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Optimal pinning controllability of complex networks: Dependence on network structure
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Controlling networked structures has many applications in science and engineering. In this paper, we consider
the problem of pinning control (pinning the dynamics into the reference state), and optimally placing the driver
nodes, i.e., the nodes to which the control signal is fed. Considering the local controllability concept, a metric
based on the eigenvalues of the Laplacian matrix is taken into account as a measure of controllability. We show
that the proposed optimal placement strategy considerably outperforms heuristic methods including choosing
hub nodes with high degree or betweenness centrality as drivers. We also study properties of optimal drivers in
terms of various centrality measures including degree, betweenness, closeness, and clustering coefficient. The
profile of these centrality values depends on the network structure. For homogeneous networks such as random
small-world networks, the optimal driver nodes have almost the mean centrality value of the population (much
lower than the centrality value of hub nodes), whereas the centrality value of optimal drivers in heterogeneous
networks such as scale-free ones is much higher than the average and close to that of hub nodes. However, as the
degree of heterogeneity decreases in such networks, the profile of centrality approaches the population mean.
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I. INTRODUCTION

Network science has witnessed tremendous progress over
the last two decades [1,2]. Large-scale systems are often
modeled as networked structures comprising a number of
nodes that are connected through the edges; examples include
the Internet, World Wide Web, power grids, neurons in
the brain, and financial systems [3]. A branch of research
related to network science is the study of how dynamical
phenomena evolve over networked structures [4]. For example,
if dynamical systems interact over a network and some
conditions are met, some kind of collective behavior (syn-
chronization or consensus) emerges [5,6]. Synchronization
has many applications in science and engineering, and many
real-world systems are desired to have high synchronization
properties [7]. It largely depends on the network structure
and some topologies are more synchronizable than others. In
general, it has been shown that highly synchronizable networks
belong to a class of homogeneous networks with a small
number of loops [7–9].

In some applications, dynamical networks (i.e., dynamical
systems interacting over a networked structure) are required
to be controlled. Controlling dynamical networks has many
potential applications. An example is brain networks in which
controlling specific regions can be beneficial in minimizing
the risks of neuronal disorders for which synchronization
plays an important role, e.g., Alzheimer’s disease [10] and
schizophrenia [11]. Considering the concept of structural
controllability, the minimum number of driving nodes have
been obtained, i.e., the minimum number of nodes controlling
which will allow to control the whole dynamics of the
network [12,13]. Cornelius et al. [14] extended the seminal
work of Liu et al. [12] to nonlinear networks. They introduced
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a method to systematically design compensatory perturbations
in order to tune the nodes into a desired state. However, [12–14]
are based on structural controllability and do not consider
controlling the dynamics to a specific state. Some other works
instead considered the problem of pinning control, that is, how
one can pin the dynamics of all nodes to a specific state by
controlling a number of preselected nodes [15,16]. Usually, a
small fraction of the nodes are considered as driver nodes, and
the input is fed into them.

The controllability problem through pinning control is often
studied through similar techniques available for local stability
of the synchronization manifold [17,18]. The master stability
function [19] that is a prime choice for many synchronization
studies can be easily extended to study controllability of dy-
namical networks [17,18]. Wu studied the relationship between
the effectiveness of pinning control and graph topology [20],
and showed that if the number of driver nodes does not grow
as fast as the other nodes, higher control gain will be needed
in order to have effective pinning control. Li et al. considered
cost of synchronization and studied its relations with pinning
control [21]. They found that one can achieve lower cost by
controlling nodes with small degrees. For example, in a starlike
network, controlling all noncentral nodes with small feedback
gain is better than controlling the central node [21]. However,
one still needs to control many nodes, and if the number of
drivers matters, the strategy proposed by Li et al. [21] is far
from being optimal.

