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Analytical results for cell constriction dominated by bending energy
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Analytical expressions are obtained for the main magnitudes of a symmetrically constricted vesicle. These
equations provide an easy and compact way to predict minimal requirements for successful constriction and its
main magnitudes. Thus, they can be useful for the design of synthetic divisomes and give good predictions for
magnitudes including constriction energy, length of the constriction zone, volume and area of the vesicle, and the
stability coefficient for symmetric constriction. The analytical expressions are derived combining a perturbative
expansion in the Lagrangian for small deformations with a cosine ansatz in the constriction region. Already
the simple fourth-order (or sixth-order) approximation provides a good approximation to the values of the main
physical magnitudes during constriction, as we show through comparison with numerical results. Results are for
vesicles with negligible effects from spontaneous curvature, surface tension, and pressure differences. This is the
case when membrane components generating spontaneous curvature are scarce, membrane trafficking is present
with low energetic cost, and the external medium is isotonic
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I. INTRODUCTION

Cell division involves membrane constriction forces form-
ing a saddle-shaped neck that separates the two lobes that
eventually pinch off to produce the two daughter cells [1–4].
The mechanics of cell constriction is a crucial problem of
bioenergetics that directly deals with the membrane forces
required to distort the cell along a stable cytokinetic pathway
[5–8]. In the simplest model, the whole cell is depicted as a
membrane vesicle where bending forces produce constriction
of an initial sphere into a deformed two-lobed configuration.
When only bending forces, but not membrane tension or
turgor forces, are considered, the model describes a growing
cell membrane that is able to exchange lipid material with
its metabolic reservoir and is osmotically controlled into
the tensionless state, a set of conditions compatible with
the dividing cell. In a previous paper [9] the energetics
of constriction were calculated by following a variational
approach to the minimization problem of the bending energy
in the case of the tensionless and turgor-free vesicle. As
variational proof functions we take linear combinations of
trigonometric functions, the vesicle shapes were optimized by
minimizing the bending energy along a continuous constriction
pathway defined as the monotonic decrease of the neck
radius. From that approach, the constriction forces and the
optimal geometrical parameters were calculated from the
minimal variational energies along the constriction pathway.
Amazingly, the zeroth-order variational solution selected was
revealed to be extremely efficient in approaching the exact
solution in a broad range of membrane constrictions from the
initial spherical state. Based on that result, we decided to take
advantage of such solutions as an ansatz and compute the
constriction perturbative orders in a framework from which
analytic expressions to the more relevant properties such as
constriction zone length Lm, bending energy, surface area, and
volume can be derived. These analytic expressions are given
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in terms of the scaling parameters that define the geometry
of the constriction neck, namely, the maximum radius Rm

and the constriction ratio s = (Rm − Rc)/Rm (see Fig. 1). In
this paper we obtain a set of analytic formulas that, already
at leading order, accurately describe the bending energetics
in the limit of small constrictions. The dominant terms are
obtained as power laws of the radial constriction s with
amplitudes depending on the other system parameters. The
perturbative expansion provides us with progressively accurate
approaches to the exact values of the relevant properties.
The exact values are calculated as the numerical solutions
of the corresponding Euler-Lagrange equations to determine
the accuracy of the analytical results. We present three
paradigmatic cases: the constant maximum radius, the constant
volume, and the constant area. Constriction at a constant
maximum radius resembles the conditions encountered in
rod-shaped cells with a cell wall as in E. Coli (if additional
invariable cylindrical membranes are added to each side of the
constriction region) [3,10]. Constriction at a constant volume
resembles the conditions encountered in cells without a cell
wall and with intense membrane trafficking (which allows
them to produce the additional area required under these
conditions) [11–14]. Constriction at a constant area resembles
the conditions that will take place for a cell that has some
disturbance that inhibits membrane trafficking [15–17]. (In
addition, rescaling of the results will also allow one to obtain
the values of magnitudes along any pathway of volume or
area changes during constriction.) The results are discussed
from a biological perspective in the context of the physical
mechanisms underlying the common mechanical pathways of
cell division.

II. METHODS

A. Elastic energy of a tensionless vesicle: Bending Hamiltonian

Changing the shape of a spherical vesicle from its
equilibrium configuration is a nonspontaneous process that
requires an input of energy. In the minimal description, in the
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FIG. 1. (Color online) (a) Profile R(x) of an axisymmetric and
symmetrically constricted vesicle and its characteristic parameters.
(b) Surface resulting from the revolution around the x axis of the
previous profile R(x).

absence of tensional fields on the membrane, the energy of
the vesicle deformations is assumed to exclusively involve
bending elasticity of a two-dimensional sheet, particularly
contributions from mean and Gaussian curvatures [5]

Eb = Em + EG = 1

2
κ

∫
(C1 + C2 − C0)2dA

+ κG

∫
C1C2dA. (1)

In this equation κ is the bending modulus, κG is the Gaussian
bending rigidity, � is the surface that defines the membrane,
dA is its element of area, C1 and C2 are its local principal
curvatures, and the parameter C0 is the spontaneous curvature
(which effectively accounts for possible asymmetries in the
membrane structure between the inner and the outer sides).
In the case C0 = 0, the membrane in the flat configuration
defines the absolute minimum of bending energy. In the
particular case of the sphere (C1 = C2 = 1/R0), the bending
energies are E

