
∑

{τk}k∈∂i\j

1
[
�

τ ∗
i −1

i < 0
]
1
[
�

τ ∗
i

i > 0
] ∏

k∈∂i\j
mk→i(τk|T )

= 1

τ

⎛⎝1 −
∑

{τk}k∈∂i\j

1
[
�t

i > 0
] ∏

k∈∂i\j
mk→i(τk|T )

⎞⎠ +
(

1 − 1

τ

)
pi→j (t). (C14)

The remaining sum over flipping times {τk}k∈∂i\j can be further simplified by pushing the sum over the indicator function:∑
{τk}k∈∂i\j

1
[
�t

i > 0
] ∏

k∈∂i\j
mk→i(τk|T )

=
∑

{τk}k∈∂i\j

⎡⎣ ∑
{σ t

k }k∈∂i\j =±1

∏
k∈∂i\j

δ

(
σ t

k + 1

2
,1[τk < t]

)⎤⎦1
[
�t

i > 0
] ∏

k∈∂i\j
mk→i(τk|T )

=
∑

{σ t
k }k∈∂i\j =±1

1

⎡⎣h + hi +
∑

k∈∂i\j
Jkiσ

t
k − Jji > 0

⎤⎦ ∏
k∈∂i\j

∑
{τk}k∈∂i\j

mk→i(τk|T )δ

(
σ t

k + 1

2
,1[τk < t]

)

=
∑

{σ t
k }k∈∂i\j =±1

1

⎡⎣h + hi +
∑

k∈∂i\j
Jkiσ

t
k − Jji > 0

⎤⎦ ∏
k∈∂i\j

∏
k∈∂i\j :σ t

k=+1

[1 − pk→i(t)]
∏

k∈∂i\j :σ t
k=−1

pk→i(t). (C15)

Finally, using (C15) and rewriting (C14) in terms of qi→j (t) = 1 − pi→j (t), we recover the DMP equations (15) and (16).

APPENDIX D: DERIVATION OF THE DMP EQUATIONS FOR THE GENERALIZED SI MODEL

The dynamic belief propagation equation (3) for τi < T takes the following form in the generalized SI model:

mi→j (τi |τj ) =
∑

{τk}k∈∂i\j

WSI

∏
k∈∂i\j

mk→i(τk|τi), (D1)

where the dynamic kernel WSI for the generalized SI model has the following form:

WSI = P i
I (0)1[τi = 0] + P i

S(0)1[τi > 0]
τi−2∏
t ′=0

(1 − νi)
∏
k∈∂i

(1 − εki1[τk � t ′ + 1])(1 − λki1[t ′ � τk])

×
(

1 − (1 − νi)
∏
k∈∂i

(1 − εki1[τk � τi]) (1 − λki1[τi � τk + 1])

)
. (D2)

As it is described in the main text, the messages mi→j (τi |τj ) allow one to define the marginal probabilities describing the
dynamics of the SI model:

P i
S(t) =

∑
τi>t

mi(τi), (D3)

P i
I (t) = 1 − P i

S(t). (D4)
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It would also be useful to define the marginal probability that the node i is in the state S at a given time in the cavity dynamics
Dj , in which the node j is fixed to the state S for all times:

P
i→j

S (t) =
∑
τi>t

mi→j (τi |T ). (D5)

By analogy with (C9) and (C10), the messages in the dynamic cavity equation (D1) have the normalization and causality
properties.

Property 1. For every fixed τj

T∑
τi=0

mi→j (τi |τj ) = 1. (D6)

Property 2. If τj > τi, then for every t ′ > τi

mi→j (τi |τj ) = mi→j (τi |t ′). (D7)

Using the definition (D5), we get for t > 0

P
i→j

S (t + 1) = P i
S(0)

∑
τi>t+1

∑
{τk}k∈∂i\j

1[τj = T ]
τi−2∏
t ′=0

(1 − νi)
∏
k∈∂i

(1 − εki1[τk � t ′ + 1])(1 − λki1[t ′ � τk])

×
(

1 − (1 − νi)
∏
k∈∂i

(1 − εki1[τk � τi]) (1 − λki1[τi � τk + 1])

) ∏
k∈∂i\j

mk→i(τk|τi). (D8)

Using the same arguments as in the derivation of the DMP equations for the zero-temperature RFIM, it can be shown that one
can replace

∏
k∈∂i\j mk→i(τk|τi) in the right-hand side of the last expression by

∏
k∈∂i\j mk→i(τk|T ) for arbitrary value of the

stopping time T > t + 1. Since we are interested in the messages mi→j (τi |T ) with τi > t + 1, we have