Turci and Macau studied the performance of pinning control
in accordance with the type of driver nodes [22]. They showed
that in order to pin the network to the desired state, one
only needs to control a limited number of the nodes. Indeed,
their simulation results showed that as the number of driver
nodes increases more than a certain amount, the performance
of the pinning control (i.e., time to synchronize) does not
improve significantly. They also showed in networks with a
single driver node, choosing a hub node is likely to result in
good performance. However, they did not use any optimization
technique to find the most influential driver node. Porfiri and
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Fiorilli proposed node-to-node pinning control [23]. They
considered a specific cost for the pinning control in terms
of the control gain, location of the driver nodes, and network
structural properties. With this cost function, they showed that
the optimal control is obtained when all nodes are pinned with
the same gain. The node-to-node control strategy periodically
switches the location of driver nodes and spans all the nodes.
However, this might not be possible in some applications
where switching the location of driver nodes is costly. It was
shown that considering a specific dynamics in the pinned edges
can improve the performance of pinning control [24]. Pinning
control has also been extended to discrete-time networks
through stochastic pinning strategy [25].

In this paper, we consider the local stability of the pinning
synchronization, i.e., the method based on the master stability
function approach [18,20–22,26]. This leads to a simple metric
quantifying controllability of the network. This controllability
measure is based on the eigenvalues of the Laplacian matrix
and the information on driver nodes (i.e., the location of the
driver nodes and the feedback control gain). Here we develop
an optimization technique in order to find the best driver nodes.
Having a network with N nodes, the evolutionary optimization
technique (differential evolution) considers the controllability
measure as the cost function and determines m (m � N ) driver
nodes whose controlling can pin the state of all nodes to the
desired state.

We compare the performance of the proposed optimal
placement strategy for driver nodes with heuristic methods in
model networks including scale-free, pure random, and small-
world networks. These network structures have heterogeneous
(scale-free network) or almost homogeneous (random and
small-world networks) degree distribution. Our results show
that the proposed optimal placement strategy outperforms
heuristic methods in both heterogeneous and homogeneous
networks. We also investigate properties of optimally placed
driver nodes in terms of different centrality measures including
degree, betweenness, closeness, and clustering coefficient. The
results show that homogeneous and heterogeneous networks
are significantly different in properties of the optimal driver
nodes. While driver nodes have close centrality value to
hub nodes in heterogonous networks, they have almost the
same centrality value of the mean population in homogeneous
networks.

II. CONTROLLABILITY OF DIFFUSIVELY COUPLED
DYNAMICAL SYSTEMS

We consider identical dynamical systems coupled over
undirected networks. Let us consider an undirected and
unweighted network with N nodes. A dynamical system sits
on each node of the connection graph, and the equations of the
motion read

dxi

dt
= F (xi) − σ

N∑
j=1

lijH xj ; i = 1,2, . . . ,N, (1)

where xi ∈ Rd are d-dimensional state vectors; F : Rd →
Rd defines the individual systems’ dynamical equation. These
dynamical systems are coupled via a unified coupling strength
σ and coupling matrix described by binary adjacency matrix

A = (aij ). The entries of A are 1, if there is a link between
the corresponding nodes, or 0, if there is no link. L = (lij ) is
called a Laplacian matrix, which is a symmetric matrix with
vanishing row sums and positive diagonal entries; lij = −aji

for all pairs of (i,j ) and i �= j , and lii = ∑N
j=1 aij for all i. The

nonzero elements of d × d projection matrix H determines the
coupled elements of the oscillators.

The aim of pinning control is to pin the nodes into a
specific dynamics. Let us consider a time-varying reference
state (virtual leader to which the dynamical systems should be
pinned) as

ds(t)

dt
= F (s(t)). (2)

In order to pin the dynamical network to the reference
dynamics s(t), one should design the state feedback controllers
as

dxi

dt
= F (xi) − σ

N∑
j=1

lijH xj − σβiki (s − xi) ;

(3)
i = 1,2, . . . ,N,

where ki is the feedback control gain, which is considered to
be the same for all nodes in this work. βi determines whether
a node should receive the pinning control signal; if a node is
receiving the control signal, i.e., it is a driver node, βi = 1;
otherwise βi = 0. In pinning control, driver nodes have the
role of pinning other nodes into the desired state s(t), that is,
x1(t) = x2(t) = · · · = xN (t) = s(t).