(sph)
m = 8πκ and E

(sph)
G = 4πκG for the mean

and Gaussian contributions, respectively. In general, any
change of the membrane shape makes the total bending
energy in Eq. (1) vary. However, the integrated Gaussian
curvature [the second term in Eq. (1)] is invariant under
shape changes that do not change topology, as stated by the
Gauss-Bonet theorem [5]. Since the constriction process in
a sphere does not change its topology and only involves
shapes that are topologically equivalent to the initial sphere
(for s < 1), the integrated Gaussian energy remains constant
at EG = E

(sph)
G = 4πκG, independently of the size and shape

of the system. Consequently, to analyze the mechanics of
constriction we must just deal with the variations of energy
due to changes in mean curvature Em, which is independent
on the size of the system for zero spontaneous curvature
C0 = 0. In the special case of surfaces of revolution with a
rotation symmetry axis along x, if the surface is represented

in Cartesian coordinates as r = [x,y,h(x,y)], where h(x,y)
represents the surface profile as an height over the x − y plane,
one gets

h(x,y) = ±
√

R2(x) − y2, (2)

with R(x) being the functional form describing the membrane
profile in the x-z plane. For this parametrization, the mean
curvature of this surface becomes

C1 + C2

2
= RxxR − 1 − R2

x

2R
(
1 + R2

x

)3/2 . (3)

Note that this result is independent of the coordinate y, as
corresponds to rotational symmetry around x. The element of
area is

dA = R

√
1 + R2

x

R2 − y2
dxdy. (4)

Consequently, once the membrane profile R(x) is known
between the two extremes xi and xf , the bending energy for
the surface of revolution is given by

Em(xi,xf ) = πκ

∫ xf

xi

Km(x)dx, (5)

with

Km(x) =
(
1 + R2

x − RxxR
)2

R
(
1 + R2

x

)5/2
. (6)

The vesicle takes the shape that minimizes this bending
energy Em (up to thermal effects). In this paper, we restrict
the study to the case of zero spontaneous curvature C0 = 0,
negligible tension � = 0, and no pressure difference between
internal and external environments �p = 0. Thus, the bending
energy becomes size invariant, a property that simplifies the
calculations drastically, as it implies no dependence of the
bending energy on the system size. This means that once
we have determined the shape that minimizes the energy, its
transformation under an overall dilatation leads to a shape
that has the same energy and also minimizes the energy. This
property will be very useful in this paper. Indeed, it allows
one to recall that under an overall dilatation, i.e., x → λx and
R → λR, the area is transformed as A → λ2A and the volume
as V → λ3V .

B. Perturbative method

In the present problem, an initially spherical vesicle is
deformed under a radial force exerted as a constriction ring at
its equator. Then a saddle-shaped neck is formed, separating
two quasispherical lobes (see Fig. 1). As constriction proceeds,
the neck progressively narrows and the vesicle lobes evolve
up to final binary fission into two separate daughter spheres.
We will take advantage of the perturbative method to get
approximate formulas of the elastic energy corresponding
to the constricted configurations calculated with respect to
the unconstricted (i.e., unperturbed) configuration [18]. Our
unconstricted initial configuration is a sphere of radius Rm, so
constriction is assumed to proceed by keeping this maximum
radius Rm constant (see Fig. 1). This can be realized if the
deformation effect of the contents of the vesicle (or cell) is
represented as an effective line tension towards the exterior σm,
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which keeps the maximum radius Rm constant. This requires
the two polar caps to be hemispheres of radius Rm during
the whole constriction process, thus they do not change their
bending energy. Therefore, all bending energy changes arise
from the central constriction region that changes from Rm to a
profile Rc(x,s), where the variable

s = (Rm − Rc)/Rm (7)

defines the constriction ratio (s ∈ [0, 1]), i.e., the ratio between
the maximum radius Rm and the constriction radius Rc (see
Fig. 1). The constriction profile R(x) ≈ R0(x,s) provides us
with the respective derivatives Rx and Rxx needed to compute
the integrand Km [Eq. (6)] of the energy. In order to apply
the perturbative method, it is convenient to define the small
deformation function

u(x,s) = Rm − R0(x,s). (8)

The function Km{u[f (x)]} can now be expanded in terms of
the small deformation u (x,s) and of its first- and second-order
derivatives (ux,uxx), which depend on the x coordinate and
the constriction ratio s and can, in general, be calculated as
a function of the scaling parameters Rm and Lm. In order to
calculate the elastic energy, the function Km is expanded up to
the nth order of perturbation

Km[f0(u)] ≈ K0 + K1ui + K2u
2
i + · · · + Knu

n
i + o

(
un+1

i

)
.

When this simplified integrand is included as the kernel of
the elastic energy in Eq. (6) and the integration is performed
between the two extremal limits defining the complete surface
(xi = 0 and xf = Lm; see Fig. 1), the resulting expression
can be minimized, giving a Euler-Lagrange equation for u,
analogously to the computation in Ref. [18].

