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Community structure analysis is a powerful tool for social networks that can simplify their topological and
functional analysis considerably. However, since community detection methods have random factors and real
social networks obtained from complex systems always contain error edges, evaluating the significance of a
partitioned community structure is an urgent and important question. In this paper, integrating the specific
characteristics of real society, we present a framework to analyze the significance of a social community.
The dynamics of social interactions are modeled by identifying social leaders and corresponding hierarchical
structures. Instead of a direct comparison with the average outcome of a random model, we compute the
similarity of a given node with the leader by the number of common neighbors. To determine the membership
vector, an efficient community detection algorithm is proposed based on the position of the nodes and their
corresponding leaders. Then, using a log-likelihood score, the tightness of the community can be derived. Based
on the distribution of community tightness, we establish a connection between p-value theory and network
analysis, and then we obtain a significance measure of statistical form . Finally, the framework is applied to both
benchmark networks and real social networks. Experimental results show that our work can be used in many
fields, such as determining the optimal number of communities, analyzing the social significance of a given
community, comparing the performance among various algorithms, etc.
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I. INTRODUCTION

Community structure detection [1–3] is a main focus of
social network studies. It has attracted a great deal of attention
from various scientific fields. Intuitively, “community” refers
to a group of nodes in a network that is more densely connected
internally than with the rest of the network. A well-known ex-
ploration for this problem is the concept of modularity, which
was proposed by Newman et al. [1–3] to quantify a network’s
partition. Optimizing modularity is effective for community
structure detection, and it has been widely used in many real
networks. However, as pointed out by Fortunato et al. [4],
modularity suffers from the resolution limit problem, which
involves the reliability of the communities detected through the
optimization of modularity. In conjunction with the modularity
concept, many efforts have been devoted to understanding the
properties of dynamical processes taking place in underlying
networks. Specifically, researchers have begun to investigate
the correlation between community structure and dynamical
systems such as synchronization [5] and the random-walk
process [6–11]. Recently, extensive studies were performed
on the phase transition [12–14] of an algorithm from an
undetectable region to one where detection is possible, and the
performance of a variety of partition methods was investigated.

However, despite the large volume of work on community
structure detection and its applications, one important question
has not been clearly addressed, i.e., that of the significance of
the communities in social networks. How can we distinguish
real communities from fake ones? How can we tell when
the communities detected by different methods are truly
significant or when they could merely be a consequence of
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a chance coincidence of edge positions in the network? How
do we statistically determine the significance of a given social
community [7,8]? Clear answers to these questions are crucial
for scientists from many fields.

The value of the modularity can be used as a quality
function for communities: a network with a strong community
structure will have high modularity, and hence it is proposed
to evaluate the community partition. However, recent studies
have shown that this approach is insufficient [15–22]. Although
it is true that networks with a strong community structure have
high modularity, it turns out that not all networks with high
modularity have a strong community structure. Researchers
have found that there are networks with no obvious community
structure at all that nonetheless have high modularity. In [23],
Guimera et al. showed numerically that divisions exist in
ordinary random graphs that have high modularity, even in
the limit of large network size, a result confirmed in later
analytic calculations by Reichardt and Bornholdt [24]. The
reason for this is that the number of possible divisions of
a network increases extremely fast with network size (faster
than any exponential), so that it is highly improbable that any
one division will, purely by chance, have high modularity. As
a result, high modularity is only a necessary but not a sufficient
condition for significant community structure.

If the algorithms are able to identify communities even in
random graphs, which value should we give to communities
found in real networks? This problem has been the subject of
some studies in the literature [10–14]. In [24,25], for example,
the maximum of the modularity of the network analyzed is
compared with the maximum of the same function measured
in a randomized version of the network itself (i.e., all edges
are randomly rewired). In contrast, in [26] the importance of
a community partition is proportional to its robustness against
random perturbations (i.e., random reshuffling of edges). The
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basic idea is that, if a partition is significant, it will be recovered
even if the structure of the graph is modified, as long as
the modification is not too extensive. Instead, if a partition
is not significant, one expects that minimal modifications of
the graph will suffice to disrupt the partition. In a recent work
by Bianconi et al. [27], the notion of entropy � of graph
ensembles was employed to find out how likely it is for a cluster
structure to occur on a graph with a given degree sequence. The
entropy is computed from the number of graph configurations
that are compatible with a given classification of the nodes in q

groups. If the entropy � � 1, the cluster structure is far more
likely than a random classification of the nodes, so the clus-
tering is relevant. Lancichinetti et al. [28] also addressed the
issue by comparing the cluster structure of the graph with that
of a random graph with similar properties. They found that, in
fact, not all communities are equally significant in general, so
it makes a lot of sense to check them individually. In particular,
it may be that real networks are not fully modular, due to their
particular history or generating mechanisms, and that only
portions of them display community structure. The main idea
is to verify how likely it is that a community C is a subgraph of
a random graph with the same degree sequence of the original
graph, using the proposed measure called the C score.

