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Discrete model of gas-free spin combustion of a powder mixture
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We propose a discrete model of gas-free combustion of a cylindrical sample which reproduces in detail a spin
combustion mode. It is shown that a spin combustion, in its classical sense as a continuous spiral motion of heat
release zones on the surface of the sample, does not exist. Such a concept has arisen due to the misinterpretation of
the experimental data. This study shows that in fact a spinlike combustion is realized, at which two energy release
zones appear on the lateral surface of the sample and propagate circumferentially in the opposite directions.
After some time two new heat release zones are formed on the next layer of the cylinder surface and make the
same counter-circular motion. This process continues periodically and from a certain angle it looks like a spiral
movement of the luminous zone along the lateral surface of the sample. The model shows that on approaching
the combustion limit the process becomes more complicated and the spinlike combustion mode shifts to a more
complex mode with multiple zones of heat release moving in different directions along the lateral surface. It is
shown that the spin combustion mode appears due to asymmetry of initial conditions and always transforms into
a layer-by-layer combustion mode with time.

DOI: 10.1103/PhysRevE.91.012805 PACS number(s): 82.20.−w, 05.45.−a, 05.65.+b

I. INTRODUCTION

Gas-free combustion of powder mixtures is a subject of in-
tensive studies, both experimental and theoretical. According
to experimental data, stationary layer-by-layer gas-free com-
bustion loses its stability under certain conditions and shifts to
more complex nonstationary modes (pulsating, spin, chaotic,
etc.) [1–8]. In particular, under certain conditions so-called
spin combustion is observed. This mode is implemented on
approaching the extinction limit and represents a motion of an
isolated zone of energy release (hot spot, glowing area) along
the surface of the cylindrical sample. There is a concept of spin
combustion based on experimental observations assuming that
the hot spot moves along a continuous spiral path on the lateral
surface of the sample [2]. We note that there are other systems
that exhibit spin modes. For example, frontal polymerization
under certain conditions can propagate in the spin modes [9].

Spin combustion has been a subject of intensive study over
the past 40 years. The majority of studies are limited only to
analysis of the stability of a stationary flat combustion wave,
and are shown that under certain conditions bifurcations occur
that result in new transient combustion modes, which may
include spin combustion. To date, a number of models [10–14]
have been developed in order to explain and describe the spin
combustion of gas-free systems. In rare cases [12] it is possible
to reproduce numerically the appearance of a heat release zone
on the lateral surface of the sample and its a short-term motion
across the surface, after which the destruction of this hot spot
occurs and the new hot spots arise on the lateral surface of
the sample elsewhere. One can state that, despite numerous
attempts, up to this day there is no spin combustion model
that would be able to describe the experimentally observed
spiral motion of a hot spot on the lateral surface of the sample.
Furthermore, even a qualitative explanation of such unusual
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behavior of a combustion wave does not exist, because the
propagation of combustion in a single direction on the lateral
surface of the cylinder is inconsistent with the symmetry of the
sample: Why does a hot spot “rotate” only in one direction on
the lateral surface of the sample; what prevents it from motion
in the opposite direction?

In this paper we describe a model of gas-free spin
combustion of a cylindrical sample which allows obtaining
results similar to those obtained in experiments and investigate
the actual combustion wave topology in this combustion mode.
We use the discrete combustion wave model [15–17] as a basis.

II. DISCRETE COMBUSTION WAVE ON CYLINDER

A. Symmetric initial conditions

Recently, it became clear [1,8] that for the gas-free systems,
representing a powder mixture, the model of a discrete com-
bustion wave describes the structure of a combustion wave and
the processes accompanying combustion more accurately and
correctly, from a physical point of view, than conventional con-
tinuous reaction-diffusion models. Let us consider the discrete
three-dimensional combustion model [15–17]. The system is
assumed to consist of point heat sources (particles), distributed
in heat-conductive inactive environment. The particles are
thermally inertialess and their temperature always equal to the
temperature of the environment in corresponding points. When
the temperature in point ri reaches Tign, which is considered
a constant characteristic of the system, the corresponding
particle i ignites and burns out instantaneously releasing
heat energy Qi . This causes nonuniform and nonstationary
heating of the system, so other particles may reach the ignition
temperature Tign and ignite. Thus, an ignition wave (discrete
combustion wave) spreads over the system. The temperature
distribution in such a system is described by the heat equation

