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Solitary shock waves and adiabatic phase transition in lipid interfaces and nerves
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This study shows that the stability of solitary waves excited in a lipid monolayer near a phase transition requires
positive curvature of the adiabats, a known necessary condition in shock compression science. It is further shown
that the condition results in a threshold for excitation, saturation of the wave’s amplitude, and the splitting of
the wave at the phase boundaries. Splitting in particular confirms that a hydrated lipid interface can undergo
condensation on adiabatic heating, thus showing retrograde behavior. Finally, using the theoretical insights and
state dependence of conduction velocity in nerves, the curvature of the adiabatic state diagram is shown to be
closely tied to the thermodynamic blockage of nerve pulse propagation.
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I. INTRODUCTION

Dense networks of hydrated membrane interfaces populate
cellular environments [1]. The elastic properties of these
quasi-two-dimensional (2D) systems have been a subject of
extensive research [2]. However, most studies usually consider
quasistatic processes [3] and/or small displacements [4]. We
have recently demonstrated that the elastic properties of such
interfaces support the propagation of acoustic pulses, which
has implications for cell communication within single cells to
action potentials in the nervous system [5,6]. Particular interest
arises from the observation that the cellular machinery spends
considerable resources in fine-tuning the thermodynamic (TD)
state diagrams of biological membranes, usually adapting in
the vicinity of a phase transition, where the state diagram
exhibits clear nonlinearities [7,8]. For dynamic processes the
curvature of the adiabatic state diagram is of fundamental
importance [9,10]. Indeed, a nonlinearity in the elastic prop-
erties of the plasma membrane is believed to be crucial for
the phenomenon of nerve pulse propagation [11–13] which is
known to be adiabatic [14]. Therefore an understanding of the
adiabatic state diagrams of lipid interfaces near similar nonlin-
earities is crucial for an improved thermodynamic understand-
ing of nerve pulse propagation. Interestingly, spontaneous
mechanical perturbations have been observed in a variety of
biological systems [15] and are found to propagate along with
nerve impulses as well, analogous to sound waves [16,17]. In
a recent study [6] we showed that thermodynamically coupled
perturbations (electrical-optical-mechanical) during 2D sound
waves in a lipid monolayer, a simple model system for plasma
membrane, are strikingly similar to those observed during
nerve pulse propagation. Based on experimentally determined
sound velocities c(π ), it appeared that solitary waves only
exist for a positive curvature ( ∂2a

∂π2 ) of the state diagram (π and
a represent the lateral pressure and specific area at the lipid
interface). This results in a threshold for excitation if the initial
equilibrium state is within a regime of negative curvature and
changes to positive during excitation/propagation.

Here we investigate the velocity of propagation of such
waves as a function of amplitude and show that locally the
condition ( ∂2a

∂π2 )S > 0 (S representing the interfacial entropy) is
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preserved for the 2D sound waves at the liquid-expanded (LE)
or liquid-condensed (LC) phase boundary, even though the
isothermal compression ( ∂2a

∂π2 )T < 0. Furthermore we show
that the maximum amplitude saturates at a value that is
significantly less than expected from isothermal compression.
The evolution of these waves over distance shows splitting into
a nondispersive forerunner wave and a slower dispersive wave.
These results are in accordance with classical shock theory
where the condition ( ∂2υ

∂P 2 )S > 0 [9,18] or ( ∂2P
∂υ2 )S > 0 [10] is

associated with the existence of compression shocks and its
violation is associated with rarefaction shock waves, where P

and υ are pressure and specific volume. Finally we discuss
the implications of the curvature of the state diagram of
the nerve membrane and its possible relation to reversible
thermodynamic blockage of nerve pulse propagation.

A lipid monolayer easily self-assembles by adding a
lipid and fluorophore mixture at the air-water interface of a
Langmuir trough. Lipid monolayers are not only accessible
and robust, but their molecular composition and thermody-
namic state and hence the mechanical properties can also be
precisely controlled, monitored, and characterized [19]. Thus
they provide an excellent platform to study 2D interfacial
sound waves, both experimentally and theoretically [5,6].
The optomechanical setup has been described in detail else-
where [6,20]. A cantilever excites the monolayer [containing
the lipids (DPPC), the donor (NBD-PE), and acceptor dye
molecules (Texas Red-DHPE) (100:1:1)] longitudinally with
a piezo-controlled deflection producing 2D sound waves.
A microscope records these sound waves by observing the
ratiometric Forster resonance energy transfer (FRET), simul-
taneously at two wavelengths (535 and 605 nm) between a pair
of lipid-conjugated fluorophores, using �θ

θ
= �I535

I535
− �I605

I605
.