However, these approaches rely heavily on the topology
structure, and they do not incorporate the specific character-
istics of social networks, such as social hierarchy and node
centrality. Furthermore, most of the proposed methods are
designed to deal with full partitions, i.e., they are not suitable
for a single community. In this paper, we present a framework
for calculating the significance of a social community. The
framework does not embrace the universal approach, but
instead it tries to focus on the unique properties of social
networks. We model the dynamics of social interactions
by identifying social leaders and corresponding hierarchical
structures, as social communities are formed around those
leaders. Instead of a direct comparison with the average
outcome of a random model, we compute the similarity
of a given node with its leader by using the number of
common neighbors. To determine the membership vector, an
efficient community detection algorithm is proposed based
on the position of nodes and their corresponding leaders.
Then, using the log-likelihood score, the tightness of the

community can be derived. Based on the distribution of
community tightness, a “p-value” form significance measure is
proposed for community structure analysis. Finally, we apply
our framework to both benchmark networks and real social
networks. Experimental results show that it can be used to (i)
determine the optimal number of a community; (ii) analyze
the social significance of a given community; (iii) compare the
performance among various algorithms; etc.

II. THE FRAMEWORK

Real social networks have their own specific characteristics,
which are essential to define the significance of community
structure. In this section, we discuss these important character-
istics, and we provide a detailed introduction of the framework.

A. Social hierarchy and community leader

It is natural to relate social networks with hierarchical
structure [29]. In one such hierarchy there are nodes that are
more important and influential than other nodes, hence they
are located on a higher level in the hierarchy [see Fig. 1(a)].
The leaders should have two properties: they should be well
connected to the members of their group, and they should be
able to communicate with other leaders when necessary. If the
distributed algorithm is carried out in each group separately
and the leaders communicate at a higher level, the nodes can
enjoy a faster convergence rate.

Hierarchical structure and leader nodes also exist in almost
all real social networks. As an example, in the famous Karate
network [30] there are two significant leaders (nodes 1 and 33),
and communities are built around those leaders [see Fig. 1(b)].
The removal of those leaders will result in splitting those
communities, since the leaders are keeping the communities
together. Since the hierarchies are a consequence of the
spreading of correlation, as are the communities, we believe
that the identification of these hierarchies in a network will
result in a natural community detection. The area in which
a leader has the most influence should define its community.
Therefore, community detection can be performed by finding
all natural leaders and all nodes that they influence.

There are two representative ways to define the leader
nodes: the first is as a degree leader, which is the most natural

FIG. 1. (Color online) (a) Social hierarchy within a community. The leader is located on the highest level, representing the most influential
node. Circles depict different levels in the hierarchy, with the darkest color denoting the highest level. (b) The Zachary karate network. Different
communities are represented by different colors and shapes. Leaders with numbers 1 and 33 are highlighted in the original graph.

012801-2



SOCIAL SIGNIFICANCE OF COMMUNITY STRUCTURE: . . . PHYSICAL REVIEW E 91, 012801 (2015)

way in that it enables nodes with the largest degree (number
of edges linked with it) to be the leader nodes; the second is as
an influence leader, which uses the notion of relative influence
defined in [31]. The influence represents how important the
opinion of a given node is to its neighborhood. A leader is
the node with the biggest overall influence, since the overall
influence represents how close a node is to the core of its
community, as well as its actual potential of becoming a
leader. Also, a leader should have a bigger influence on its
neighbors than they have on it. Therefore, we define leaders
as those nodes for which the product (overall influence) ×
(relative influence) is large. More precisely, we denote the
relative influences between the nodes as Tij , and the overall
influences of the nodes as u∗

i . Tij is defined as

Tij = a′
ij∑

k a′
kj

, (1)

where aij is the adjacent matrix element, a′
ji = aji + ∑

k Ck
ji ,

and Ck
ji = min{aki,ajk}. The overall influence of nodes u∗

i is
defined as

u∗
i =

∑
j

Tij =
∑

j

a′
ij∑

k a′
kj

. (2)

Node xi is a leader if Tiju
∗
i > Tjiu

∗
j for all xj . The product

Tiju
∗
i combines the relative influence of node xi toward node

xj with the overall influence of node xi .

B. Identification of a community based on leaders

In this step, our goal is to devise a scheme to provide
each node with a small vector that includes compact global
information on how the node is located with respect to the
leader nodes. We provide a definition for the membership
vector based on the properties of random-walk dynamics
on graphs. Consider a graph with c leaders l1,l2, . . . ,lc and
N − c regular nodes. Given the leaders and the arbitrary order
assigned to them, we describe the algorithm to determine the
membership vectors for each regular node. We denote the
membership vector of node i by yi = (y1

i ,y
2
i , . . . ,y

c
i ) ∈ Ra .