If an appropriate ansatz is additionally assumed for R0(x,s)
in the interval [0,Lm], the integrand becomes simpler and
approximate analytical expression for the energy can be
obtained. The energy Em = Em(s,Lm,Rm,κ) depends on the
mechanical parameter κ (the bending energy), on the size-
scaling parameter Rm (the maximum radius), and on the
variational parameters introduced by the ansatz, in our case
only Lm (the length of the constriction region). Finally, energy
minimization with respect to Lm provides its optimal value for
a given constriction ratio s (recall that Rm stays constant along
constriction),[

∂Em(s,Lm,Rm,κ)

∂Lm

]
s

= 0 ⇒ Lm = L(opt)
m (s). (9)

This condition determines the approximate expression for
the energy Em = Em(s,L(opt)

m (s),Rm,κ) as a function of the
constriction ratio and the system parameters Rm and κ . With
this result for L

(opt)
m (s), approximate expressions for other

magnitudes such as the area and volume can be obtained by
performing a similar perturbative expansion for the integrands.
These expressions have the form of a perturbative expansion
for small constriction ratio s, as small deformations u imply
small constriction ratio s.

C. Exact numerical solution: Euler-Lagrange equations

Another way to get the shapes of minimal energy of
a vesicle during the constriction process is to numerically
solve the corresponding Euler-Lagrange equations. General
methods have been developed to calculate the equilibrium
shapes of vesicles under different conditions. Here we follow
the methodology in Refs. [19,20] and apply it to axisymmetric
shapes stressed upon equatorial constriction, while the max-
imum radius remains constant. (See Appendix A for a brief
summary of the numerical procedure.)

Maintaining the boundary conditions of radii Rm and Rc

requires line tensions σm and σc, respectively. They act in
opposite directions: Increasing σc forces Rc to decrease, thus
increasing constriction, which requires an increase of σm to
maintain constant Rm during the constriction process. Once
the line tensions are known, the energetics of the system can
also be addressed. For example, the energy due to line tension
at the site of constriction will be

Eσc
= 2πRcσc, (10)

a relationship that will be used below to calculate the forces
exerted along the constriction process.

III. RESULTS

A. Tensionless vesicle with no spontaneous curvature

We obtain the perturbative expansion for the tensionless
vesicle (� = 0) without pressure differences (�p = 0) and
for zero spontaneous curvature (C0 = 0). In this case the only
contribution to the energy is given by the mean curvature with
C0 = 0 [Eqs. (5) and (6)]. Since ux = −Rx , uxx = −Rxx by
the definition made in Eq. (8), the Taylor expansion up to tenth
order of the integrand kernel of the mean curvature energy
[Eq. (6)] reads

Km(u,ux,uxx ; Rm) ≈ 1

Rm

u0 + 1

R2
m

u + 2uxx + 1

R3
m

u2 − 1

2Rm

u2
x + Rmu2

xx + 1

R4
m

u3 − 1

2R2
m

uu2
x − uu2

xx − 3u2
xuxx + 1

R5
m

u4

− 1

2R3
m

u2u2
x + 3

8Rm

u4
x − 5Rm

2
u2

xu
2
xx + 1

R6
m

u5 − 1

2R4
m

u3u2
x + 3

8R2
m

uu4
x + 5

2
uu2

xu
2
xx + 15

4
u4

xuxx

+ 1

R7
m

u6 − 1

2R5
m

u4u2
x + 3

8R3
m

u2u4
x − 5

16Rm

u6
x + 35Rm

8
u4

xu
2
xx + 1

R8
m

u7 − 1

2R6
m

u5u2
x + 3

8R4
m

u3u4
x

− 5

16R2
m

uu6
x − 35

8
u6

xuxx − 35

8
uu4

xu
2
xx + 1

R9
m

u8 − 1

2R7
m

u6u2
x + 3

8R5
m

u4u4
x − 5

16R3
m

u2u6
x + 35

128Rm

u8
x
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− 105Rm

16
u6

xu
2
xx + 1

R10
m

u9 − 1

2R8
m

u7u2
x + 3

8R6
m

u5u4
x − 5

16R4
m

u3u6
x + 35

128R2
m

uu8
x + 105

16
uu6

xu
2
xx

+ 315

64
u8

xuxx + 1

R11
m

u10 − Rm

2R9
m

u8u2
x + 3

8R7
m

u6u4
x − 5

16R5
m

u4u6
x + 35

128R3
m

u2u8
x − 63

256Rm

u10
x

+ 1155Rm

128
u8

xu
2
xx + o

(
u11

i

)
. (11)

In a previous paper [9], using a variational approach to
describe constriction mechanics, families of shape functions
were proposed to describe the constriction region for � = 0,
p = 0, and C0 = 0. The assumed zeroth- order function family
was [9]

R0(x,s) = Rm

{
1 − s

2

[
1 + cos

(
πx

Lm

)]}
, (12)

where Rm is the maximal radius and Lm is the longitudinal
distance between the center of the constriction neck (where
the origin is placed) and the position where the radius is
maximal. This simple zeroth-order family has proven to give
good approximations for low constriction in a variational
framework [9].