One should discriminate between global and local syn-
chronization to the reference state. The dynamical network
described by Eq. (3) synchronizes globally to the reference
state s(t), if starting from any initial condition, we have

‖xi (t) − s (t)‖ −−−→
t→∞ 0 ∀i, = 1, . . . ,N, (4)

and synchronizes locally to the reference state, if there exists
an ε>0 such that for any solution with

‖xi (0) − s (t)‖ < ε, (5)

we have the relation (4).
Whether or not the network synchronizes to the reference

state depends mainly on four causes: (i) the dynamics of the
individual systems, expressed by F (·) in Eqs. (1)–(3); (ii)
the network structure, represented by the connection graph
described by A or L; (iii) the type and strength of the
interaction between the individual dynamical systems; and (iv)
the driver nodes and feedback control gain. In Eq. (3), σ and
H are related to (iii) and β and k are related to (iv). Indeed, the
main problem that should be studied in the above configuration
is the stability of the solution x1(t) = x2(t) = · · · = xN (t) =
s(t). Similar to the approach proposed by the master stability
function formalism [19], local stability of the synchronized
solution can be evaluated in terms of N independent blocks in
the parameters a = σλi(i = 1, . . . ,N) as

ζ i

dt
= [DF (s) − aDH (s)] ζ i ; i = 1,2, . . . ,N, (6)
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FIG. 1. (Color online) The eigenratio R indicating the controllability (the smaller R is, the more controllable the network) in networks
with optimized position for driver nodes (Optimal), those with high degree nodes as drivers (Degree), and those with high betweenness nodes
as drivers (Betweenness). The networks are scale free with N = 500 and B = 0 (left), and m = 3 (right). B [Eq. (11)] controls heterogeneity
of the network (i.e., the higher the B, the less the heterogeneity), and the connection probability of newly added nodes depends on B. The
average degree of the network is almost 2m (see text for details). There are Nd = 5 driver nodes in the networks. Data show averages over 20
realizations.

where D stands for Jacobian and λi’s are the eigenvalues of
the following matrix:

C = {cij }

=

⎛
⎜⎜⎜⎜⎝

l11 + k1β1 l12 . . . l1N

l21 l11 + k1β2 . . . l2N

...
... . . .

...

lN1 lN2 . . . lNN + kNβN

⎞
⎟⎟⎟⎟⎠

. (7)

FIG. 2. (Color online) R as a function of connection probability
P in Erdos-Renyi networks with N = 500. Designations are as in
Fig. 1. Note that cyan (gray) and black-dashed lines are largely
overlapped in this figure.

Indeed, C is the Laplacian matrix L with the information
on the driver nodes added to the diagonal entries, i.e., a
diagonal element is different only when the corresponding
node is among driver nodes. Since L is symmetric, C will
also be a symmetric matrix, and thus its eigenvalues are real.
Let us denote the eigenvalues of C as λ1 � λ2 � . . . � λN .
When all Lyapunov exponents of Eq. (6) are negative, the
synchronized solution is locally stable. The largest Lyapunov
exponent of the variational equation (6) �(a), called master

FIG. 3. (Color online) R as a function of rewiring probability
P in Watts-Strogatz networks with N = 500 and m = 3 (right).
Designations are as Fig. 1.
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stability function, accounts for the linear stability of the
synchronization solution; i.e., if �(a) < 0, the synchronized
state is stable. In other words, in order for the dynamical
network (3) to be synchronized to the reference state, the
coupling strength, feedback control gain, and configuration
of driver nodes must be in a way such that �(a) < 0.
The master stability function is independent of a particular
choice of dynamical system and coupling configuration, i.e.,
independent of H and F (·) in Eqs. (1) and (3).

For many systems, the master stability function is only
negative within an interval (a1,a2), and hence, the network
synchronizes to the reference state in such an interval.
Requiring all coupling strengths to lie within this interval,
i.e., a1 < σλ1 � · · · � σλN < a2, one concludes that if the
network locally asymptotically synchronizes to the reference
state, we have

R = λN

λ1
<

a2

a1
(8)

for the corresponding graph.

The right-hand side of (8) depends on the dynamics of
the individuals and coupling configuration, while its left-hand
side depends on the connection graph, configuration of the
driver nodes, and feedback control gain. In this work, we
assume that the feedback control gains are all the same, and
thus R in Eq. (8) depends on the connection graph and the
position of driver nodes. Based on this configuration, one
can argue that the larger the range of stabilizing parameters,
the better controllable the network. Therefore, it relates the
controllability to the eigenratio R = λN/λ1, and concludes
that the smaller R, the better its controllability. Considering
the stabilizing coupling strength within an interval (σ1,σ2), the
master stability function formalism requires

a1 < σ1λ2; σ2λN < a2. (9)