By yk
i (t), we mean the kth entry of the influence vector of

node xi evaluated at time t .
The procedure operates as follows. The membership vector

of leader li is first assigned to be the unit vector. These c vectors
do not vary. For regular node xi , yk

i is initialized randomly, and
then distributed uniformly on [0,1](k = 1,2, . . . ,c). Then we
normalize each row of yi so that for all leader k, the sum of
yk

i is 1. At each iteration time t , the influence vector of each
regular node xi is updated entrywise (k = 1,2, . . . ,c) using the
following rule:

yk
i (t + 1) = 1∑

j aij + 1

⎡
⎣yk

i (t) +
∑

j

aij y
k
j (t)

⎤
⎦ , (3)

where A = {aij } is the adjacency matrix in which aij = 1 if
nodes xi and xj are connected, and aij = 0 otherwise.

We notice that, for all time t ,
∑

k yk
i (t) = 1. Equation (3)

is equivalent to Y (t + 1) = PY (t) = (I + D)−1(A + D)Y (t),
where P = (I + D)−1(A + D) is a stochastic walk matrix.
Actually, the influence of leader nodes lk (k = 1,2, . . . ,c) on

any regular node xi , yk
i , is the probability that a random

walker that starts from xi hits lk before it hits any other
leader node [9,10]. If the underlying graph is connected, the
iteration limt→∞ yi(t) converges to a set of unique vectors, and
these vectors can naturally be represented as the probability
that a regular node belongs to the community with a given
leader node. The membership vector in this probability form
can be used to uncover soft communities with overlapping
nodes. As a result, although leadership of a node only contains
local information, random-walk dynamics can be used to gain
membership containing a global view of the whole graph. The
performance has been tested on both GN and LFR benchmarks
in Sec. IV, which verify the efficiency of our algorithm.

C. Node similarity

Nodes with large amounts of different neighbors are
considered very “far” from each other. Alternatively, one
could measure the similarity as the overlap between the
neighborhoods �(i) and �(j ) of nodes xi and xj , given
by the ratio between the intersection and the union of the
neighborhoods, i.e.,

sim(xi,xj ) = |�(i) ∩ �(j )|
|�(i) ∪ �(j )| . (4)

Using this similarity measure, one can compute the expected
similarity of elements to the community leader z, given the
similarity measure sim(x,z),

E[sim(x,z)] =
∫
RM

sim(x,z)Q(x|z)dx, (5)

where Q(x|z) is a distribution of nodes in a community with
leader z. Using the maximum entropy principle, we obtain a
statistically unbiased distribution fulfilling constraint,

Q(x|z,η) = 1

Zη

P0(x)eη sim(x,z)dx. (6)

The background distribution P0(x) is contrasted with an
alternative hypothesis: node x being part of a community,
and a group of nodes distinguished by enhanced mutual
similarity. The normalization constant Zη depends on the
value of the scoring parameter η. Parameter η is in a one-
to-one relationship with the value of E[sim(x,z)], the expected
similarity sim(x,z) of vectors following distribution Q(x|z,η).
This relationship can be described as

∂

∂η
log Zη = E[sim(x,z)]. (7)

In other words, parameter η determines the community’s
“width” in the same way that the corresponding constant Zη

does. Intuitively, the larger the value of η, the smaller the
expected width of the community. We will thus refer to η as
the width parameter. Note that when η = 0, the distribution
Q(x|z,η) is the same as the background model P0(x).

D. Log-likelihood score and community tightness

The deviations of the community distribution from the null
model define the log-likelihood score, which takes the simple
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form

s(x|z,η) ≡ log
Q(x|z,η)

P0(x)
= η sim(x,z) − log Zη. (8)

Using Eq. (8), the log-likelihood score assigns positive score
values to nodes that are more likely to be in a community with
center z and scoring parameter η than in the null background
model. The exact form of the scoring function depends on
the similarity measure sim(x,z) and, via the normalization
constant Zη, on the background model P0(x).

Given a community with a node set {x1, . . . ,xN }, for a given
leader z and a scoring parameter η, the log-likelihood scores
s(xi |z,η) are positive. The community tightness is the sum of
the scores of the community elements,

S(x1, . . . ,xN |z,η) =
∑

i

max[s(xi |z,η),0]. (9)

The community tightness is determined both by the number of
elements and by their similarities with the leader, that is, tighter
communities with fewer elements have comparable tightness
to looser but larger communities.

E. Distribution of community tightness

To describe the statistics of an arbitrary tightness score
S(x1, . . . ,xN ) for nodes drawn independently from the distri-
bution P0(x), we consider the quality function

Z(β) = �N
i=1

∫
dxiP0(xi)e

βS(x1,...,xN ) =
∫

dS p(S)eβS.