Here we combine this simple shape expression with the per-
turbative results to obtain approximate analytical expressions.
Thus, we substitute

u(x,s) = Rm − Rc(x,s) = (Rm/2)s[1 + cos(πx/Lm)]

in Eq. (11). Then, integrating the resulting kernel between
xi = 0 and xf = Lm,

Em(s,Lm) ≈ 2πκ

∫ Lm

0
Km[u(x,s),Rm]dx, (13)

we obtain an approximate analytical expression for the bending
energy, which does not depend on the vesicle size (Rm cancels
out after integration, in the case of C0 = 0, p = 0, and � = 0).

1. Neck dimensions

After integration, the bending energy is minimized with
respect to Lm [see Eq. (9)]. This allows one to obtain the
analytical expression for the optimal dimensions that define
the shape of minimal bending energy for each constriction
stage, characterized by s. The perturbative expansion for the
optimal value of Lm(s) takes the explicit form

Lm(s)

Rm

≈ π61/4

2

√
s

[
1 − 144 + 31

√
6

576
s

− 4327 + 1488
√

6

110 592
s2 − · · ·

]
, (14)

which, for simplicity, is written here as the leading term
scaling as Lm(s)/Rm ∼ s1/2 multiplied by the corresponding
terms only up to fourth order in the perturbative expansion
of the energy integrand (see Appendix B for higher-order
expressions).

The leading term describes the small constriction region
(s → 0) and is found to scale as Lm (s) /Rm ≈ α0s

1/2, with
a size-invariant coefficient characterized by a dimensionless

amplitude α0 = 61/4π/2 ≈ 2.46. Higher terms are straightfor-
wardly obtained by extending the Taylor expansion for small u
in the energy integrand. The expansion coefficients are found to
decrease strongly with the order of their term, which makes the
series expansion rapidly convergent. This rapid convergence of
the series and the comparison of the different orders with exact
results [see Fig. 2(a)] confirm the robustness and stability of the
present perturbative approach. Figure 2(a) shows a graphical
plot of the s dependence of the perturbative formula in Eq. (14).
The asymptotic leading term accurately describes the regime
of small constrictions (Lm/Rm ≈ 2.46s1/2 at s � 0.1), while
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FIG. 2. (Color online) (a) Aspect ratio of the constriction re-
gion Lm/Rm as a function of the stage of constriction given by
the constriction ratio s. Comparison of the exact results from
numerical computations with the approximate results from the
zeroth-order variational approximation and for analytical expressions
obtained from several orders of perturbation for small deformations.
(b) Validity of the results for Lm/Rm assuming a numerical solution
as the exact solution. Each color represents a different order of
the perturbative expansion for the analytical expression for Lm, as
represented in Fig. 3(a). Thick lines show the limit values of s where
these approximations can be used within an error lower than 5%
(compared with numerical results). Outside these ranges of s, the
maximum error is indicated in percentages.
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higher perturbative terms contribute with negative compo-
nents that approach the exact solution through a monotonic
convergence. The exact result given by the numerical solution
of the Euler-Lagrange equations (see the method described
in Sec. II C for the case of �p = 0, � = 0, and C0 = 0) is
represented for comparison.

In Fig. 2 the analytical expressions for different orders
are observed to rapidly and monotonically converge to the
zeroth-order variational result, which, for this magnitude,
gives a good result when compared to the exact result found
numerically. The quantitative fitness of the approximation is
shown in Fig. 2(b), which plots the range of validity of each
order of the analytic expression and compares their overall
degree of agreement with respect to the exact solution. The
fourth-order expression describes (with 95% agreement) the
exact solution up to constrictions as large as s � 0.8, its
maximal error being lower than 20% in describing the whole
constriction path. Such a strong convergence is due to the
high reliability of the ansatz used [see Eq. (12)], which is
extremely efficient in describing the exact result, as evidenced
when barely introduced in a variational schema [see Fig. 2(a),
black line] [9]. For low constriction, Lm/Rm ≈ 2.5s1/2 �
s = (Rm − Rc)/Rm, i.e., the length of the constriction region
grows faster than the constriction depth. Thus the present result
indicates an initial large longitudinal dilation due to localized
equatorial constriction.

2. Bending energy and constriction force

Once the parameter Lm that minimizes the energy has
been calculated [Eq. (14)], its value can be substituted in
the equation for the bending energy [Eq. (13)], obtaining the
approximate analytical formula for the increase in bending
energy due to constriction

�Eb

8πκ
≈ π61/4

6

√
s

[
1 + 48 − 11

√
6

192
s

+ 7439 − 1584
√

6

36 864
s2 − · · ·

]
, (15)

where �Eb = Em(s) − Em(s = 0) with Em(s = 0) =
E

(sph)
m = 8 πκ . This expression is up to fourth order in the

perturbative expansion; higher-order formulas are collected
in Appendix B. The results for the bending energy are
graphically compared in Fig. 3.