∂T

∂t
= κ∇2T + 1

cρ

∑
i

Qiδ(t − ti)δ(r − ri), (1)
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where κ = λ/ρ c is thermal diffusivity of the system; δ is the
delta function; ti is the moment of ignition of the particle i; λ,
ρ , and c are thermal conductivity, density, and heat capacity
of the system.

An exact solution of the Eq. (1) is as follows:

T (t,r) = Tin + 1

cρ

∑
k(t)

Qk

[4πκ(t − tk)]3/2 exp

[
− |r − rk|2

4κ(t − tk)

]
,

(2)

where Tin is the initial temperature of the system; the sum
includes all the particles that have ignited by the time t . In the
following, we will consider all the particles to be identical:
Qk = Q for every k.

Let us introduce the nondimensional parameters,

q = r/l, τ = tκ/l2, θ = T − Tin

Tad − Tin

, (3)

where l is the characteristic spatial scale; Tad = Tin + Q

cρl3 is
the adiabatic temperature of the system.

The solution (2) in nondimensional variables (3) looks like

θ (τ,q) =
∑
k(τ )

1

[4π (τ − τk)]3/2 exp

[
−|q − qk|2

4(τ − τk)

]
. (4)

The ignition moment of the particle i is defined by the
equation

ε =
∑
k(τ )

1

[4π (τi − τk)]3/2 exp

[
−|qi − qk|2

4(τi − τk)

]
, (5)

where

ε = Tign − Tin

Tad − Tin

(6)

is the nondimensional ignition temperature of a particle.
For a given location of the particles in the system, given

ε and given initial conditions (initially ignited particles), the
time points of ignition for all particles are defined by numerical
solution of Eq. (5). In some particular cases, one can find an
analytical solution of Eq. (5). For one-dimensional systems
such solutions are considered and discussed in [15,16].

In this paper we consider the combustion of a cylindrical
layer of particles on the assumption that the particles are
located periodically on the surface of a cylinder with the radius
R. Such a system represents a set of parallel circular layers
where l is the distance (period) between two neighboring
particles in a layer and ld is the distance between two
neighboring layers. The case of d = 1 corresponds to an
isotropic system. We choose l as the characteristic spatial
scale of the system. Thus, the spatial period in a circular layer
calculated in terms of nondimensional variables is equal to 1,
and the period between two layers is equal to d. It is more
convenient to use the number of particles in a circular layer N

instead of R; 2π r = N , where r = R/l is the nondimensional
radius of the cylinder. In the (x,y,z) coordinate system where
z axis coincides with the axis of the cylinder the coordinates
of particles are calculated as follows:

xmn = R sin(2πm/N ); ymn = R(2πm/N ), zmn = nld,

where n = 1,2, . . . is the layer number; m = 1, . . . ,N is the
number of a particles in a layer.

Then Eq. (5) can be transformed into

ε =
∑
k(τ )

1

[4π (τi − τk)]3/2

× exp

(
−2r2{1 − cos[2π (mi − mk)/N ]} + (i − k)2d2

4(τi − τk)

)
.

(7)

Let us consider the stationary layer-by-layer combustion of
a cylindrical sample.

We assume all the particles belonging to a particular circular
layer n to ignite simultaneously. In case of the stationary
combustion wave, the interval between the ignitions of two
neighboring circular layers τ0 is the same for any couple of
layers.