(10)

Next, we introduce the computation procedure of p(S). In
the collection of all configurations of node set X with energy
E, p(E) denotes the density of states as a function of energy
E. Replacing the extensive energy with the intensive quantity,
E = Ne, and using p(E) = 1

N
p(e), we get∫

p(E)e−βEdE = 1

N

∫
e−Nβe+log p(e)

� 1

N
eNsupe[log p(e)/N−βe]. (11)

In next step, assuming N is large, we use the saddle-point
approximation and get

log Z(β)/N = supe[log p(e)/N ] − βe, (12)

i.e., the normalized logarithm of the partition function,
log Z(β)/N = −βf (β), is a Legendre transform of the nor-
malized logarithm of the probability, log p(e)/N . Exploiting
the duality of the Legendre transform, we get

log p(e) � −N supβ[βf (β) + βe]

= N [β0e − β0f (β0)], (13)

with β0 the saddle point of the function in the squared brackets.
Then, there is

log p(E) = log p(e) + log

(
1

N

)

� N [β0e − β0f (β0)] + log

(
1

N

)
. (14)

Using the conclusion derived above, given all configura-
tions of the node set X = (x1, . . . ,xN ) with a community
tightness S, p(S) denotes the density of states as a function of
tightness S. Asymptotically for large N , this density can be
extracted from Z(β) based on Eq. (10) as

log p(S) � N�(s) − 1
2 log(gN ). (15)

Here �(s) is the entropy as a function of the tight-
ness per element, i.e., �(s) = − maxβ[f (β) + βs]. βf (β) =
− log Z(β)/N is the free-energy density. The distribution
of community tightness S is defined as the probability∫ +∞
S

p(S
′
)dS

′
to find a score larger than or equal to S. This

is a typical p-value form, and it can be used to represent the
statistical significance directly.

III. SIGNIFICANCE OF SOCIAL COMMUNITIES

The quality of an insignificant community can also be
quantified with a community tightness function, yielding some
score S0. To distinguish the true and random communities, we
need to characterize the distribution of the tightness score p(S)
from the background distribution. The statistical significance
of score S0 is then defined in a “p-value” form [32] as
the probability that a random chosen node set contains a
community with a score greater than or equal to S0. In the
statistical significance analysis, we proceed as follows: given
a group of nodes with some score S0, we formulate a null
hypothesis: “These nodes are drawn from the background
distribution.” To test this hypothesis, we compute the statistical
significance of score S0: a low value suggests that the null
hypothesis is unlikely and allows for rejecting it. Importantly,
a low value does not yet say that the group of nodes is indeed
a significance community. A low value provides a necessary
but not a sufficient condition in this direction.

However, the scoring parameter η is hard to determine. We
now rewrite the community tightness function of Eq. (9) and
simplify it as

S(x1, . . . ,xN |z,η) =
N∑

i=1

max[s(xi |z) − μ,0], (16)

where s(xi |z) = sim(xi,z). Through this transform, the width
of the community can be determined simply by parameter μ.
If the size of the network is large enough, using the mean-field
theorem, si = s(xi |z) is approximately Gaussian-distributed
with variance M , P [s(xi |z)] = √

1/(2Mπ ) exp{−s2/(2M)}.
Computation of the distribution of the tightness S is straight-
forward from the derivation shown in Sec. II, and it requires
calculation of the quality function:

Zc(β,μ) =
∫
RN

eβS(x1,...,xN |z,η)P (s1) · · ·P (sN )ds1 · · · dsN

=
[ ∫ +∞

−∞
eβ max[si−μ,0]P (s)ds

]N

=
[ ∫ μ

−∞
P (s)ds +

∫ +∞

μ

eβ(si−μ)P (s)ds

]N

= {[1 − H (μ)] + e
(β)2

2 −βμH (μ − β)}N, (17)
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with H (x) = ∫ +∞
x

1√
2π

e− 1
2 y2

the complementary cumulative
Gaussian distribution. In Eq. (17), the integration is di-
vided into two intervals: below the score threshold μ, the
score is zero, which contributes the cumulative distribution∫ μ

−∞ ds/(2π )1/2 exp[−s2/2] to the generating function. Above
the score threshold, the score is positive, which generates a
contribution of

∫ +∞
μ

ds/(2π )1/2 exp[−s2/2 + β(s − μ)]. The
free-energy function reads

−βf (β,μ) = log{[1 − H (μ)] + e
(β)2

2 −βμH (μ − β)}, (18)

and the entropy is

ω(s,μ) = − max
β

[βs + βf (β,μ)]. (19)

As described in Sec. II,

log p(S,μ) � Nω(S/N,μ) − 1
2 log N. (20)

A. Significance score

For a given community, the significance score F can be
calculated using the probability that the community tightness
S, p(S), is greater than or equal to S,

F (S,μ) =
∫ +∞

S

p(S
′
,μ)dS

′
. (21)

Furthermore, from a global perspective, we use the average
significance score 〈F 〉q to indicate the robustness of a partition
corresponding to q communities, defined as the average
value among F values of all q communities partitioned by
a particular algorithm. Since 〈F 〉q tries to directly characterize
the social significance of a specific network partition, it is very
convenient to estimate the performance and function property
of a given algorithm.