The leading term at low constriction (s < 0.1) in the analyt-
ical expression �E

(0)
b /8πκ ≈ (61/4π/6)s1/2 has the same s1/2

scaling as the exact result (numerical solution), as shown by the
double-logarithmic plot (see the inset in Fig. 3). This indicates
that the leading term in the analytic solution closely describes
the exact solution, at least at low degrees of constriction.
This leading term indeed gives good predictions at the low-
constriction regime (s < 0.3) with errors smaller than 10%.
Even for higher constrictions, the leading-order expression
gives good order of magnitude estimates, with a maximum
final value similar to the bending energy of the initial sphere,
which is �Eb /E

(sph)
m = 61/4π/6 = α0/3 ≈ 0.82 for s → 1.

Incidentally, the fourth-order perturbation written in Eq. (15)
nearly matches the exact value, predicting the doubling of the
bending energy, i.e., �Eb /E

(sph)
m ≈ 1 for s → 1. As expected,
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FIG. 3. (Color online) Bending energy increase as a function of
the stage of constriction given by the constriction ratio s. (The value
of the mean curvature contribution to bending energy in a sphere is
in units of 8πκ .) Comparison of the exact numerical results with the
approximate zeroth-order variational results and several orders of the
analytical expressions obtained through perturbative methods plus an
ansatz. The top left inset shows numerical results on a logarithmic
scale to stress the leading-order scaling with the constriction ratio s,
which agrees with the prediction of the leading-order (second-order)
analytical expression.

higher-order expressions for the energy converge to the energy
curve obtained with the zeroth-order variational solution in
Eq. (12) (see Fig. 3). Basically, the formulas obtained are
accurate to analytically describe the energy corresponding to
the zeroth-order variational results in Ref. [9]. More accurate
solutions for the bending energy in the high-constriction
regime (s > 0.65) should require solutions more precise than
Eq. (12), i.e., a better accounting for the strong changes
of curvature occurring in the constriction region. However,
incidentally the fourth-order analytical expression is better for
this magnitude, the bending energy, than its corresponding
zeroth-order variational solution.

It is worth mentioning the doubling of the bending energy
existing at maximal constriction (�Eb /E

(sph)
m →1 at s →

1). It implies that the mean curvature contribution to the
bending energy is that of two spheres. However, we recall
that an additional Gaussian curvature energy contribution of
4πκG ≈ 100kBT , due to the change in topology involved, will
be needed to split the maximal constricted vesicle into two
spherical ones [21].

As far as the bending energy is known as a function of the
constriction rate, the constriction force can be calculated as

Fc ≡ −dEm

dRc

= −dEm

ds

ds

dRc

= 1

Rm

dEm

ds
. (16)

Thus, the analytic formula for the constriction force can
be obtained in a straightforward way as the derivative of the
bending energy with respect to the constriction ratio

Fc(s) ≈ 2π261/4

3

κ

Rm

1√
s

[
1 +

(
48 − 11

√
6

64

)
s

+ 5

(
7439 − 1584

√
6

36 864

)
s2 − · · ·

]
. (17)
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FIG. 4. (Color online) Constriction force Fc (in units of Rm/κ)
at all stages of constriction. Comparison of the exact numerical
results with the approximate zeroth-order variational results and the
analytical expressions obtained with several orders of perturbative
expansion. Plotted are Fc ≈ 2πσc, where σc is the line tension at the
constriction site (numerically computed), and 4πσm, where σm is the
line tension at the maximum radius site (numerically computed). (For
the procedure for the numerical computation of the line tensions see
Appendix A.)

This expression is written up to fourth order in the per-
turbative expansion of the energy integrand (for higher-order
expressions see Appendix B). As expected from a dimensional
argument, constriction forces with an amplitude of the order of
κ/Rm are predicted by Eq. (17). The dominant term is found
to scale as Fc ∼ (κ/Rm)s−1/2, i.e., the smaller the vesicle, the
higher its bare curvature and thus the higher the force required
for a given constriction.

The fourth-order formula describes accurately the results
up to s = 0.9. Higher-order terms, however, introduce larger
errors in the description of the constriction forces, as expected
from convergence towards the zeroth-order variational
solution at high constriction (analogous to the results for
bending energy).

As described in Appendix A, Fig. 4 also shows Fc ≈
2πσc = dEσc

/dRc (in units of Rm/κ), where Eσc
is given

by Eq. (A1) and the line tension σc is computed from the
jump in γ at the constriction site in the numerical computation
(A4). This shows the consistency of the two ways of computing
the constriction force. The line tension to keep the maximum
radius σm is also shown and we found −2σm � σc.