Hence τn = nτ0. Then Eq. (7) takes the form of

ε =
N∑

m=1

∞∑
j=1

1

(4πjτ0)3/2

× exp

{
−j 2d2 + 2r2[1 − cos(2πm/N )]

4jτ0

}
, (8)

where r = N/2π . The nondimensional burning rate for the
system under consideration can be defined as ω = 1/τ0. The
expression (8) represents an exact solution to Eq. (5), which
defines the dependence of nondimensional burning rate on
nondimensional ignition temperature of particles ω(ε).

Figure 1 shows the dependences ω(ε) calculated by the
expression (8) for various N and d.

Alongside with this, we solved numerically the complete
equation (7). For this purpose we took a number of layers
consisting of initially ignited particles as initial conditions.
Then the ignition time points of other particles were defined by
the numerical solution of Eq. (7). In the case of symmetrical
initial conditions (i.e., all the initially ignited particles in a
layer were ignited simultaneously regardless of the time of
the layer ignition) the layer-by-layer combustion occurs: All
the particles in each next layer are ignited simultaneously.
The intervals between the ignition of neighboring layers are
changed and tend to the stationary value corresponding to
the solution (8). The numerical solution of Eq. (7) shows
that the combustion of such a system under symmetrical
initial conditions is only possible provided that ε � εcr .
For an isotropic system (d = 1) we obtained in calculations
εcr = 0.12. If ε > εcr , the combustion stops regardless of the
number of initially ignited particles. This is manifested in
that some layers do not ignite and the cooling of the system
occurs monotonically due to thermal conductivity. The more
the number of initially ignited layers, the more the layers are
able to ignite under ε > εcr before the combustion process
stops completely. This is explained by the initial amount of
heat energy in the system.

The analysis of one-dimensional stability of the system
under consideration (similar to that in [15]) has shown that
the layer-by-layer combustion mode is absolutely stable.
This is confirmed by the numerical solution of Eq. (7): On
approaching the combustion limit ε = εcr no oscillatory modes
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FIG. 1. Exact solutions of Eq. (8) for N = 20 (left) and N = 40 (right) depending on the distance between circular particle layers d . Values
of d are shown in the graph.

were observed and the combustion process was always steady
state. At transition to ε > εcr the process stopped immediately.
This constitutes the key difference between a symmetric
combustion wave on the surface of a cylinder and a one-
dimensional discrete combustion wave [15–17]. The latter one
shows the instability near the combustion limit: The stationary
mode is changed to more complex oscillatory combustion
modes complicating with the increase of parameter ε. The
transition to a more complex nonstationary mode occurs in
the form of doubling period bifurcation. The stability of the
layer-by-layer combustion of a cylindrical system may be
explained by heat dissipation in the environment associated
with thermal conductivity, which does not take place in case
of a one-dimensional model [15–17].

This is also the reason for the substantial difference in the
critical value of parameter ε for a three-dimensional cylindrical
system (εcr = 0.12) as compared to a one-dimensional system
(εcr = 0.45 − 0.54 [15–17]).

B. Asymmetric initial conditions

Let us consider the impact of asymmetry in the initial
conditions. We assume that at the starting moment all the
particles have been ignited simultaneously in the layers from
1 to n0, while the layer n = n0 + 1 holds only one ignited
particle. These initial conditions were used for numerical
solution of Eq. (7). The ignition moments for the rest of the
particles in the system were calculated from this equation. The
calculations show that, similarly, self-sustaining combustion
is only possible under the condition ε � εcr . However, εcr =
0.16 for the asymmetric initial conditions, which is slightly
higher than that for the symmetric conditions.

This implies that introducing asymmetry into the initial
conditions extends the range of the parameters of the system
enabling self-sustaining combustion. The calculations show
that only nonstationary combustion takes place near the ε ≈
εcr limit.

The analysis has revealed that a discrete combustion wave
propagates differently depending on ε and N parameter values.
The classical spin combustion takes place under the condition
ε < ε1; otherwise there are two more combustion modes in the
system. If ε1 < ε < εcr , a more complex combustion mode is

implemented; we called it a “leapfrog” mode. Immediately
near the combustion limit (ε ≈ εcr ) some of the calculations
showed the presence of an oscillatory spin combustion mode
which we called a “swing” mode. Here we consider these
modes in detail on the basis of isotropic systems (d = 1)
containing different numbers of particles in the circular layers:
N = 20, 40, and 60.