The distance between the cantilever and the objective can be
controlled by a screw meter.

II. RESULTS AND DISCUSSION

A. Threshold, saturation, velocity, and pulse width

For the linear case (infinitesimal amplitude), the velocity
of sound is related to state variables according to c2 =

1
ρkS

= ( ∂π
∂ρ

)s , where π is the lateral pressure, ρ (kg/m2) is
the density of the quasi-2D interfacial region, and kS is the
isentropic compressibility of the interface [5]. For a nonlinear
system, such as a lipid monolayer near a phase transition, kS
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FIG. 1. (Color online) Dependence on excitation strength and
amplitude. (a) Measured pulse shapes at 0.84 cm from the excitation
blade as a function of blade amplitude (mm). The pulses are excited
at t = 0. The fixed equilibrium state (π = 4.3 mN

m and T = 293.15 K)
is indicated by the dot on (b) the isothermal state diagram and the
isothermal compressibility plot in the inset. (c) The characteristic
isothermal curve relating FRET parameter and surface area (a ↔ θ )T

obtained during quasistatic compression at two different spots along
the propagation path. The arrows in (a) indicate the splitting of the
pulse on increasing the excitation strength beyond saturation limit.

strongly depends on the density change �ρ and can undergo
significant changes within a single pulse �ρ(t). Therefore the
velocity varies within a single pulse resulting in evolving pulse
shapes [6,12]. Figure 1(a) shows this behavior for different
pulses as solitary waves of different amplitudes, obtained by
varying the stimulus (i.e., the mechanical impulse from the
piezo device) and measured via FRET, arrive at different
times for a given mean equilibrium state (π = 4.3 mN

m and
T = 293.15 K) [Fig. 1(b)]. Note that compression amplitudes
(�ρ/ρ0)—with �ρ

ρ0
= −�a

a
—can be estimated from variations

in FRET parameter �θ/θ using the characteristic curve
(a ↔ θ )T obtained during isothermal compression [Figs. 1(b)
and 1(c)] [6].

Fluorescent probes that depend on dipole reorientation
for sensing voltage changes (as observed here in lipid
monolayer [6,20]), have been shown to report them with-
out discernible time lag during nerve pulse propagation
[21–23], which indicates that as far as our overall goal of
understanding thermodynamics of nerve pulse propagation
is concerned the isothermal optomechanical coupling is a
reasonable approximation during the observed pulses as
well. This allows immediate extraction of three key relations
from these experiments: (i) The response (�ρ/ρ0) is highly
nonlinear with a clear threshold and an asymptotic saturation
of amplitude as a function of excitation strength [Fig. 2(a)].
(ii) The velocity calculated from the time of arrival varies
linearly with relative compression (�ρ/ρ0) up to �ρ/ρ0 =
0.15 [Fig. 2(b)], which coincides with the beginning of the
saturation [indicated by dashed lines, Figs. 2(a) and 2(b)] of
the nonlinear response curve. (iii) The half-width of a pulse
as a function of relative compression also follows the exact

FIG. 2. (Color online) Threshold, saturation, velocity, and pulse
width. (a) Relative compression ( �ρ

ρ0
) extracted from Fig. 1(a) using

the quasistatic response curve of Fig. 1(b), as a function of excitation
strength (blade’s displacement amplitude in mm) (b). The velocity
as obtained from the time of arrival of the peak amplitude is plotted
with respect to relative compression amplitude ( �ρ

ρ0
). (a,b) The limit

of linear dependence on amplitude is indicated by dotted lines.

same trend as velocity and diverges from a linear dependence
near maximum amplitude [Fig. 2(b)]. Notably, the observed
saturation of (�ρ/ρ0)max = 0.15 is approximately 20% of
the value expected from the relative compression across a
quasistatic phase transition (�ρ

ρ0
= −�a

a
= 0.75) [Fig. 1(b)].

Further increase in the excitation strength results in splitting of
the pulse (indicated by arrows) as will be discussed below. All
these factors clearly indicate that a fundamental understanding
of these processes has to be tied to the dynamic properties of
the system.