3. Vesicle area and volume during constriction

The perturbation approach has provided us with an analyt-
ical formula for the dimensional ratio Lm/Rm from which the
relevant vesicle dimensions can be calculated, particularly the
membrane area and the volume enclosed. Let us start with the
membrane area. For a given shape R(x), the area sustained by
its revolution surface around the x axis is given by

A = 2π

∫ xf

xi

R

√
1 + R2

xdx. (18)

In order to apply the perturbation method, we operate
similarly as with the bending energy: R(x) is replaced by

the small-u(x) variable [Eq. (8)] and the integrand in Eq. (18)
is expanded in a Taylor series in u(x) up to sixth order:

R

√
1 + R2

x ≈ Rm − u + Rm

2
u2

x − 1

2
uu2

x − Rm

8
u4

x + 1

8
uu4

x

+ Rm

16
u6

x − 1

16
uu6

x − 5Rm

128
u8

x + o
(
u9

i

)
. (19)

Then the cosine ansatz for the shape [Eq. (12)] is replaced
and integration is performed between the limits xi = 0
and xf = Lm, with Lm given by Eq. (14). Assuming a
constant maximum radius Rm, the increase of area during
constriction is

�A(s)

A0
≈ π61/4

2

√
s

[
1 − 432 + 7

√
6

576
s

+ 10 121 + 336
√

6

110 592
s2 + · · ·

]
, (20)

where �A(s) = A(s) − A(s = 0) with A(s = 0) = A0 =
4πR2

m. This expression is of fourth order in the perturbative
expansion and a higher-order formula can be found in
Appendix B.

The result in Eq. (20) establishes a direct relation between
the longitudinal elongation of the vesicle and its membrane
dilation. In the asymptotic regime, at small constriction, the
dominant term in Eq. (20) equals that of the optimal Lm/Rm

ratio given by Eq. (14), which is �A/A0 = Lm/Rm at s → 0.
This means that a near-cylindrical neck with length 2Lm is
formed at the initial stages of constriction; in that case, one
expects a relative increase of area (�A/A)cyl = (2πRm) ×
(2Lm)/4πR2

m = Lm/Rm, as quoted. Figure 5 shows the ac-
curacy of the approximate analytical result for the membrane
dilation required for constriction with constant Rm. In this case,
although the leading-order (second-order) expression only
gives good results for very small constrictions (s � 0.075),
the fourth-order expression greatly improves convergence (see
Fig. 5). As expected from previous features, higher-order
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Analytical 4th order

Analytical 6th order
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FIG. 5. (Color online) Relative change in area �A(s)/A0 versus
constriction ratio s along the whole path of constriction keeping
constant the maximum radius Rm. Comparison of the exact numerical
results with the approximate zeroth-order variational results and the
analytical expressions obtained with several orders of perturbative
expansion.
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perturbative expressions converge to the variational solution,
but do not describe better the exact result at high constrictions
(s > 0.5).

A similar calculation can be performed to evaluate the
increase of volume occurring upon constriction at constant
maximum radius Rm. For a surface of revolution, the enclosed
volume is given by

V = π

∫ xf

xi

R2 dx. (21)

If the integrand is expressed in terms of the small
variable u[R(x)], then one obtains the exact formula R2 =
(Rm − u)2 = u2 − 2Rmu + R2

m. Replacing it in Eq. (21) and
doing the integration between the limits xi = 0 and xf = Lm,
with Lm given by its expansion in Eq. (14), one gets the
following analytic expression for the increase of volume

�V (s)

V0
≈ 3π61/4

4

√
s

[
1 − 31

√
6 + 720

576
s

+ 4464
√

6 + 64 793

110 592
s2 + · · ·

]
, (22)

where �V (s) = V (s) − V (s = 0) with V (s = 0) = V0 =
4πR3

m/3. (As for other magnitudes, this is a fourth-order
perturbation expression; a higher-order formula can be found
in Appendix B.)

Analogously to the other dimensional properties, a
�V/V ∼ s1/2 scaling is found for the increase of volume
of the vesicle inflated under the action of the constriction
deformation. From a comparison of the amplitudes of the
dominant terms, the following mutual proportionality re-
lationship can be stated among the different dimensional
properties: �A/A = 2

3 (�V/V ) = Lm/Rm at s → 0. Again,
assuming the formation of a cylindrical neck of length 2Lm at
small constriction, one expects a relative increase of volume
(�V /V )cyl = (πR2

m) × (2Lm)/(4πR3
m /3) = 3

2 (Lm /Rm), as
found.
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FIG. 6. (Color online) Relative change in volume �V (s)/V0

along the whole path of constriction keeping constant the maximum
radius Rm. Comparison of the exact numerical results with the approx-
imate zeroth-order variational results and the analytical expressions
obtained with several orders of perturbative expansion.
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FIG. 7. (Color online) Excess of surface area δa along the con-
striction pathway. Comparison of the exact numerical results with
the approximate zeroth-order variational results and the analytical
expressions obtained with several orders of perturbative expansion.

Figure 6 shows the results for the analytic perturbative
expressions corresponding to the volume increase. As with
membrane dilation, the low-constriction regime described by
the leading term is quite small (s � 0.075). The fourth-order
perturbation [all terms in Eq. (22)] matches quite accurately
the exact result (6% maximal error in describing the whole
constriction pathway; see Fig. 6), even qualitatively describing
the reduction of volume increase observed when approaching
large constrictions (s → 1). Higher order converges to the
variational limit, but underestimates the volume increase even
at relatively low constrictions (s � 0.5).