P
i→j

S (t + 1) = P i
S(0)(1 − νi)

t+1(1 − εji)
t+1

∑
{τk}k∈∂i\j

∏
k∈∂i\j

t∏
t ′=0

(1 − εki1[τk � t ′ + 1])(1 − λki1[t ′ � τk])mk→i(τk|T )

×
⎡⎣ ∑

τi>t+1

1[τj = T ]
τi−2∏

t ′=t+1

(1 − νi)
∏
k∈∂i

(1 − εki1[τk � t ′ + 1])(1 − λki1[t ′ � τk])

×
(

1 − (1 − νi)
∏
k∈∂i

(1 − εki1[τk � τi]) (1 − λki1[τi � τk + 1])

) ]
. (D9)

Developing the sum in the square brackets, one may ascertain that it gives exactly 1:

1 − (1 − νi)(1 − εji)
∏

k∈∂i\j
(1 − εki1[τk � t + 2]) (1 − λki1[t + 2 � τk + 1])

+ (1 − νi)(1 − εji)
∏

k∈∂i\j
(1 − εki1[τk � t + 2]) (1 − λki1[t + 1 � τk])

− (1 − νi)
2(1 − εji)

2
∏

k∈∂i\j
[(1 − εki1[τk � t + 2])(1 − λki1[t + 2 � τk + 1])]

×
∏

k∈∂i\j
[(1 − εki1[τk � t + 3])(1 − λki1[t + 3 � τk + 1])]

+ (1 − νi)
2(1 − εji)

2
∏

k∈∂i\j
[(1 − εki1[τk � t + 2])(1 − λki1[t + 1 � τk])]

×
∏

k∈∂i\j
[(1 − εki1[τk � t + 3])(1 − λki1[t + 2 � τk])] + · · · = 1, (D10)

and therefore we obtain the factorized expression (24)

P
i→j

S (t + 1) = P i
S(0)(1 − εji)

t+1(1 − νi)
t+1

∏
k∈∂i\k

θk→i(t + 1), (D11)
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where θk→i(t + 1) are given by

θk→i(t + 1) =
∑
τk

t∏
t ′=0

(1 − εki1[τk � t ′ + 1])(1 − λki1[t ′ � τk])mk→i(τk|T ). (D12)

In order to close the equations on P k→i
S (t), we recover the computational scheme for θk→i(t + 1) :

θk→i(t + 1) − θk→i(t)

=
∑
τk

(
t−1∏
t ′=0

(1 − εki1[τk � t ′ + 1])(1 − λki1[t ′ � τk])

)
(−εki1[τk � t + 1] − λki1[t � τk]) mk→i(τk|T )

= −εki

∑
τk

(
t−1∏
t ′=0

(1 − εki1[τk � t ′ + 1])

)
mk→i(τk|T )1[τk � t + 1]

− λki

∑
τk

(
t−1∏
t ′=0

(1 − εki1[τk � t ′ + 1])(1 − λki1[t ′ � τk])

)
mk→i(τk|T )1[t � τk]

≡ −εkiφ
k→i
1 (t) − λkiφ

k→i
2 (t), (D13)

where, using the identity 1[τk � t + 1] = 1[τk � t] − δ(τk,t), we get for φk→i
1 (t)

φk→i
1 (t) =

∑
τk

(
t−2∏
t ′=0

(
1 − εki1[τk � t ′ + 1]

))
(1 − εki1[τk � t]) mk→i(τk|T )1[τk � t + 1]

= (1 − εki)φ
k→i
1 (t − 1) −

(
t−1∏
t ′=0

(1 − εki)

)
mk→i(t |T )

= (1 − εki)φ
k→i
1 (t − 1) − (1 − εki)

t
(
P k→i

S (t − 1) − P k→i
S (t)

)
, (D14)

and for φk→i
2 (t)

φk→i
2 (t) =

∑
τk

(
t−2∏
t ′=0

(1 − εki1[τk � t ′ + 1])(1 − λki1[t ′ � τk])

)
(1 − εki1[τk � t])

× (1 − λki1[t � τk + 1]) mk→i(τk|T )1[t � τk] = (1 − λki)φ
k→i
2 (t − 1) + (1 − εki)

t
(
P k→i

S (t − 1) − P k→i
S (t)

)
.

(D15)

This gives exactly the computational scheme (24)–(27).