B. Positive curvature of the adiabatic state diagram

It is useful to write the curvature ( ∂2a
∂π2 )S in its nondimen-

sional form � = c4

2a3 ( ∂2a
∂π2 )s , because then it is directly related

to the well-known acoustic parameter of nonlinearity B/A as
� = B

2A
+ 1. Within a thermodynamic treatment of acoustics,

A and B are directly related to the coefficients of the isentropic
Taylor expansion for the lateral pressure π (ρ,S) [24],

πS = π0 + A

(
�ρ

ρ0

)
+ B

2

(
�ρ

ρ0

)2

+ · · · (1)

with

A = ρ0

(
∂π

∂ρ

)
S

= ρ0c0
2, B = ρ0

2

2!

(
∂2π

∂ρ2

)
S

. (2)

Furthermore, a first-order approximation for the relation
between c and �ρ/ρ0 can be written as [24,25]

c = c0

[
1 + 1

2

B

A
(�ρ/ρ0)

]
, (3)

which can be directly compared to the observed dependence of
velocity on relative compression (�ρ/ρ0) in Fig. 2(b). From
the y-intercept of the linear fit c0 = 0.236 m/s can be directly
extracted as the velocity for infinitesimal amplitude (linear
limit). Further, the slope of the fit allows the determination of
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B/A [Eq. (3)] to be 0.5 for our system and using � = 1
2

B
A

+ 1
we get � = 1.25 which indeed shows that the curvature of
the adiabatic state diagram is positive locally. However, this
is in stark contrast with the negative curvature ( ∂2a

∂π2 )T of the
isothermal state diagram (Fig. 2) at the given equilibrium state
(π = 4.3mN

m
and T = 293.15 K) and hence announces the

failure of a quasistatic approximation. In fact, we believe that
the discrepancy between the isothermal and adiabatic curva-
ture is closely related to the existence of the observed threshold
for excitation: A stable nonlinear wave front exists only
for ( ∂2a

∂π2 )s > 0 (see below). When the interface is prepared,
however, to exhibit a negative curvature in its equilibrium state
( ∂2a
∂π2 )T , only excitations, which provide sufficient power to

transfer the state of the interface from a negative ( ∂2a
∂π2 )T < 0 (in

the quasistatic limit) to a positive ( ∂2a
∂π2 )s > 0 (in the adiabatic

limit) while decoupling the interface from the bulk, will result
in the formation of stable nonlinear pulses (Fig. 3).

C. Shocks near phase transition—saturation
of amplitude and splitting

Note that a blade displacement of 1.3 mm with the
rise time of ∼5 ms gives a maximum particle velocity of
∼0.26 m/s which is comparable to the velocity of sound in
the lipid monolayer in the given state. Hence, the observed
pulses can be treated as shock waves and we can learn
from classical shock theory. Indeed, in shock compression
science ( ∂2υ

∂P 2 )S > 0 is a necessary condition for stable shocks,
which is usually satisfied as in most cases the compressibility
(∼− ∂υ

∂P
) decreases with pressure. However, the exception

( ∂2υ
∂P 2 )S < 0 can occur near a phase transition or critical points

(Fig. 3) [18,26–28].
The consequences of a discontinuous and/or negative

( ∂2υ
∂P 2 )S in the phase transition region for the stability of a shock

front have been investigated in detail, both theoretically as well
as experimentally [18,27,29,30]. One direct observable con-
sequence of ( ∂2υ

∂P 2 )S < 0, which can occur at phase transition,
is the splitting of a compressive shock into a nondispersive
forerunner wave and a slower, more dispersive condensation
wave near a phase boundary [27]. The emergence of a second
wave front can in fact already be seen in Fig. 1(a) at maximum
excitation and indicates a discontinuity within the adiabatic
state diagram.