B. Computational complexity

The calculation of the significance score mainly contains
three steps: (i) calculate the degree or influence of every node

to find the leaders of the communities; (ii) identify the commu-
nities in the network based on the positions of the nodes and the
leaders; and (iii) measure the similarity between nodes with
their corresponding leaders and calculate the significance score
using the distribution of tightness. The computational com-
plexity of our method depends on the highest complexity of
these three steps. Obviously, part (ii) is of the highest complex-
ity, while the complexity of the other two parts is rather low.
For part (ii), the computational complexity is O(N2), where N

is the number of nodes in the network. Thus, we obtain that the
cost of the whole algorithm is O(N2). Our method is very easy
to implement and suitable for a lot of large-scale real networks.

IV. EXPERIMENTS

In this section, we will test the validity of our framework.
Experiments are designed and implemented for two main
purposes: (i) to evaluate the performance of a given algorithm,
and (ii) to apply it on both artificial benchmark networks and
real social networks.

A. Benchmark network

1. GN benchmark network

First, we use the classical GN benchmark presented by
Girven and Newman [33]. Each network has n = 128 nodes
that are divided into 4 communities with 32 nodes each. Edges
between two nodes are introduced with different probabilities
that depend on whether the two nodes belong to the same com-
munity or not, and the average degree 〈k〉 = 16. Every node
is connected on average with 〈kin〉 nodes of its own group and
〈kout〉 of the rest of the network. The total degree of each node
is always kept constant and equal to k = 〈kin〉 + 〈kout〉. Each
group represents a well-defined community up to 〈kout〉 = 8,
but actually communities start to become very fuzzy at lower
values of 〈kout〉 ≈ 8 due to statistical fluctuations.

We empirically demonstrate the effectiveness of our algo-
rithm via a comparison with six other well-known algorithms
on the GN networks. These algorithms include Newman’s
fast algorithm [1], Danon et al.’s method [34], the Louvain
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FIG. 2. (Color online) The performance of the community detection algorithm based on leaders in both the GN and LFR networks. (a)
A comparison of the accuracy with six famous algorithms in the GN benchmark network. Here, accuracy is defined as the fraction of nodes
correctly clustered. (b) A comparison of NMI with five fuzzy algorithms in the LFR benchmark network.
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FIG. 3. (Color online) The performance of social significance 〈F 〉 on both the GN and the LFR network. (a) In the GN network, 〈F 〉
decreases with increasing 〈kout〉. When the community structure of the network is very clear, 〈F 〉 is very close to 1; when the network has
almost no community structure, 〈F 〉 is close to 0.3. This implies that for a given network, when 〈F 〉 is less than 0.3(〈kout〉 ≈ 8), it is not safe
to say that there exists a significant community structure. (b) In the LFR benchmark, the average degree k = 20, the maximum degree is 50,
and P (k) ∝ kγ . Maximum and minimum community sizes are 50 and 20, respectively. With an increase of the mix parameter θ , the 〈F 〉 index
decreases. When θ � 0.5 (no significant community), 〈F 〉 is near 0.3, which is similar to the GN network.

method [35], Infomap [36], the clique percolation method [17],
and the GA method [37]. Figure 2(a) presents the experimental
results, in which the y axis denotes the fraction of nodes
correctly clustered, and each point on the curves is obtained
by testing them against 50 synthetic networks shuffled from
the original network. As we observe, all algorithms work
well when 〈kin〉 is larger than 0.7 with accuracy larger than
0.95. Compared with the other six algorithms, our algorithm
outperforms the other algorithms overall, and its accuracy
is only slightly worse than that of the GA in the case of
0.5 � 〈kin〉 � 0.65.

As is well known, the communities become fuzzier and
thus more difficult to identify when 〈kout〉 increases. Hence,
the significance of the community structure will also tend to be
weaker and the F index will decrease. The numerical results
of the F value corresponding to both the degree leader and
the influence leader are shown in Fig. 3(a). We find that the
index F works well in the GN benchmark: when community
structure is very clear, 〈F 〉 is very close to 1; when the network
is nearly a random one, the corresponding 〈F 〉 is near 0.2–0.3.
Moreover, by comparing two kinds of leaders, we observe that
〈F 〉 values corresponding to the influence leader are larger
than those corresponding to the degree one, and therefore
they are more effective. Furthermore, the topology becomes
fuzzier when 〈kout〉 increases, and the sizes of the communities
will correspondingly become smaller and smaller. At the same
time, as the width parameter μ increases, the significance will
favor tighter communities with fewer elements. As a result,
in Fig. 3(a), the value of 〈F 〉 corresponding to μ = 0.25
will be larger than that corresponding to μ = 0.1 when 〈kout〉
is larger than 6. We argue that for a given network when
the corresponding 〈F 〉 is larger than 0.3(〈kout〉 ≈ 8), there
exists a significant community structure. Thus, the larger the
〈F 〉 index is, the more significant the community structure
will be.