APPENDIX E: DERIVATION OF THE DMP EQUATIONS FOR THE SIR MODEL

The derivation of the DMP equations for the SIR model follows the very same lines as the derivation for the SI model but
includes several subtleties. First, since now each node can be in one of three states (S, susceptible; I , infected; and R, recovered),
the trajectory of the node i can be parametrized by two times τi and ωi : τi is defined as a first time to be in the state I, while
ωi is a first time to be in the state R. We will denote the trajectory of the spin i as �σi(t) = (τi,ωi). Therefore, the dynamic BP
equation (3) for ωi < T becomes in this case:

mi→j (τi,ωi |τj ,ωj ) =
∑

{τk,ωk}k∈∂i\j

WSIR

∏
k∈∂i\j

mk→i(τk,ωk|τi,ωi), (E1)

where

WSIR =
⎡⎣P i

S(0)1[τi > 0)]
τi−2∏
t ′=0

∏
k∈∂i

(1 − λki1[ωk � t ′ + 1]1[τk � t ′])

(
1 −

∏
k∈∂i

(1 − λki1[ωk � τi]1[τk � τi − 1])

)

+P i
I (0)1[τi = 0]

⎤⎦ ×
⎛⎝ωi−2∏

t ′′=τi

(1 − μi)

⎞⎠ × μi ×
∏
k∈∂i

1[ωk � τk + 1]1[ωi � τi + 1]. (E2)
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The marginals of interest in the SIR model can be defined as

P i
S(t) =

∑
τi>t

∑
ωi>τi

mi(τi,ωi), (E3)

P i
I (t) =

∑
τi�t

∑
ωi>t

mi(τi,ωi), (E4)

P i
R(t) =

∑
ωi�t

∑
τi<ωi

mi(τi,ωi). (E5)

We also define the marginal probability for the susceptible state in the corresponding cavity graph:

P
i→j

S (t) =
∑
τi>t

∑
ωi>τi

mi→j (τi,ωi |T ,T ). (E6)

Let us point out the properties of the messages.
Property 1. mi→j (τi,ωi |T ,T ) = 0 if τi � ωi ;
Property 2. If τj � τi, then mi→j (τi,ωi |τj ,ωj ) = mi→j (τi,ωi |t ′,ωj ) for every τi � t ′ < ωj ;
Property 3.

∑
τi ,ωi

mi→j (τi,ωi |T ,T ) = 1;
Property 4. mi→j (τi,ωi + 1|T ,T ) = (1 − μi)mi→j (τi,ωi |T ,T ).
The properties, equivalent to properties 1, 2, and 4, are also valid for marginals mi(τi,ωi). It is straightforward to establish

first two evolution equations on the quantities P i
S(t), P i

I t , and P i
R(t). According to the definitions

P i
R(t + 1) =

∑
ωi�t+1

∑
τi<ωi

mi(τi,ωi) =
∑
ωi�t

∑
τi<ωi

mi(τi,ωi) + δωi ,t+1

∑
τi�t

mi(τiωi) = P i
R(t) + μiP

i
I (t), (E7)

where we used property 4 of marginals, because∑
ωi�t+1

mi(τi,ωi) = 1

1 − (1 − μi)
mi(τi,t + 1) = 1

μi

mi(τi,t + 1). (E8)

Since the expressions defined in Eqs. (E3)–(E5) sum to 1, it is obvious that

P i
I (t + 1) = 1 − P i

S(t + 1) − P i
R(t + 1). (E9)

In what follows we show that we can put P
i→j

S (t + 1) in the form

P
i→j

S (t + 1) = P i
S(0)

∏
k∈∂i\j

θk→i(t + 1), (E10)

where θk→i(t + 1) can be calculated via P k→i
S (t) at each time step. The equations (E7), (E9), and (E10), and its marginalized

version, together with a computational scheme for θ i→j (t + 1), form a closed set of equations for the SIR model.
We proceed in the same way as for the SI model. The quantity θk→i(t + 1) is now defined as

θk→i(t + 1) =
∑
τk,ωk

1[ωk � τk + 1]
t∏

t ′=0

(1 − λki1[ωk � t ′ + 1]1[τk � t ′])mk→i(τk,ωk|T ,T ). (E11)

As for the SI model, we can write

θk→i(t + 1) − θk→i(t) ≡ −λkiφ
k→i(t), (E12)

where we get for φk→i(t)

φk→i(t) =
∑

τk,ωk>τk

(
t−2∏
t ′=0

(
1 − λki1[τk � t ′]