An interesting way of relating the increase in area and
volume is to show the excess of surface area (see Fig. 7).
The excess of surface area δa can be defined as the relative
amount of surface area in excess of the minimal area required
to enclose the volume of the vesicle, which is the surface area
of the sphere with the same volume Asph(V ). Thus,

δa = A(s) − Asph(V (s))

Asph(V (s))
, (23)

with Asph(V ) = 62/3π1/3V 2/3. The accuracy of the results with
the different approximations is the same as for the area
and volume, the magnitudes from which it is derived. An
interesting observation is that for high constriction, the amount
of excess area approaches the value expected for a vesicle
with the area and volume of two spheres of radius R0, i.e.,
A2sph = 2(4πR2

0) and V2sph = 2(4πR3
0 /3), which implies

δa = 2
(
4πR2

0

)
62/3π1/3

{
2
[
(4π/3)R3

0

]}2/3 − 1

= 21/3 − 1 = 0.26 = 26%,

in agreement with the limit of the exact numerical result in
Fig. 7.

In terms of geometry, the previous results hold for shapes
with the constraint to maintain the maximal radius Rm

constant. However, other conditions such as constant area or
constant volume could be additionally considered. In these
cases, a redimensioning strategy can be addressed, as described
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in previous work [9] defining a rescaling parameter λ as

λA(s) =
[

4πR2
0

A(s)

]1/2

(24a)

if the area remains constant or as

λV (s) =
[

4πR3
0/3

V (s)

]1/3

(24b)

if the volume remains constant. In these expressions, R0 is
the radius of the initial sphere with no constriction (s = 0).
Now, in these cases, the parameter Rm 
= R0 varies along the
constriction pathway as

Rm(s) = λA(s)R0 (25a)

or as

Rm(s) = λV (s)R0 (25b)

in the constant area or constant volume constriction cases,
respectively. For all the expressions, the subscript indicates
what is kept constant. Note that at low constriction (limit s →
0), Rm = R0 for all of these cases. These rescaling parameters
give the area during constant volume constriction as

AV (s) = λ2
V (s)ARm

(s) (26a)

and the volume during constant area constriction as

VA(s) = λ3
A(s)VRm

(s), (26b)

with area ARm
and volume VRm

. The results for constriction at
constant maximum radius Rm are given by the expressions in
Eqs. (20) and (22), respectively.

Figure 8 compares analytical, variational, and exact (nu-
merical) results. It shows that only sixth-order analytical
expressions give good estimations for all constrictions. It is
important to clarify that these analytical expressions for λA

and λV are obtained just using the corresponding analytical
expressions for the area A and the volume V in Eqs. (24a)
and (24b), respectively.

We recall from Ref. [9] that to change from one sphere to
two spheres while keeping the same area requires a decrease
in volume that gives V/V0 = 1/21/2 ≈ 0.71; if the change is
made while keeping the volume constant the increase in area
gives A/A0 = 21/3 ≈ 1.26. These arguments are in agreement
with the values found in Fig. 8 for maximum constriction
s = 1. However, these are extremal cases, and constant volume
constriction is a closer idealization of the usual cytokinesis
where intense membrane trafficking is known to play a relevant
role [13,14], while constant area constriction could be an
idealization of cases where membrane trafficking is inhibited,
for example, through heat shocks [15,16]. The excess of
surface area is dimensionless and therefore it is scale invariant,
having the same values for all three cases of constriction
(constant maximum radius, constant volume, and constant
area), which we have considered.

4. Stability coefficients

Once geometry and energetics have been considered, we
will address the question of the instability of the symmetrical
constriction by calculating analytic expressions for the stability
coefficients whose general definitions were previously given
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FIG. 8. (Color online) (a) Variation of area A (s) /A0 along the
constriction pathway maintaining constant volume. (b) Variation
of volume V (s) /V0 along the constriction pathway keeping the
area constant. Comparison of the exact numerical results with
the approximate zeroth-order variational results and the analytical
expressions obtained with several orders of perturbative expansion.

in Ref. [9]. The stability of a shape can be measured by
introducing small changes on it and comparing its energy
with the original one. When the constriction is equatorially
symmetric, the constriction ring can be displaced a length �x

to give an asymmetrical shape (maintaining constant area or
volume with respect to the symmetrical form). In terms of
energy, this new shape can be expressed as

Easym(s) ≈ Esym(s) + kV

(
�x

R0

)2

, (27)

where R0 is the radius of the corresponding sphere (at s → 0,
R0 = Rm) and kV the stability coefficient with units of energy
(kV for constant volume and kA for constant area). Since
Em, Lm/Rm, V , and A are involved in their expressions, we
will take advantage of the corresponding analytic formulas
obtained here from the perturbative expansion to insert them
in the general expressions for the coefficients. For instance,
maintaining constant volume, the stability coefficient kV in
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Eq. (27) is given by [9]

kV = − R2
0

2(1 + ∂Lm/∂Rm)2

[
∂2Em

∂R2
m

− ∂Em

∂Rm

(
∂2V

∂R2
m

/
∂V

∂Rm

)]
.