Since a1 and a2 are fixed for any dynamical system and
coupling configuration, to extend the interval of stabilizing
parameter (σ1,σ2), and consequently enhance the controlla-
bility of the network, one should make the eigenratio R as

FIG. 4. (Color online) Various centrality properties of driver nodes (degree, betweenness, closeness, and clustering coefficient) as a function
of m in scale-free networks with N = 500 and B = 0. Graphs show mean centrality values of five driver nodes with optimized position in the
network (Optimal), mean centrality of the population (Mean), and mean centrality value of five nodes with the highest centrality. Data show
averages over 20 realizations.
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small as possible. In some systems, a2 is infinite, and thus, the
controllability of the networks is solely determined by λ1; the
higher λ1, the more controllable the network, i.e., the lower
is the stabilizing value of σ above which the synchronized
reference solution is stable. In this work, we consider only
undirected networks, resulting in symmetric L and C. For
directed networks, these matrices are asymmetric, and thus,
the eigenvalues are complex. In such cases, one should also
consider the imaginary part of the eigenvalues, while the real
part is the main indicator of controllability.

III. OPTIMALLY PLACING THE DRIVER NODES

Considering R as an indicator of network controllability,
it depends not only on the network topology, but also on the
number of driver nodes and their position in the network. Here,
we assume that all feedback gains are the same for driver nodes.
We fix the number of driver nodes and use an optimization
method in order to find the best possible position for these
nodes. Often, driver nodes are determined based on their
centrality scores. For example, it has been shown that pinning

nodes with high degree or betweenness centrality is effective in
synchronizing the dynamics into the reference state [17,27,28].
Considering the structural controllability concept [29], it has
been shown that the driver nodes are among those with lower
than average degree [12]. However, the concept we consider
for the controllability is different from that of structural
controllability and our results cannot be compared with those
obtained in [12]. Let us fix the number of driver nodes as
Nd (Nd � N ). In heuristic methods, first the nodes are sorted
based on their degree or betweenness centrality. Then Nd nodes
with the highest degree or betweenness are considered as driver
nodes. If two nodes have the same degree or betweenness
centrality, the driver nodes are selected randomly from them.

In this work, we formulate the problem of finding the best
possible Nd driver nodes as an optimization problem with
specific cost function. We then use an evolutionary algorithm
for the optimization process. Our goal is to minimize the
eigenratio R as described by Eq. (8). We assume that all
feedback gains are equal, i.e., ki = kj for all i and j . Thus,
the only free parameters for the optimization process are the
position of the driver nodes, i.e., βi’s, which are either 1 or 0,

FIG. 5. (Color online) Various centrality properties of driver nodes (degree, betweenness, closeness, and clustering coefficient) as a function
of B in scale-free networks with N = 500 and m = 3. Designations are as in Fig. 4.
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1 when node i is a driver node, and 0 otherwise. Furthermore,
the total number of driver nodes is Nd . Thus, the optimization
problem is

min
βi

R(β) = λN (β)

λ1(β)
,

(10)

subject to
N∑

j=i

βj = Nd and βj = {0,1},

where β = (β1,β2, . . . ,βN ) are the parameters that should be
optimized.

Since the above optimization problem is not convex, we
use an evolutionary algorithm in order to obtain the optimal
parameters. In this work, we use differential evolution (DE),
which has been shown to be a powerful technique for
various optimization processes [30,31]. DE is an evolutionary
algorithm designed to solve optimization problems and has the
ability to handle nondifferentiable, nonlinear, and multimodal
cost functions. Effectiveness of this optimization technique is
originated from the fact that DE performs mutation based on
the distribution of the solutions in the current population; in
spite of blind operators that exist in traditional evolutionary
methods [31].

In the DE optimization algorithm, each candidate solution
is called a chromosome and there is a population of them in
the solution space. DE can handle all types of binary, integer,
and continuous chromosomes. Crossover operators such as
binomial and exponential crossover are used to combine the
chromosomes [31]. If the building blocks are important in
chromosomes, binomial crossover is often used; otherwise,
exponential crossover is favored. The optimization algorithm
finds a solution for the minimization problem as expressed in
(10). Here, we use binary representation for chromosomes and
fix the population size as the size of the network N .