))
(1 − λki1[τk � t − 1])1[ωk � t + 1]1[τk � t]mk→i(τk,ωk|T ,T )

= (1 − λki)(1 − μk)φk→i(t − 1) −
∑
ωk

1[ωk � t + 1]mk→i(t,ωk|T ,T )

= (1 − λki)(1 − μk)φk→i(t − 1) − (
P k→i

S (t) − P k→i
S (t − 1)

)
. (E13)

In the last expression the factor (1 − μk) is due to property 4 of messages. Equations (E12) and (E13) complete the computational
scheme for θk→i(t + 1) for each time step, and we recover the DMP equations (35)–(40).
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LOKHOV, MÉZARD, AND ZDEBOROVÁ PHYSICAL REVIEW E 91, 012811 (2015)

APPENDIX F: DERIVATION OF THE DMP EQUATIONS FOR THE RUMOR SPREADING MODEL

Let us follow the main lines of derivation of these DMP equations, concentrating mainly on the subtleties with respect to the
SIR model. Again, the trajectory of the node i can be parametrized by two flipping times: τi (first time in I ) and ωi (first time
in R). The trajectory of the spin i is hence described by �σi(t) = (τi,ωi). The dynamic BP equation (3) in the rumor spreading
model reads for ωi < T :

mi→j (τi,ωi |τj ,ωj ) =
∑

{τk,ωk}k∈∂i\j

WRS

∏
k∈∂i\j

mk→i(τk,ωk|τi,ωi), (F1)

where

WRS =
⎡⎣P i

S(0)1[τi > 0)]
τi−2∏
t ′=0

∏
k∈∂i

(1 − λki1[ωk � t ′ + 1]1[τk � t ′])

(
1 −

∏
k∈∂i

(1 − λki1[ωk � τi]1[τk � τi − 1])

)

+ P i
I (0)1[τi = 0]

⎤⎦ ×
ωi−2∏
t ′′=τi

∏
k∈∂i

(1 − αki1[ωk � t ′′ + 1]1[τk � t ′′])

(
1 −

∏
k∈∂i

(1 − αki1[ωk � ωi]1[τk � ωi − 1])

)

×
∏
k∈∂i

1[ωk � τk + 1]1[ωi � τi + 1]. (F2)

The quantities P i
S(t), P i

I (t), P i
R(t), and P

i→j

S (t) are defined in the same way as in Eqs. (E3)–(E6).
The following properties of the messages hold:
Property 1. mi→j (τi,ωi |T ,T ) = 0 if τi � ωi ;
Property 2. If τj � τi, then mi→j (τi,ωi |τj ,ωj ) = mi→j (τi,ωi |t ′,ωj ) for every τi � t ′ < ωj ;
Property 3.

∑
τi ,ωi

mi→j (τi,ωi |T ,T ) = 1.
According to the definitions, we have

P i
R(t + 1) =

∑
ωi�t+1

∑
τi<ωi

mi→j (τi,ωi) =
∑
ωi�t

∑
τi<ωi

mi(τi,ωi) + δωi,t+1

∑
τi�t

mi(τi,ωi) = P i
R(t) +

∑
τi�t

mi(τi,ωi). (F3)

The expressions defined in Eqs. (E3)–(E5) sum to 1, hence

P i
I (t + 1) = 1 − P i

S(t + 1) − P i
R(t + 1). (F4)

As for the SIR model, we show that we can put P
i→j

S (t + 1) in the form

P
i→j

S (t + 1) = P i
S(0)

∏
k∈∂i\j

θk→i(t + 1), (F5)

where θk→i(t + 1) is defined as

θk→i(t + 1) =
∑
τk,ωk

1[ωk � τk + 1]
t∏

t ′=0

(1 − λki1[ωk � t ′ + 1]1[τk � t ′])mk→i(τk,ωk|T ,T ), (F6)

and we have in the same way

θk→i(t + 1) − θk→i(t) ≡ −λkiφ
k→i(t). (F7)

The quantity φk→i(t) is defined as

φk→i(t) =
∑

τk,ωk>τk

(
t−1∏
t ′=0

(1 − λki1[τk � t ′])

)
1[ωk � t + 1]1[τk � t]mk→i(τk,ωk|T ,T ). (F8)

Since 1[ωk � t + 1] = 1[ωk � t] − δωk,t and 1[τk � t] = 1[τk � t − 1] + δτk,t , we obtain

φk→i(t) = (1 − λki)φ
k→i(t − 1) + P k→i

S (t − 1) − P k→i
S (t) −

∑
τk�t−1

t−1∏
t ′=0

(1 − λki1[τk � t ′])mk→i(τk,t |T ,T ). (F9)