B. LFR benchmark network

We also test the index on the more challenging LRF bench-
mark presented by Lancichinetti, Fortunato, and Radicchi [16].
In the LFR benchmark, each node is given a degree obtained
from a power-law distribution with an exponent γ , and the sizes
of the communities are obtained from a power-law distribution
with an exponent β. Moreover, each node shares a fraction
1 − θ of its links with other nodes of its community and a
fraction θ with other nodes in the network; θ is the mixing
parameter.

We compared with five other well-known soft community
partition algorithms in the LFR networks, including the Clique
percolation method [17], the Link method [38], the EAGLE
method [39], the RB Potts model [40], and the Fuzzy C-Means
method [41]. To evaluate a community detection algorithm,
the normalized mutual information (NMI) [15,16,28–31,33]
is utilized to evaluate the partition found by each algorithm.
The experimental results are displayed in Fig. 2(b), where the
y axis represents the value of NMI, and each point in the curves
is obtained by averaging the values obtained on 50 synthetic
networks sampled from the above model. As we observe, all
algorithms work very well when θ is less than 0.3, with NMI
larger than 0.85. Compared with the five other algorithms,
our algorithm performs quite well and its accuracy is only
slightly worse than that of the Fuzzy C-Means in the case of
0.35 � θ � 0.5.

The significance of community structure can be adjusted
by θ in LFR benchmark. The numerical results in the LFR
benchmark are shown in Fig. 3(b). We observe that F decreases
with the increase of θ . As in the GN network, the F values
corresponding to the influence leader are larger than those
corresponding to the degree leader when θ is low. Furthermore,
from Fig. 3(b) we notice that the value of 〈F 〉 corresponding
to μ = 0.25 is larger than that corresponding to μ = 0.1 when
θ is larger than 0.43.
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C. Stochastic block model

Recently, many algorithms [42,43] have been proposed to
detect communities in networks or dynamical networks based
on the famous stochastic block model (SBM) first proposed
by Holland et al. [44] and extended by Decelle et al. [12,45]
and Zhang et al. [8,14], in which the connectivity between
blocks is defined in terms of probabilities. In this model,
each node i has a hidden label, ti ∈ {1, . . . ,q}, specifying
which of the q groups it is a member of. These labels
are chosen independently, where ya is the probability that
a given node has label a ∈ {1, . . . ,q} (normalized so that∑q

a=1 ya = 1). If Na is the number of nodes in each group,
we have ya = limN→∞ Na/N . Once the group assignment
is chosen, the model generates a graph G as follows. For
each pair of nodes i,j with i < j , we put an edge between
i and j independently with probability pti ,tj , leaving them
unconnected with probability 1 − pti ,tj . We call pab the
affinity matrix. Since we are interested in the sparse case in
which pab = O(1/N ), we will use the rescaled affinity matrix
cab = Npab and assume that cab = O(1) in the limit N → ∞.
Our goal is to learn the parameters q,{ya},{pab} of the block
model, as well as the true group assignments {t i}. Special
cases of this model have often been considered in the literature.
Planted partitioning, when ya = 1/q,cab = cout for a �= b and
caa = cin with cin > cout, is a classical problem in computer
science, and it has been used as a benchmark for community
detection. Here, ε = cout/cin is used to control the fuzziness of
a generated network.

To test the performance on sparse networks, we establish a
large network generated by stochastic block model with low
average degree. Figure 4 shows the case of a network with
N = 5000 nodes and q = 10 groups, with an average degree
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FIG. 4. (Color online) The performance of social significance
〈F 〉 on the stochastic block model. In this example, there are
N = 5000 nodes and q = 10 groups. The average degree c = 8,
and the parameter ε = cout/cin is used to control the fuzziness of
the generated network. Each point on the curves is obtained by
testing 50 times. With an increase of ε, the 〈F 〉 index decreases.
When ε is close to 0.8, the network is nearly a random one, and the
corresponding 〈F 〉 values of both kinds of leaders are very low, near
0.2–0.3.
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FIG. 5. (Color online) The empirical results of the optimal num-
ber of communities in the Zachary karate club network, the College
football network, and the Political books network. From the plots
we observe that 〈F 〉 achieves its highest value when the community
numbers correspond with reality: the Zachary karate club has two
optimal communities, the College football network has 12 optimal
communities, and the Political books network has three optimal
communities.
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FIG. 6. (Color online) (a) The structure of RB125, with 25 dense communities and 5 sparse communities, is highlighted in the original
network. (b) The number of communities vs the average significance value 〈F 〉.