1. Spin combustion mode

In spin combustion mode, a discrete combustion wave
propagates along the circular layer of particles and simulta-
neously the combustion spreads from one layer to another.
The combustion wave propagates from the ignited particle
to the neighboring unignited one in a relay-race mode. The
velocity of propagation of a discrete combustion wave inside
the layer is significantly higher than that between circular
layers. In other words, the intervals between the ignitions of
two neighboring particles within a single layer are always
significantly smaller than the ones between the ignitions of
two neighboring particles in different layers. It is convenient
to describe the propagation of the combustion wave along
the lateral surface of the cylinder in terms of cylindrical
coordinates (n,φ), where n is the number of circular layer of
particles on the lateral surface of the cylinder and ϕ = [0,2π ]
is the angular coordinate of a particle within the layer n. The
coordinates ϕ = 0 and ϕ = 2π correspond to the same particle
located on the same generatrix of the cylinder as the “seed”
source of spin within the layer (n0 + 1). The propagation of
the discrete combustion wave in the system is described by
the functions φ(τ,n) and n(τ ). The first one is responsible for
the propagation within the layer n and the second one for the
propagation between the layers. For each layer n, the origin
point τ = 0 corresponds to the ignition moment of the first
particle in the layer.

Figures 2–4 show the results of calculations for various N

and ε.
Analysis of Figs. 2–4 allows the following conclusions.

If the values of ε are relatively small, the discrete com-
bustion wave propagates in a layer very nonuniformly; the
more particles the layer contains, the more considerable this
nonuniformity is. This happens due to acceleration of the
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FIG. 2. Spin combustion mode. The propagation of the discrete combustion wave along a circular layer φ(τ ). Values of n are shown in the
graph. The number of particles in a layer is N = 20; nondimensional ignition temperature of the particles is ε = 0.120 (left) and ε = 0.130
(right), n0 = 10.

discrete combustion wave within the layer, and for large N

a significant number of particles in the layer are ignited almost
simultaneously. With increase of ε the propagation of the
discrete combustion wave in circular layers becomes more
uniform until it reaches almost constant velocity near the limit
of spin mode ε1. The combustion wave propagation in the spin
mode is characterized by two parameters: the spin period Tspin

(the interval between the ignition of the first particle in a layer
and complete combustion of this layer) and layer-by-layer
ignition period Tl-l (the interval between the ignitions of first
particles in a pair of neighboring layers). Figures 2–4 show
that the lower the nondimensional ignition temperature ε, the
less the Tspin, and therefore the faster the discrete combustion
wave propagates along the layer. There is an inverse relation
between the layer number n and Tspin, which means that the
spin rotation accelerates with the increase of n.

These conclusions are confirmed by Fig. 5 (left) which
shows the dependence of Tspin on the layer number for various
ε. Figure 5 (right) shows the analogous dependence for Tl-l .
One can notice that the period of layer-by-layer ignition is
independent of the layer number and remains approximately
the same during the combustion process. The variation of Tl-l

from layer to layer in the case when ε is close to the critical
value ε1 (Fig. 5, on the right) is caused by the loss of stability
of the relay-race combustion mode.

These conclusions are confirmed by the Fig. 5 (left) which
shows the dependence of Tspin on the layer number for various
ε. Figure 5 (right) shows the analogous dependence for Tl-l .
One can notice that the period of layer-by-layer ignition is
independent of the layer number and remains approximately
the same during the combustion process. The variation of Tl-l

from layer to layer in the case when ε is close to the critical
value ε1 (Fig. 5, on the right) is caused by the loss of stability
of the relay-race combustion mode.