The last term corresponds to the probability of recovering at time step t . As for the SIR model, the initial conditions for θk→i(t)
and φk→i(t) are given by θk→i(0) = 1 and φk→i(0) = δσ 0

k ,I . Since these equations are in not in a closed form, we proceed to the
computation of mi→j (τi,t |T ,T ) for τi < t . Equations (49) and (50) follow directly from (F1) with dynamics (F2), if we denote
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(for t1 = t − 2 or t1 = t − 1)

χk→i
1 (τi − 2,t1)

=
∑

τk,ωk>τk

(
τi−2∏
t ′=0

(1 − λki1[ωk � t ′ + 1]1[τk � t ′])

)⎛⎝ t1∏
t ′′=τi

(
1 − αki1[ωk � t ′′ + 1]1[τk � t ′′]

)⎞⎠ mk→i(τk,ωk|τi,t), (F10)

and

χk→i
2 (τi − 1,t1)

=
∑

τk,ωk>τk

(
τi−1∏
t ′=0

(1 − λki1[ωk � t ′ + 1]1[τk � t ′])

)⎛⎝ t1∏
t ′′=τi

(1 − αki1[ωk � t ′′ + 1]1[τk � t ′′])

⎞⎠mk→i(τk,ωk|τi,t). (F11)

Similarly to the evolution of θk→i(t), the evolution equations for χk→i
1 (τi − 2,t1) and χk→i

2 (τi − 1,t1), given their definitions,
read

χk→i
1 (τi − 2,t − 1) = χk→i

1 (τi − 2,t − 2) − αkiψ
k→i
1 (τi − 2,t − 1), (F12)

χk→i
2 (τi − 1,t − 1) = χk→i

2 (τi − 1,t − 2) − αkiψ
k→i
2 (τi − 1,t − 1), (F13)

where ψk→i
1 (τi − 2,t1) and ψk→i

2 (τi − 1,t1) are defined as

ψk→i
1 (τi − 2,t1) =

∑
τk,ωk>τk

(
τi−2∏
t ′=0

(1 − λki1[ωk � t ′ + 1]1[τk � t ′])

)⎛⎝ t1−1∏
t ′′=τi

(1 − αki1[ωk � t ′′ + 1]1[τk � t ′′])

⎞⎠
× 1[ωk � t1 + 1]1[τk � t1]mk→i(τk,ωk|τi,t), (F14)

and

ψk→i
2 (τi − 1,t1) =

∑
τk,ωk>τk

(
τi−1∏
t ′=0

(1 − λki1[ωk � t ′ + 1]1[τk � t ′])

)⎛⎝ t1−1∏
t ′′=τi

(1 − αki1[ωk � t ′′ + 1]1[τk � t ′′])

⎞⎠
× 1[ωk � t1 + 1]1[τk � t1]mk→i(τk,ωk|τi,t). (F15)

In order to close the computational scheme, we have to write the updated equations for ψk→i
1 (τi − 2,t1) and ψk→i

2 (τi − 1,t1).
One has to be careful, because the messages involved in these quantities are conditioned on the state of the node i, with flipping
times (τi,t). Using again the identities1[ωk � t2 + 1] = 1[ωk � t2] − δωk,t2 and 1[τk � t2] = 1[τk � t2 − 1] + δτk,t2 , we recover
Eqs. (56) and (57), with the definition of conditional probability of staying in the state S (58).

Finally, one can see, directly from the definitions, that the initial conditions for this computational scheme are given by
χk→i

1 (−2, −1) = 1 and ψk→i
1 (−2,0) = φk→i(0), and the border conditions for τi = t − 1 are given for each time step by

expressions (59)–(62).

APPENDIX G: EXAMPLE OF DERIVATION OF THE DMP EQUATIONS FOR THE K = 4
STATES MODEL WITH UNIDIRECTIONAL DYNAMICS

The dynamic BP equation (3) in the minimal K = 4 model reads for εi < T :

mi→j (τi,ωi,εi |τj ,ωj ,εj ) =
∑

{τk,ωk,εk}k∈∂i\j

W4

∏
k∈∂i\j

mk→i(τk,ωk,εk|τi,ωi,εi), (G1)

where

W4 =
⎡⎣P i

S(0)1[τi > 0)]
τi−2∏
t ′=0

∏
k∈∂i

(1 − λki1[ωk � t ′ + 1]1[τk � t ′])