In Fig. 4 the splitting process of the waves—indeed a very
rare phenomenon in shock science—is observed in detail. As
the pulse shape evolves, it reaches a maximum amplitude at
a distance of 7 mm followed by a decay, which as seen here
can result in splitting beginning at 9.8 mm. Post-splitting,
the forerunner wave grows at the cost of the slower, more
dispersive wave and propagates much further. This along with
the fact that the splitting is observed only during decay is
consistent with similar observations for vapor-compression
shocks in other systems near phase transitions [27]. In order
to compare their interpretation with our data it is helpful to
assume that the solitary wave profile (Figs. 1 and 4) can be
decomposed into a compression wave front, discussed below,
followed by an expansion wave front, both related via the

FIG. 3. (Color online) Representation of the phenomenon on
(π → a) state diagrams. Isothermal (dashed) and (shock) adiabatic
(solid) state changes are shown. Initially the system is at 1 (equilib-
rium) prepared right at the equilibrium phase boundary (σ ). Starting
from this point, the nonequilibrium state diagram during a pulse can
proceed along various paths determined by the blade velocity. Only
if the pulse is excited with enough power to move along a path in the
diagram of ( ∂2a

∂π2 ) > 0 (see text), does a solitary wave appear. When
observed at a fixed distance (Figs. 1 and 2) the different amplitudes
lie on the nonequilibrium adiabat as represented by the solid curve
between 1 and 2 with ( ∂2a

∂π2 ) > 0. Since the system was prepared at
the equilibrium phase boundary these adiabats extend into the
metastable (shaded) region, given the positive curvature. For Figs. 1
and 2 the end states corresponding to different amplitudes are
shown clearly in the inset. The possible initial and final states for
a given shock are shown connected by straight dotted lines (Rayleigh
lines). The slope of these lines are proportional to corresponding
shock velocities. Note that a Rayleigh line only represents the jump
condition during a shock and not an actual path on the state diagram.
The observed splitting of the pulse (Figs. 1 and 4) represents a
discontinuity in velocity and hence a discontinuity in the slope of the
Rayleigh lines [compare (1 → 2) vs (2 → 3′)]. This also indicates
crossing over the spinodal condition (Wilson line, W) or adiabatic
phase transition. If we follow a pulse in Fig. 4, its amplitude and
hence velocity decrease until the pulse eventually splits at a critical
condition represented by (1 → 2 → 3). Prior to splitting (closer to
the source) the pulse strength may be sufficient to induce a complete
phase transition (1 → 2′). Figure is not to scale. CP indicates the
critical point.

continuity condition.1 (Note: In contrast to a compression wave
front, the expansion wave front is stable for ( ∂2a

∂π2 )S < 0 [10].)
As the excitation strength is increased beyond threshold, the
interface first remains in a regime of positive curvature [hence
the increase in c shown in Fig. 2(b)]. We likely cross the
metastable regime of the phase transition (see the path in Fig. 3)

1In order to follow the lines of Thomson’s work [26–28] we imagine
our biphasic [6] shock consisting of a compression shock followed
by one of rarefaction. In this case shocks begin to “interact” and can,
for instance, weaken each other, thereby supporting splitting [27].
However, the stability of the rarefaction tail and its interaction with
the front will require further analysis and experiments, which are
outside the scope of this work and will be treated elsewhere.
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FIG. 4. (Color online) Distance dependence, evolution, and splitting. Pulse shapes are plotted at various distances from the excitation blade
(indicated on each plot in mm) for a fixed excitation displacement of 1.3 mm and equilibrium state [Fig. 1(b)]. After initial solitary propagation
up to 7 mm, the front-runner wave begin to emerge at 9.8 mm (indicated by the arrow) and is completely evolved at 12.6 mm, while the residual
wave that follows shows strong dispersion and loss of amplitude. The front-runner wave, however, continues to propagate with stable amplitude
and pulse shape for approximately another 1 cm up to 21 mm (dotted line shows stable amplitude), at which point it starts to disappear as well.
To emphasize the repeatability of these experiments pulses from three different experiments and their average is plotted.

before the termination of the path at the spinodal, W [wave
front (1 → 2) in Figs. 1 and 3] or if near the source (1 → 2′)
which then decays (Figs. 3 and 4). Eventually the wave
becomes instable and splits [(1 → 2 → 3) in Fig. 3] indicating
that a new regime of the adiabatic diagram is entered. Thus
instead of simple adiabatic heating during compression, the
large amplitude causes nucleation and a phase transition
beyond point 2 in Fig. 3 (retrograde behavior [27]). Due to the
resulting discontinuity at the spinodal line, the “combined”
wave (1 → 2 → 3) splits into a forerunner shock (1 → 2)
that propagates—in our case—with a velocity of the liquid-
expanded state and a condensation wave (2 → 3′), propagating
at a slower velocity determined by the properties of the
coexistence region of the lipid interface. The interpretation of
a pulse-induced nucleation is consistent with the simultaneous
observations of (i) a saturation of amplitude, (ii) an abrupt
change in curvature, and (iii) broadening of pulse shape
(increased dispersion), observed in Figs. 1 and 2.