Thus, asymptotic degeneration of spin takes place and
at n → ∞ this process degenerates into the layer-by-layer
combustion with the constant velocity ω = 1/Tl-l . The de-
generation time τt depends on the number of particles in a
circular layer and on the value of ε. If the observation time τ is
relatively small (τ � τt , which is typical of the experiments),
one might get an impression that the spin combustion mode is
stationary and can last infinitely.

Obviously, if Tspin > Tl-l , the next layer will ignite before
the current layer burns out completely. In this case a multilayer

FIG. 3. Spin combustion mode. The propagation of the discrete combustion wave along a circular layer φ(τ ). Values of n are shown in the
graph. The number of particles in a layer is N = 40; nondimensional ignition temperature of the particles is ε = 0.120 (left) and ε = 0.130
(right), n0 = 10.
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FIG. 4. Spin combustion mode. The propagation of the discrete combustion wave along a circular layer φ(τ ). Values of n are shown in the
graph. The number of particles in a layer is N = 60; nondimensional ignition temperature of the particles is ε = 0.120 (left) and ε = 0.130
(right), n0 = 10.

spin combustion mode takes place (in the literature this phe-
nomenon is known as “multihead” spin [2]) at which several
circular layers ignited at different instants burn simultaneously
in relay-race mode. The number of layers burning at the same
time is defined by the expression

k = [Tspin/Tl-l] + 1,

and depends on N and ε, where [· · · ] stands for the integral
part of a number.

The calculations revealed from one to six layers within a
spin.

Figure 6 shows the dependence of ratio Tspin/Tl-l on the
layer number n for various N and ε.

As shown in Fig. 6, the multilayer spin degenerates with
time: the number of simultaneously burning layers decreases
monotonically, which leads to the asymptotic degeneration of
spin from a multilayer down to a monolayer one. A degradation
of spin can be observed if the length of the sample is big
enough.

For visualization of the results of the calculations we
used a special computer program which allows showing the
combustion process in dynamics [18]. Figures 7 and 8 show
the characteristic frames of combustion in multilayer spin

mode. For clarity, the particles are depicted as unit spheres
(in nondimensional variables) although they are considered as
points in the model.

Looking at these pictures (Figs. 7 and 8), one may conclude
that a discrete combustion wave performs a spiral motion
along the surface of the sample, which corresponds to the
traditional concept of spin combustion [2–14]. However,
thorough analysis shows that it is not exactly true. Figure 9
illustrates the same process as in Fig. 8 from a different angle.
One can see that in fact there is no spiral motion of the spin.
The process actually goes as follows: After the ignition of the
first particle in a layer, the two discrete combustion waves arise
which propagate along the layer in the opposite directions from
the first ignited particle. After a while, a particle belonging to
the next layer ignites and the process repeats in the same way
from layer to layer. Looking from a certain angle, an illusion
of spiral motion of hot spots on the surface of the sample may
really arise.

2. “Leapfrog” mode

The calculations show that at ε = ε1 the relay-race spin
mode becomes unstable and at ε > ε1 it changes by a more

FIG. 5. Dependence of spin period Tspin (left) and layer-to-layer ignition period Tl-l (right) on layer number for N = 20 and various ε.
Values of ε are shown in the graph; n0 = 10.
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FIG. 6. Dependence of the ratio Tspin/Tl-l on the layer number for various N ; ε = 0.13 (left) and ε = 0.1275 (right); n0 = 10.

FIG. 7. (Color online) Propagation of a discrete combustion wave in multilayer spin mode (light particles are ignited ones; dark particles
are nonignited ones); N = 40, ε = 0.130, n0 = 10. Combustion spreads downward; the spin is moved along the surface from right to left.

FIG. 8. (Color online) Propagation of a discrete combustion wave in multilayer spin mode (light particles are ignited ones; dark particles
are nonignited ones). N = 60, ε = 0.130, n0 = 10. Combustion spreads downward, the spin is moved along the surface from right to left.