(
1 −

∏
k∈∂i

(1 − λki1[ωk � τi]1[τk � τi − 1])

)

+ P i
I (0)1[τi = 0]

⎤⎦ ×
ωi−2∏
t ′′=τi

∏
k∈∂i

(1 − αki1[ωk � t ′′ + 1]1[τk � t ′′])

(
1 −

∏
k∈∂i

(1 − αki1[ωk � ωi]1[τk � ωi − 1])

)

×
εi−2∏

t ′′′=ωi

∏
k∈∂i

(1 − βki1[εk � t ′′′ + 1]1[ωk � t ′′′])

(
1 −

∏
k∈∂i

(1 − βki1[εk � εi]1[ωk � εi − 1])

)

×
∏
k∈∂i

1[εk � ωk + 1]1[ωk � τk + 1]1[ωi � τi + 1]. (G2)
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The quantities P i
S(t), P i

I1
(t), P i

I2
(t), P i

R(t), and P
i→j

S (t) are defined in a way similarly to (E3)–(E6). For instance,

P
i→j

S (t) =
∑
τi>t

∑
ωi>τi

∑
εi>ωi

mi→j (τi,ωi,εi |T ,T ,T ). (G3)

As previously, we can put P
i→j

S (t + 1) in the form

P
i→j

S (t + 1) = P i
S(0)

∏
k∈∂i\j

θk→i(t + 1), (G4)

where θk→i(t + 1) is now defined as

θk→i(t + 1) =
∑

τk,ωk,εk

1[εk � ωk + 1]1[ωk � τk + 1]
t∏

t ′=0

(1 − λki1[ωk � t ′ + 1]1[τk � t ′])mk→i(τk,ωk,εk|T ,T ,T ), (G5)

and we have in the same way

θk→i(t + 1) − θk→i(t) ≡ −λkiφ
k→i(t). (G6)

The quantity φk→i(t) is now defined as

φk→i(t) =
∑

τk,ωk > τk

εk > ωk

(
t−1∏
t ′=0

(
1 − λki1[τk � t ′]

))
1[ωk � t + 1]1[τk � t]mk→i(τk,ωk,εk|T ,T ,T ). (G7)

Since 1[ωk � t + 1] = 1[ωk � t] − δωk,t and 1[τk � t] = 1[τk � t − 1] + δτk,t , we obtain

φk→i(t) = (1 − λki)φ
k→i(t − 1) + P k→i

S (t − 1) − P k→i
S (t) −

∑
τk�t−1

t−1∏
t ′=0

(1 − λki1[τk � t ′])
∑

εk�t+1

mk→i(τk,t,εk|T ,T ,T ). (G8)

The last term corresponds to the probability of switching to the I2 state at time step t . We see that for this term, exactly the same
problem as the one indicated in the main text for Eq. (68) remains: the sum over εk goes over a number of terms of order of T .
At the same time, we see that both equations (68) and (G8) have a finite number of terms if we define new variables,

μk→i(τk,t |T ,T ) =
∑

εk�t+1

mk→i(τk,t,εk|T ,T ,T ). (G9)

On the other hand, in order to close the computational scheme (66)–(69), (G4) (G6), and (G8), one needs to write the evolution
equations for both mi→j (τi,ωi,t |T ,T ,T ) and μi→j (τi,t |T ,T ) variables. The evolution of μi→j (τi,t |T ,T ) follows the same
equations as for the rumor spreading model (49)–(62), except that now we will require the computation of μi→j (τi,t |τj ,ωj ).
Since all the functions χ1 and χ2 are independent on (τj ,ωj ), we will only need to compute the equivalents of (52) and (53).
These equivalents are given by the coefficients ρ̂

j→i

1 and ρ̂
j→i

2 :

ρ̂
j→i

1 (τi − 2,ωi − 2,t1|τj ,ωj ) =
τi−2∏
t ′=0

(1 − λji1[τj � t ′]1[ωj � t ′ + 1])
ωi−2∏
t ′′=τi

(1 − αji1[τj � t ′′]1[τj � t ′]1[ωj � t ′′ + 1]),

(G10)

ρ̂
j→i

2 (τi − 2,ωi − 1,t1|τj ,ωj ) =
τi−2∏
t ′=0

(1 − λji1[τj � t ′]1[ωj � t ′ + 1])
ωi−1∏
t ′′=τi

(1 − αji1[τj � t ′′]1[τj � t ′]1[ωj � t ′′ + 1]),

(G11)

which are the restrictions of ζ
j→i

1 and ζ
j→i

2 (see definitions below) to the case βij = 0.
For the mi→j (τi,ωi,t |T ,T ,T ), we proceed in the similar way as for the derivation of (49) and (50) in the rumor spreading

model, but now we will have, instead of two and four terms, correspondingly four and eight. For each t , directly from (G1)
and (G2), we have

mi→j (0,ωi,t |τj ,ωj ,T ) = P i
I (0)