It is most likely that similar waves were observed during
electrically induced critical demixing of multicomponent lipid
monolayers by McConnell et al. [31,32] and were believed
to be shock waves. In these experiments, nucleation resulting
from an electrical impulse that propagated as condensed do-
mains dispersed and dissolved rapidly. Although this nonequi-
librium phenomenon was mentioned only qualitatively, these
experiments indicate that similar phenomena can also be
observed near complex phase boundaries in multicomponent
systems and can be excited electrically at lipid interfaces.

Nonlinear behavior in terms of a relation between amplitude
and velocity has been treated theoretically in the context of
models for soliton propagation in isolated lipid bilayers [12,33]
and nonequilibrium phase transition in liquid crystals [34].
However, the dispersion relation intrinsic to such models
depends not only on state but also on boundary conditions
and/or geometry and therefore can be very different, even qual-
itatively, between a lipid monolayer at the air-water interface
and a biological membrane with all its structural complexities.
For example, by allowing a quadratic negative nonlinearity in
pressure and assuming an ad hoc positive linear dispersion,
postulated based on measurements of phase velocity in lipid
vesicles, Heimburg and Jackson derived a nonlinear wave
equation to predict a decrease in velocity and pulse width with
increasing amplitude for solitons in lipid membranes [12,35].
This is in complete contrast with the current observations in
lipid monolayers where the width and velocity increase with
amplitude indicating positive nonlinearity B/A and a highly
nonlinear dispersion [36], which is also consistent with the
phase transition [37].

We stress that the line of argument above, relating the
curvature of adiabatic state diagrams to the stability and
instability of propagating shocks, is universal. This means
it will not only hold for mono- and bilayers, but also for an
interface in a living system with all its structural complexities.
It will be exciting to see experiments on the state diagrams
of “living interfaces” and the propagation of nonlinear pulses
within them.
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FIG. 5. Heat block of the nerve impulse in squid giant axon
(data adapted from [39]). Action potentials including those in human,
animals, or even algae, can be blocked by heating the cell [40]. The
block temperature varies and can be adapted by changing growth
conditions [41]. Close to the heat block a transition from ( ∂c

∂T )P > 0
to ( ∂c

∂T )P < 0 takes place. This condition leads to an instability of the
shock wave excited near a phase transition.

An intriguing example of a negative curvature ( ∂2a
∂π2 )s < 0

in living systems may be found in nerves near temperature-
induced reversible blocks for pulse propagation (Fig. 5).
When approximating the dimensionless curvature � =
c4

2a3 ( ∂2a
∂π2 )s using Maxwell relations of a simple thermodynamic

system,2 an independent thermodynamic equation relating
B
A

(and hence �) to experimentally accessible variables can be
written as [9,38] (αT being the isothermal expansion and c̃p

the heat capacity at constant pressure)

2 (� − 1) = B

A
= 2c0

[
ρ0A

(
∂c

∂π

)
T

+ T αT

ρ0Ac̃p

(
∂c

∂T

)
π

]
. (4)

For a lipid monolayer all the variables are experimentally
accessible except ρ0A, which in fact can be calculated using
Eq. (4), allowing subsequent calculation of �π using Eq. (2)
(see Appendix). In order to estimate the curvature � for a nerve
fiber, we use the experimentally available [39,42] relations for
the bulk pressure and temperature dependence of c, i.e., ( ∂c

∂P
)T

and ( ∂c
∂T

)P . While experiments demonstrate ( ∂c
∂P

)T is usually
negative3 [42,43], the quantity ( ∂c

∂T
)P starts off positive but

gets increasingly negative as we approach the temperature
corresponding to heat block [39,44]. Indeed, negative values
of ( ∂c

∂P
)T and ( ∂c

∂T
)P imply a negative value of B/A and—if

less than −2—a negative � as well, which would lead to the
above-mentioned cessation of the shock wave.