FIG. 9. (Color online) Propagation of discrete combustion wave in multilayer spin mode (light particles are ignited ones; dark particles are
nonignited ones). N = 60, ε = 0.130, n0 = 10 (side view).
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FIG. 10. “Leapfrog” mode. Propagation of discrete combustion wave in a circular layer φ(τ ). The number of particles in a layer is N = 40;
nondimensional ignition temperatures of the particles are ε = 0.145 (a), ε = 0.150 (b), ε = 0.155 (c); n0 = 10. The arrows show the direction
of movement of the “combustion front.”

complex combustion mode. The critical value ε1 ≈ 0.13
obtained in calculations turned out to be independent of the
number of particles N within circular layers.

The loss of stability of the relay-race spin mode is
manifested in the fact that ignition of particles within a circular
layer occurs inconsequently. As a result, a “leapfrog” of hot
spots occurs, that is, the igniting of particles as if “jumping”
over each other. Sometimes several particles within a layer can
ignite simultaneously while some unignited particles remain
between them. Ignited particles become sources of a discrete
combustion wave propagating in different directions. The
combustion wave can spontaneously change its direction of
propagation in a layer.

This can be explained in terms of a phenomenon similar to
the doubling period bifurcation observed in a one-dimensional
system [15,16]. As the system under consideration is actually
two dimensional, it can be represented as a superposition of
two one-dimensional systems: One of them consists of chains
of particles located along the generatrices of the cylinder
while the second one consists of circular layers. Under certain
conditions the doubling period bifurcations can occur in each
of the chains. A superposition of these bifurcations leads to
the “leapfrog.” Figure 10 shows the examples of propagation
of a discrete combustion wave in the “leapfrog” mode.

At the changing of system parameters (N and ε) the
“leapfrog” mode shifts to a new, almost periodical process
with several initially ignited hot spots in every circular layer.
In this case the ignition of a new circular layer takes place
not at a single point but at several initial points located almost
equidistantly from each other. The number of initial sources

is the same in all layers, but their location may be different
for different circular layers, for example, between the initial
sources of the previous layer (see Fig. 11). In this case a sort
of a periodical wave pattern can be observed. In Fig. 11(a), the
even particles are initially ignited on the first layer while odd
particles are ignited on the second one, etc.

3. “Swing” mode

On approaching the combustion limit εcr this periodic
process becomes more and more regular until it turns into
an oscillatory spin combustion near εcr . This mode was called
a “swing” mode. Figure 12 shows the characteristic frames of
this mode, and Fig. 13 illustrates the dependence φ(τ ) for a
few circular layers.

In “swing” combustion mode, a discrete combustion wave
emerges in a particular layer at the point φ = 0 (φ = 2π ) and
spreads from it in opposite directions along the layer. The wave
propagates in the relay-race mode. When the wave reaches
point φ = π , the circular layer burns out completely. After
that, the first particle on the next layer ignites. In contrast
to regular spin mode, in “swing” mode ignition of the first
particle in the next layer occurs in point φ = π . This point
becomes a source of a discrete combustion wave. The process
is periodical. Thus, at “swing” mode the initial ignition in
neighboring layers takes place in diametrically opposite points,
and the combustion waves originating from these points move
in opposite directions towards each other. The next layer
ignites only after the previous one has burned out completely.
As a result, the oscillatory mode of spin combustion wave

FIG. 11. “Leapfrog” mode. Propagation of discrete combustion wave in a circular layer φ(τ ). Values of n are shown in the graph. The
number of particles in a layer is N = 20, nondimensional ignition temperatures of the particles are ε = 0.145 (a), ε = 0.155 (b), ε = 0.160
(c); n0 = 10.
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FIG. 12. (Color online) Combustion wave propagation in the “swing” mode (light particles are ignited ones; dark particles are nonignited
ones). N = 40, ε = 0.160; n0 = 10. Combustion spreads from top downward.

propagation arises at which the combustion wave periodically
changes its direction of propagation to the opposite.

III. DISCUSSION

Let us briefly discuss the assumptions of the model
considered.