[
g

i→j

ζ1,ξ1
(−2,ωi − 2,t − 2|τj ,ωj ) − g

i→j

ζ1,ξ1
(−2,ωi − 2,t − 1|τj ,ωj )

− g
i→j

ζ2,ξ2
(−2,ωi − 1,t − 2|τj ,ωj ) + g

i→j

ζ2,ξ2
(−2,ωi − 1,t − 1|τj ,ωj )

]
(G12)
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for 1 � ωi � t − 1, 0 � τj � t − 1, and 1 � ωj � t and

mi→j (τi,ωi,t |τj ,ωj ,T )

= P i
S(0)

[
g

i→j

ζ1,ξ1
(τi − 2,ωi − 2,t − 2|τj ,ωj ) − g

i→j

ζ1,ξ1
(τi − 2,ωi − 2,t − 1|τj ,ωj )

− g
i→j

ζ2,ξ2
(τi − 2,ωi − 1,t − 2|τj ,ωj ) + g

i→j

ζ2,ξ2
(τi − 2,ωi − 1,t − 1|τj ,ωj ) − g

i→j

ζ3,ξ3
(τi − 1,ωi − 2,t − 2|τj ,ωj )

+ g
i→j

ζ3,ξ3
(τi − 1,ωi − 2,t − 1|τj ,ωj ) + g

i→j

ζ4,ξ4
(τi − 1,ωi − 1,t − 2|τj ,ωj ) − g

i→j

ζ4,ξ4
(τi − 1,ωi − 1,t − 1|τj ,ωj )

]
(G13)

for 1 � τi � t − 2, 1 � ωi � t − 1, 0 � τj � t − 1, and 1 � ωj � t , where the functional g
i→j

ζ,ξ (t1,t2,t3|τj ,ωj ) is defined as

g
i→j

ζ,ξ (t1,t2,t3|τj ,ωj ) = ζ j→i(t1,t2,t3|τj ,ωj )
∏

k∈∂i\j
ξ k→i(t1,t2,t3), (G14)

and the (τj ,ωj )-dependent coefficients, characterizing the influence of node j on the dynamics of i, are defined as follows for
t1 = t − 2 or t1 = t − 1:

ζ
j→i

1 (τi − 2,ωi − 2,t1|τj ,ωj )

=
τi−2∏
t ′=0

(1 − λji1[τj � t ′]1[ωj � t ′ + 1])
ωi−2∏
t ′′=τi

(1 − αji1[τj � t ′′]1[ωj � t ′′ + 1])
t1∏

t ′′′=ωi

(1 − βji1[ωj � t ′′′]), (G15)

ζ
j→i

2 (τi − 2,ωi − 1,t1|τj ,ωj )

=
τi−2∏
t ′=0

(1 − λji1[τj � t ′]1[ωj � t ′ + 1])
ωi−1∏
t ′′=τi

(1 − αji1[τj � t ′′]1[ωj � t ′′ + 1])
t1∏

t ′′′=ωi

(1 − βji1[ωj � t ′′′]), (G16)

ζ
j→i

3 (τi − 1,ωi − 2,t1|τj ,ωj )

=
τi−1∏
t ′=0

(1 − λji1[τj � t ′]1[ωj � t ′ + 1])
ωi−2∏
t ′′=τi

(1 − αji1[τj � t ′′]1[ωj � t ′′ + 1])
t1∏

t ′′′=ωi

(1 − βji1[ωj � t ′′′]), (G17)

ζ
j→i

4 (τi − 1,ωi − 1,t1|τj ,ωj )

=
τi−1∏
t ′=0

(1 − λji1[τj � t ′]1[ωj � t ′ + 1])
ωi−1∏
t ′′=τi

(1 − αji1[τj � t ′′]1[ωj � t ′′ + 1])
t1∏

t ′′′=ωi

(1 − βji1[ωj � t ′′′]). (G18)

The functions ξk→i
l , l = 1 . . . 4, follow the evolution equations, similarly to (54) and (55):

ξk→i
1 (τi − 2,ωi − 2,t − 1) = ξk→i

1 (τi − 2,ωi − 2,t − 2) − βkiη
k→i
1 (τi − 2,ωi − 2,t − 1), (G19)