IV. RESULTS AND DISCUSSION

A. Model networks

We apply the proposed optimization method to find driver
nodes in a number of model networks, including preferential
attachment scale-free, random, and small-world networks. We
construct scale-free networks using an algorithm proposed
in [32], which itself is a generalization of the original prefer-
ential attachment growing procedure introduced by Barabasi
and Albert [33]. Namely, starting with a network of m + 1
all-to-all connected nodes, at each step, a new node is added

FIG. 6. (Color online) Various centrality properties of driver nodes as a function of connection probability P in Erdos-Renyi networks with
N = 500. Designations are as in Fig. 4. Note that black and black-dashed lines are largely overlapped in this figure.
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with m links that are connected to node i with probability

pi = (ki + B)
/∑

j
(kj + B), (11)

where ki is the degree of the node and B a tunable real
parameter controlling the heterogeneity of the network; the
higher the B, the less heterogeneous the network [32]. It
can easily be shown that networks constructed with this
algorithm have power-law degree distribution with exponent
γ = 3 + B/m [32].

Not all real networks have power-law degree distribu-
tion; some real networks show homogeneous distribution
of degrees. We use two models in order to construct such
networks. We use the Erdos-Renyi model in order to construct
pure random networks; each pair of nodes in Erdos-Renyi
networks is connected with probability P . Watts and Strogatz
showed that many real networks are not random and have high
transitivity [34]. They proposed a simple model in order to
construct networks with such properties (short average path
length and high clustering coefficient), which is used in this
work. The model is as follows [34]. Starting with a regular
ring graph with N nodes each connected to their m-nearest
neighbors, the links are rewired with probability P . For some
values of P , the resulting networks have both short average
path length and high transitivity.

B. Numerical results

The effectiveness of pinning control strongly depends on
the graph topology [20]; our results show that the performance
of optimal pinning control also depends on the topology.
Figs. 1–3 compare the performance of the proposed optimiza-
tion process with heuristic methods (i.e., selecting the driver
nodes based on their degree or betweenness centrality). In
these experiments 1% of the nodes are considered as driver
nodes (Nd = 5). It has been previously shown that in order to
have an efficient pinning control, it is sufficient to control a
small portion of the nodes [22]. Often, the driver nodes are
selected among hub nodes with high degrees or betweenness
centralities [15,16,22]; however, we show that one can always
find a subset of optimal drivers that are not necessarily among
hub nodes. The results show that the proposed optimization
process results in much better controllability (i.e., less R) as
compared to heuristic methods (i.e., choosing the high degree
or betweenness nodes as drivers). For example, in scale-free
networks, the optimal strategy results in about 17% less R than
the other two strategies.

As the average degree of the networks increases, their
controllability worsens, i.e., R increases. The average degree
of scale-free networks increases as m increases, and our
results show that all methods show declined controllability by

FIG. 7. (Color online) Various centrality properties of driver nodes as a function of rewiring probability P in Watts-Strogatz networks with
N = 500 and m = 3. Designations are as Fig. 4.
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increase of m (Fig. 1; left panel). In Erdos-Renyi networks,
the connection probability P controls the average degree,
in which the same behavior (i.e., declined controllability by
increasing the average degree) is observed (Fig. 2). As the
number of links increases, degree heterogeneity increases as
well, resulting in worsening the ability to control the network.
In order to further investigate the role of heterogeneity on
the controllability, we change parameter B, which controls
the heterogeneity in scale-free networks, i.e., the higher the
B, the less the heterogeneity in degree distribution. It is seen
that as B increases, R decreases, and thus the controllability
improves (Fig. 1; right panel). However, heterogeneity is not
the only factor in determining controllability of networks. It
is well known that degree heterogeneity of Watts-Strogatz
networks increases as the rewiring probability P increases.
Note that for P = 0, we have an m-regular ring graph, while
P = 1 results in pure random structure. Our results show that
as P increases, the controllability of Watts-Strogatz networks
improves, although their heterogeneity increases. Indeed, as P

increases, more shortcuts are created between the nodes, and
thus the network becomes better communicable. This makes it
easier for driver nodes to communicate with other nodes, and
thus to control the dynamics into the reference state.