In this work, calculations were performed for a small
number of particles in the surface layer of the sample (N �
60). This is due, primarily, to the computer’s performance.
Nevertheless, the results show the general trend that occurs
when changing the number of particles in a cylindrical layer:
Aa spin combustion mode is stored with increasing the number
of particles N . However, if we assume that the hot spot is not
a single particle but a cluster of primary particles which has a
characteristic size, e.g., the order of 0.5 mm, the cylinder with
N = 60 particles will has a diameter of about 1 cm, which is
comparable with the diameter of the real samples used in the
experiments.

Let us explain why we consider only the cylindrical layer
of particles, although the actual samples are continuous. The
actual samples are produced by compaction of the powders
in a cylindrical shell. Due to friction with the shell during

FIG. 13. Dependence φ(τ ) for combustion wave propagation in
the “swing” mode for different layers. Values of n are shown in the
graph. The number of particles in a layer is N = 40; nondimensional
ignition temperature of the particles is ε = 0.160; n0 = 10.

compaction, the properties of the outer layer of the particles
can be different from the properties of the inner layers of the
sample: The outer layers may have a different concentration
of active particles; the hot spots in the outer layer may
have a different effective ignition temperature and a different
adiabatic burning temperature, etc. In our opinion, precisely
the difference in properties of the outer and inner layers of
the sample results in the appearance of such an effect as spin
combustion near combustion limits.

Let us assume, for example, that in the process of the
sample compaction, the outer layer of the sample acquired
the properties that promote combustion (in our model, it
can be described, e.g., by decreasing of nondimensional
ignition temperature ε). In this case, it may turn out that at
the combustion limit, the internal layers are not capable of
self-sustained combustion (ε > εcr for them), while the outer
layer is still capable of self-sustained combustion (ε < εcr

for it). Then only the outer tubular layer will burn, while the
inner layers will play the role of an inert heat-conducting
medium. This is completely consistent with the proposed
model. However, a heat generated in the outer cylindrical
layer will heat the inner layers, and near the combustion
limit, the inner layers will also be capable of combustion,
but only in the forced mode: Their own heat release is not
enough for self-sustained combustion, but a missing amount
of heat will come from the burning outer cylindrical layer.
As a result, combustion will occur throughout the sample
volume; however, the combustion front of the inner layers
will lag behind the combustion front of the outer layer, and
hence, combustion of the inner layers will have no effect on
the combustion of the outer layer. We plan to study this problem
in detail in the future.

IV. CONCLUDING REMARKS

In this paper, we have reproduced numerically the “spin”
propagation mode of the gas-free combustion wave. Detailed
study of this process has shown that the traditional concept
of the spin combustion as a continuous spiral motion of
the energy release area along the surface of the sample is
incorrect. The existing concept might have arisen due to the
misinterpretation of the experimental data. This study shows
that actually a spinlike combustion mode takes place, with
two energy release areas appearing on the lateral surface of
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the sample and spreading circumferentially in the opposite
directions; their movement stops when they meet. After some
time two new heat release zones are formed on the next layer
of the cylinder surface committing the same counter-circular
motion. This process continues periodically, and from a certain
angle it looks like spiral motion of a hot spot on the lateral
surface of the sample.

A spinlike mode can only take place near the combustion
limit in a narrow range of parameters of combustible mixture.
On approaching the combustion limit the process becomes
more complicated and spinlike combustion shifts to a more
complex mode with multiple hot spots moving in different
directions along the lateral surface. This is likely to be the
reason why it is not always possible to detect “spin combustion
mode” experimentally. According to the theory, spin combus-

tion occurs due to asymmetric initial conditions and transforms
into a layer-by-layer combustion mode with time. In order
to observe the degeneration of spin combustion mode, the
sample needs to be long enough. In the experiments on gas-free
combustion, the relatively short samples are usually used (the
length-to-diameter ratio is less than 10), so the degeneration of
spin mode cannot be observed experimentally. This produces
an illusion of stationarity of spin combustion.

A movie demonstrating the described results is provided in
the Supplemental Material [18].
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