2Here we assume a mechanical system; i.e., the state is characterized
by a, π , and T only. However, further couplings (Maxwell relations)
may play an important role, e.g., electrical (U -q), thermal (E-T ), or
chemical (μ-N ) couplings. These would alter the presented relation.

3Precise measurements of ( ∂c

∂P
)T near the heat block to clarify the

sign are currently not available. It seems plausible, however, to assume
a decrease in c with pressure even at temperatures near heat block.

In conclusion, we have demonstrated the application of
shock compression science at a soft interface near phase tran-
sition and its implications for biological systems, especially
nerves. In particular we extracted the curvature ( ∂2a

∂π2 )s of
the adiabatic state diagram from solitary waves observed in
lipid monolayers and tied it to the observations of excitation
threshold, amplitude saturation, and stability of solitary waves
(against splitting). Since this is an attempt to apply shock com-
pression science to soft interfaces, several questions remain
open and there are predictions to be tested: For example, our
approach predicts the culmination of metastable regimes into
a critical point near heat block in nerves [11,45]. Furthermore
the saturation in amplitude, which in our case originates from
crossing over the spinodal condition, should correspond to
a similar phase transition in nerve pulse propagation, which
remains to be confirmed [46]. Another aspect arises from the
fact that optomechanical coupling deserves some attention, as
the calibration is done for the isothermal case [20]. Obviously
the interpretation of the experiments in the present work has
been intentionally oversimplified, as for a more quantitative
description further analysis, both theoretical and experimental,
is required. Insights will arise from challenging the quasi-2D
nature of the propagation, as the role of thickness of the
hydration layer as well as its interaction with the bulk or
other interfaces nearby needs to be investigated. In addition,
the coupling of further thermodynamic variables (lipid dipole,
bulk pH, charge) and the role of boundary conditions will
be important for a deeper understanding of these pulses in
biology.4 This would also lead to a better understanding
of dissipation in our system, since even though we find
regimes where the pulse can cover significant distance with
constant amplitude and width (Fig. 4), dissipation of our
solitary waves remains to be a crucial unresolved issue when
comparing them to nerve impulses. Finally the interaction
of propagating shock waves with the complex chemistry of
biological interfaces (e.g., enzymes) might lead to alternative
mechanisms for biochemical processes in cells that can now be
studied systematically [47]. We believe this work opens doors
for the physics community to contribute to life sciences—in
particular, we imagine, to the understanding of inter- and
intracellular communication by combining nonlinear acoustics
and the physics of critical phenomena at interfaces.
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APPENDIX

It is assumed that the lipid monolayer along with a
few hydration layers forms the propagation medium that is
adiabatically decoupled from the bulk. Hence ρ0A with its
dimensions of kg/m2 essentially represents the mass of this
medium projected on a 2D interface. In order to calculate ρ0A

we employ the following independent thermodynamic relation
for B/A:

B

A
= 2c0

[
ρ0A

(
∂c

∂π

)
T

+ T αT

ρ0ACp

(
∂c

∂T

)
π

]
. (A1)

While B/A is known from the experimental amplitude-
velocity relation, all the other parameters are accessible except
ρ0A. For example, the state π = 4.3 mN/m and T = 293.15 K

corresponds to the edge of the transition region and we
have previously shown [5] that velocity decreases from 0.4
to 0.2 m/s on increasing pressure by 1 mN, giving �c

�π
=

−0.2 m/mN s at constant T. An increase in temperature at
constant pressure, on the other hand, moves the system away
from the transition region resulting in an increase in velocity,
here found experimentally to be �c0

�T = 0.009 m/K s at con-
stant π = 4.3 mN/m. Finally, the phenomenon takes place
across a LE-LC phase transition, allowing the approximation
T αT

ρ0Cp
= dTtr

dπtr
[48] (the subscript indicates that the pressure and

temperature are taken at the transition). Plugging in the values
gives ρ0A = 0.012 kg/m2, completing the equation of state,
Eq. (1), defined locally for π = 4.3 mN/m T = 293.15 K. As
a result, �π can be calculated and is found to be 0.12 mN/m,
which is in good agreement with the previously reported values
of pressure pulses in the transition region [5]. Note that the
obtained value of ρ0A is a gross overestimate of the actual
value as it also accounts for charge-dipole effects that have
been completely ignored in Eqs. (1) and (A1).
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