c = 8. Each point on the curves is obtained by testing 50 times.
We find that when ε is close to 0, the community structure is
very clear and the corresponding 〈F 〉 value is close to 1. In
contrast, when ε is close to 0.8, the network is nearly a random
one, and the corresponding 〈F 〉 values of both kinds of leaders
are very low, near 0.2–0.3. Furthermore, it can be observed
that the value of 〈F 〉 corresponding to μ = 0.25 will be larger
than that corresponding to μ = 0.1. Specifically, we argue that
for a given network when the corresponding 〈F 〉 is larger than
0.32 (ε ≈ 0.4), there exists a significant community structure
that may be detectable [12]. Therefore, F shows a great ability
to characterize the significant modular structure as we adjust
the parameter ε.

D. Real network

Now we show the utility and versatility of our method
for the statistical evaluation of communities in real social
networks. The significance corresponding to the influence
leader is used in this section. First, we find that the optimal
number of community c can be determined using the average
significance score 〈F 〉q . For many real-world social networks,
we do not know the number of communities before incor-
porating additive information, and the community structure
will be clearest when the number is the optimal c. The
detailed steps are as follows: (i) The degree or influence of
each node is calculated and ranked. We choose the first q

nodes with the largest influence as leaders. (ii) We partition
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FIG. 7. (Color online) (a) The structure of H13-4, with 16 dense communities and 4 sparse communities, is highlighted in the original
network. (b) The number of communities vs the average significance value 〈F 〉.
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the network and obtain q communities, using the proposed
community detection algorithm based on leaders. For each
q(1 � q � N/2), a specific partition with q communities can
be obtained. (iii) We apply our method and use 〈F 〉q to
compute the significance of the q community structure. (iv)
In comparison, the q corresponding to the largest value of
〈F 〉q is chosen as the optimal number of communities.

Here, three famous real examples are considered: the
Zachary Karate club network [30], the College football
network [33], and the Political books network [17]. The
community partition of all networks has been obtained by
our method in Sec. II. As shown in Fig. 5, the corresponding
community numbers with the largest 〈F 〉q are the optimal c of
every network. These examples show the great ability of our
framework in characterizing the modular structure of the real
networks. Then we analyze the partition and find that the F

score of the communities found is quite high. However, there
are a few exceptions for which F is sufficiently low, but most of
the groups are not statistically significant. This occurs because
the algorithm is forced to place all the nodes in some group.
Since these three networks are sparse and the modularity is
not strong, especially the football network, the results are very
precise and verify that our framework is effective for real social
networks.

Furthermore, to show that the model can uncover hierar-
chical structures in different scales; Figs. 6 and 7 give two
examples of multilevel community structures. Figure 6(a)
shows the RB125 network, which is a hierarchical scale-free
network proposed by Ravasz and Barabási in [18]. The regions
corresponding to 5 and 25 modules are the most representative
in terms of resolution. Next, H13-4 proposed by Arenas
et al. [19] is shown in Fig. 7(a). It is a homogeneous degree
network with two predefined hierarchical scales. The first
hierarchical level consists of 4 modules of 64 nodes, and the
second level consists of 16 modules of 16 nodes. The partition
of both levels is highlighted in the original networks.

In both examples, the significance of such levels can be
quantified by their corresponding 〈F 〉q . The largest value
reveals the actual number of hierarchical levels hidden in a
network. From Figs. 6(b) and 7(b), we observe that 25 and 16
are the optimal numbers of communities in RB125 and H13-4
networks having the largest value, respectively. However, five
modules and four modules are also reasonable partitions that
show the fuzzy level of the hierarchical networks. These
results are consistent with the generation mechanisms and
hierarchical patterns of these two networks.

Finally, we show that significance can also be used to rank
the partitions obtained by different algorithmic strategies. The
Zachary Karate club network, the College football network,
and the Political books network are employed as examples.
Table I presents the results estimated from three algorithms
chosen for their simplicity, which are all able to automatically
select the number of communities: the label propagation
method [20], the Wu-Huberman linear time method [21],
and the Girvan-Newman betweenness algorithm [33]. Here,
first we partition the network into communities using a
specific method. For each community, the node with the
largest influence is chosen as the leader. Then, the similarity

TABLE I. Comparison of various algorithms with 〈F 〉 values.