ξk→i
2 (τi − 2,ωi − 1,t − 1) = ξk→i

2 (τi − 2,ωi − 1,t − 2) − βkiη
k→i
2 (τi − 2,ωi − 1,t − 1), (G20)

ξk→i
3 (τi − 1,ωi − 2,t − 1) = ξk→i

3 (τi − 1,ωi − 2,t − 2) − βkiη
k→i
3 (τi − 1,ωi − 2,t − 1), (G21)

ξk→i
4 (τi − 1,ωi − 1,t − 1) = ξk→i

4 (τi − 1,ωi − 1,t − 2) − βkiη
k→i
4 (τi − 1,ωi − 1,t − 1). (G22)

It is straightforward to convince oneself that ηk→i
l , l = 1 . . . 4, follow the equations of the type

ηk→i
1 (τi − 2,ωi − 2,t − 1) = (1 − βki1ωi �=t−1)ηk→i

1 (τi − 2,ωi − 2,t − 2)

+
∑

τk�t−2

τi−2∏
t ′=0

(1 − λki1[τk � t ′])
t−2∏

t ′′=τi

(1 − αki1[τk � t ′′])μk→i(τk,t − 1|τi,ωi)

−
∑

τk<ωk�t−2

τi−2∏
t ′=0

(1 − λki1[τk � t ′]1[ωk � t ′ + 1])
ωi−2∏
t ′′=τi

(1 − αki1[τk � t ′′]1[ωk � t ′′ + 1])

×
t−2∏

t ′′′=ωi

(1 − βki1[ωk � t ′′′])mk→i(τk,ωk,t − 1|τi,ωi,T ). (G23)
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The border conditions for ωi = t − 1 are as follows:

ξk→i
1 (τi − 2,t − 3,t − 2) = χk→i

1 (τi − 2,t − 3), ηk→i
1 (τi − 2,t − 3,t − 2) = 1 − ψk→i

1 (τi − 2,t − 2), (G24)

ξk→i
2 (τi − 2,t − 2,t − 2) = χk→i

1 (τi − 2,t − 2), ηk→i
2 (τi − 2,t − 2,t − 2) = 1 − (1 − αki)ψ

k→i
1 (τi − 2,t − 2), (G25)

ξk→i
3 (τi − 1,t − 3,t − 2) = χk→i

2 (τi − 1,t − 3), ηk→i
3 (τi − 1,t − 3,t − 2) = 1 − ψk→i

2 (τi − 1,t − 2), (G26)

ξk→i
4 (τi − 1,t − 2,t − 2) = χk→i

2 (τi − 1,t − 2), ηk→i
4 (τi − 1,t − 2,t − 2) = 1 − (1 − αki)ψ

k→i
2 (τi − 1,t − 2), (G27)

and initial conditions are ξk→i
1 (−2, −1,0) = ξk→i

2 (−2,0,0) = 1, ηk→i
1 (−2, − 1,1) = ηk→i

2 (−2,0,1) = μk→i(0,1|0,1).
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Rev. E 90, 012801 (2014).
[32] F. Altarelli, A. Braunstein, L. DallAsta, and R. Zecchina, Phys.

Rev. E 87, 062115 (2013).
[33] M. Shrestha and C. Moore, Phys. Rev. E 89, 022805 (2014).
[34] F. Altarelli, A. Braunstein, L. DallAsta, and R. Zecchina, J. Stat.

Mech. Theor. Exp. (2013) P09011.
[35] D. J. Daley, and D. G. Kendall, Nature 204, 1118 (1964).
[36] D. J. Daley, and D. G. Kendall, IMA J. Appl. Math. 1, 42 (1965).
[37] M. Maki, and D. P. Thompson, Mathematical Models and Ap-

plications: With Emphasis on the Social, Life, and Management
Sciences (Prentice-Hall, Englewood Cliffs, 1973).

[38] J. S. Yedidia, W. T. Freeman, Y. Weiss, in Exploring Artificial
Intelligence in the New Millennium, edited by G. Lakemeyer
and B. Nebel, Ch. 8 (Morgan Kaufmann, San Francisco, CA,
2003), pp. 239–269.

[39] R. G. Gallager, IEEE Trans. Inform. Theor. 8, 21 (1962).
[40] J. Pearl, Probabilistic Reasoning in Intelligent Systems:

Networks of Plausible Inference (Morgan Kaufmann, San
Francisco, CA, 1988).
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