We next investigate properties of optimal driver nodes.
To this end, we study their properties in terms of different
centrality measures including degree, betweenness, closeness,
and clustering coefficient. We compare mean centrality of
driver nodes with mean centrality of all nodes and that of
five nodes with the highest centrality value (since Nd = 5).
Figures 4–7 show the profile of these centrality measures in
different networks. There is significant variability between the
behaviors of network structures. In scale-free networks, for
instance, the optimal driver nodes have centrality values close
to those of hub nodes with high centralities (Figs. 4 and 5);
centrality of optimal driver nodes is much closer to those
of hub nodes than the mean population. As these networks
become less heterogeneous (by increasing B), centrality scores
decrease, but similarly proportioned high-centrality nodes
remain favored as the driver nodes (Fig. 5). Indeed, the
centrality values of optimally placed drivers get closer to
the mean population. This means that as these networks
become less heterogeneous, centrality scores decrease, but
similarly proportioned high-centrality nodes remain favored
as the driver nodes.

Figures 6 and 7 show the profiles of centrality measures
in Erdos-Renyi (as a function of connection probability) and
Watts-Strogatz networks (as a function of rewiring probabil-
ity), respectively. These two models result in networks with
almost homogeneous centrality distribution as compared to
scale-free networks. Our results show that the centrality values
of optimal drivers are almost similar to the average population
in these homogeneous networks. Therefore, in homogeneous
structures, optimal drivers do not have a specific property (in
terms of centrality measures) as compared to other nodes.
Indeed, in such networks, the average centrality of optimal
drivers obeys the population average. However, this is not the
case in heterogonous networks for which the optimal drivers
have close centrality to the hub nodes.

In order to assess whether the results are sensitive to
the number of driver nodes, we perform the experiments

FIG. 8. (Color online) R as a function of connection probability
P in Erdos-Renyi networks with N = 500. There are Nd = 10 driver
nodes in the networks. Designations are as Fig. 1. Note that cyan
(gray) and black-dashed lines are largely overlapped in this figure.

with Nd = 10. Figure 8 illustrates the performance of the
proposed optimization method; the general profile is similar
to the previous case with Nd = 5. For Nd = 10, we indeed
found similar patterns as Nd = 5 (see figures in Supplemental
Material [35]). Here we fix the location of the optimal driver
nodes. More complex scenarios can also be applied where
the location of the optimal drivers is not fixed and at each
step, a certain number of the nodes are taken into account as
drivers [23]. However, in many applications (such as power
grids), a designer often would like to find a certain number of
the nodes as optimal drivers and apply the control on them.
Controlling a node requires substantial cost, and it might not be
possible to include the possibility of control for many nodes.

V. CONCLUSIONS

Pinning network dynamics to a reference state is often
known as the network control problem. In pinning control,
an input signal is fed into a number of nodes, known as
driver nodes, and other nodes are forced to follow the
reference state. The ultimate goal is to fully synchronize
all the nodes to the reference state. In this paper, we have
considered the concept of local synchronization to obtain a
measure quantifying controllability of networks. The measure
is based on the eigenvalues of a matrix that is obtained
considering the Laplacian matrix of the connection graph
and information on the driver nodes. In this work, we have
used an optimization method based on differential evolution
to find the best placement for a predetermined number of driver
nodes. Applying the proposed placement strategy on a number
of model networks including scale-free, pure random, and
small-world, we have shown that it significantly outperforms
heuristic methods including choosing the driver nodes as those
with high degree or betweenness centrality.

We have studied the effect of heterogeneity in pinning con-
trollability and showed its nonuniform behavior. In scale-free
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networks, decreasing the heterogeneity of the networks re-
sulted in improving the controllability, while it had the inverse
effect in Watts-Strogatz networks. Also, the controllability
worsened by increasing the average degree of the networks. In
an effort to understand the relation between network structure
and its controllability, we studied properties of optimally
placed driver nodes. To this end, we have considered a number
of centrality values including degree, betweenness, closeness,
and clustering coefficient. Centrality values of the driver
nodes were strongly dependent on the network structure. In
scale-free networks with heterogeneous degree distribution,
the centrality values of optimal driver nodes were higher than
the average value for the population and close to the hub nodes

with high centrality, whereas, the centralities of driver nodes
were almost the same as the population mean in homogeneous
networks such as pure random and small-world ones.

The results obtained in this work are important in analyzing
systems for which pinning synchronization is important.
Examples of such real-world applications include synchro-
nization in modern power grids [36] and parallel tasks in
computer networks [37].
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