Networks Algorithms Values of 〈F 〉
label propagation method 0.641

Zachary network Wu-Huberman linear time method 0.627
Girvan-Newman algorithm 0.735
label propagation method 0.602

College football Wu-Huberman linear time method 0.631
network Girvan-Newman algorithm 0.758

label propagation method 0.581

Political books Wu-Huberman linear time method 0.617
network Girvan-Newman algorithm 0.698

between nodes and their corresponding leaders is measured.
Finally, 〈F 〉 is calculated for each algorithm. From Table I,
we observe that the 〈F 〉 values of all three examples are not
high, due to the fuzziness and sparseness of the network’s
topology. However, the 〈F 〉 value from the Girvan-Newman
algorithm is higher than that from the other two methods,
since the mechanism of the Girvan-Newman algorithm is
objective function optimization. In contrast, the other two
algorithms emphasize the simplicity of calculation too much
while ignoring the accuracy of the results. These observations
are not evidence of the overall superiority of one method over
another, rather they are an example of how to compare the
significance and use the different partitioning algorithms in a
given network.

V. CONCLUSION

In summary, we presented a framework for calculating the
significance of a social community. Our framework does not
embrace the universal approach, but instead it tries to focus
on the unique properties of social networks. Based on the
distribution of community tightness, a “p-value” form signif-
icance measure is proposed for network analysis. We apply
our framework to both a benchmark network and a real social
network, and its efficiency has been demonstrated and verified
both theoretically and experimentally. Important information
related to social community structures can be mined from
the significance trend, such as the social significance of a
given community, the optimal number of communities, and
the performance among various algorithms in detecting a
meaningful community structure.
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[17] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, Nature (London)

435, 814 (2005).
[18] E. Ravasz and A. L. Barabási, Phys. Rev. E 67, 026112

(2003).
[19] A. Arenas, A. Fernandez, and S. Gomez, New. J. Phys. 10,

053039 (2008).
[20] U. N. Raghavan, R. Albert, and S. Kumara, Phys. Rev. E 76,

036106 (2007).
[21] F. Wu and B. A. Huberman, Eur. Phys. J. B 38, 331 (2004).
[22] Z. P. Li, S. H. Zhang, R. S. Wang, X. S. Zhang, and L. Chen,

Phys. Rev. E 77, 036109 (2008).
[23] R. Guimera, M. Sales-Pardo, and L. A. N. Amaral, Phys. Rev.

E 70, 025101 (2004).

[24] J. Reichardt and S. Bornholdt, arXiv:cond-mat/0606220.
[25] M. Sales-Pardo, R. Guimera, A. A. Moreira, and L. A. N.

Amaral, Proc. Natl. Acad. Sci. (USA) 104, 15224 (2007).
[26] B. Karrer, E. Levina, and M. E. J. Newman, Phys. Rev. E 77,

046119 (2008).
[27] G. Bianconi, P. Pin, and M. Marsili, Proc. Natl. Acad. Sci. (USA)

106, 11433 (2009).
[28] A. Lancichinetti, F. Radicchi, and J. J. Ramasco, Phys. Rev. E

81, 046110 (2010).
[29] H. J. Li, Y. Wang, L. Y. Wu, Z. P. Liu, L. Chen, and X. S. Zhang,

Eur. Phys. Lett. 97, 48005 (2012).
[30] W. W. Zachary, J. Anthropol. Res. 33, 452 (1977).
[31] A. Stanoev, D. Smilkov, and L. Kocarev, Phys. Rev. E 84, 046102

(2011).
[32] J. D. Wilson, S. Wang, P. J. Mucha, S. Bhamidi, and A. B. Nobel,

Ann. Appl. Stat. 8, 1853 (2014).
[33] M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. (USA)

99, 7821 (2002).
[34] L. Danon, J. Duch, D. Guilera, and A. Arenas, J. Stat. Mech.

(2005) P09008.
[35] V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre,

J. Stat. Mech. (2005) P10008.
[36] M. Rosvall and C. T. Bergstrom, Proc. Natl. Acad. Sci. (USA)

105, 1118 (2008).
[37] R. Guimera and L. A. N. Amaral, Nature (London) 433, 895

(2005).
[38] Y. Y. Ahn, J. P. Bagrow, and S. Lehmann, Nature (London) 466,

761 (2010).
[39] H. Shen, X. Cheng, K. Cai, and M. B. Hu, Physica A 388, 1706

(2009).
[40] J. Reichardt and S. Bornholdt, Phys. Rev. Lett. 93, 218701

(2004).
[41] S. Zhang, R. S. Wang, and X. S. Zhang, Physica A 374, 483

(2007).
[42] B. Karrer and M. E. J. Newman, Phys. Rev. E 83, 016107 (2011).
[43] T. Yang, Y. Chi, S. Zhu, Y. Gong, and R. Jin, Mach. Learn. 82,

157 (2011).
[44] P. W. Holland, K. B. Laskey, and S. Leinhardt, Soc. Netw. 5,

109 (1983).
[45] A. Decelle, F. Krzakala, C. Moore and L. Zdeborová, Phys. Rev.
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