(28)

In order to get the analytical formula for kV one has to
calculate the derivatives and insert them in Eq. (28) to give
rise to the following expressions:

kV ≈ −π2κ

(
R0

Rm

)2
kN
V

kD
V

, (29a)

kN
V = 61/44

3

√
s + 1 + 72

√
6

48
πs + 11

√
6 + 336

48
61/4s3/2

− 9113
√

6 + 69 984

41 472
πs2 + · · · , (29b)

kD
V = 63/4

16
π3√s +

√
6π2s + 56

√
6π2 + 2560 − 93π2

512

×π61/4s3/2 + 16π2
√

6 − 31π2 + 128

16
s2 + · · · .

(29c)

Although further simplification of these expressions is possible
(using s � 1), we found that it reduced their range of validity.

The leading term defining the asymptotic regime converges
to a constant limiting value at s → 0 (where R0/Rm ≈ 1):

lim
s→0

kV = − 32

3π

√
2

3
κ

(
R0

Rm

)2

≈ −2.77κ. (30)

Higher-order expressions are given in Appendix B. Figure 9
compares the results obtained with the different methods. The
exact solution (calculated with the numerical method) gives
negative values of the stability coefficient kV , which indicates
the unstable character of symmetric constriction at constant
volume, a conclusion already raised in Ref. [9]. At small
constriction, the exact numerical result points to a progressive
destabilization of equatorial constriction in favor of axisym-
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FIG. 9. (Color online) Stability coefficient kV at all stages of
constriction. Comparison of the exact numerical results with the
approximate zeroth-order variational results and the analytical ex-
pressions obtained with several orders of perturbative expansion.

metric configurations with a lower bending energy. The preci-
sion of the exact numerical solution is quite poor in this low-
deformation regime, as evidenced by the high variability of the
numerical values obtained. Variational methods also have pre-
cision problems for this magnitude. These precision problems
seem to be related to the derivatives present in the expression
defining kV . However, the approximated analytic solutions of-
fer a consistent description of this low-deformation regime, as
a power-law approach kV ∼ −s1/2, which converges down to
the asymptotic limit k0 ≈ kV (s → 0) ≈ −2.77κ ≈ −28kBT

(if κ ≈ 10kBT ). For increasing constriction the instability
is reduced and the stability coefficient approaches zero in
the large-constriction limit (kV → 0 at s → 1). In Fig. 9 we
also see that the analytic expression progressively converges
towards the zeroth-order variational solution. Close agreement
is found between the exact results and the sixth-order pertur-
bation along the whole range of constrictions.

Alternatively, if the constraint of constant area is consid-
ered, the corresponding stability coefficient kA that would
replace kV in Eq. (27) takes the following form [9]:

kA = − R2
o

2(1 + ∂Lm/∂Rm)2

[
∂2Em

∂R2
m

− ∂Em

∂Rm

(
∂2A

∂R2
m

/
∂A

∂Rm

)]
.

(31)

Analogously, using the analytical expansions for Em, Lm,
and A, one gets the corresponding formula for kA,

kA ≈ −π2κ

(
R0

Rm

)2
kN
A

kD
A

, (32a)

kN
A = 61/48

3

√
s + 13 + 48

√
6

24
πs + 11

√
6 + 208

24
61/4s3/2

− 15 245
√

6 + 38 160

20 736
πs2 + · · · , (32b)

kD
A = 63/4

8
π3√s + 2

√
6π2s + 40

√
6π2 + 2560 − 69π2

256

×π61/4s3/2 + 128 − 25π2 + 12
√

6π2

8
s2 + · · · ,

(32c)
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FIG. 10. (Color online) Stability coefficient kA at all stages of
constriction. Comparison of the exact numerical results with the
approximate zeroth-order variational results and the analytical ex-
pressions obtained with several orders of perturbative expansion.
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where the numerator (32b) and the denominator (32c) corre-
spond to the fourth-order perturbative expansion. The analytic
formula with higher orders is given in Appendix B.

A similar behavior is obtained for the stability coefficient
at constant area kA (see Fig. 10). The analytical expressions
progressively approach the zeroth-order variational result and
the sixth-order expression gives good agreement with the exact
numerical results. Symmetric constriction is found unstable
at low s (kA ≈ −2.77κ at s → 0), but becomes progressively
less unstable with increasing constriction (kA → 0 at s → 1).
The values of these stability coefficients quantify the energy
potential that additional mechanisms have to provide in order
to stabilize symmetrical constriction.

IV. CONCLUSION

A procedure to find approximate analytical expressions
for magnitudes involved in the constriction of a vesicle (or
a simplified cell) has been developed. This procedure can
be extended to other processes where the minimization of
the bending energy determines the vesicle shape and the
values of the main magnitudes. The procedure combines the
perturbative expansion of the bending energy integrand for
small deformations around a known solution with an ansatz
for the deformation given by a simple family of functions
that depends on one or several parameters. After the values
of the parameters of the family of functions are determined
variationally, i.e., by minimization of the bending energy. If
the family of functions is simple enough, this computation
can be done, obtaining analytical expressions. In our case,
the analytic expressions take the form of a powerlike leading
term in the constriction ratio s (with well-defined power-law
exponents and amplitudes), which is corrected by a polynomic
expansion in s. The resulting expressions are expected to hold
better for small constrictions; however, in our case they are
found to be good approximations even for medium or large
constrictions, as in the case we shown in this paper. We have
found that the fourth-order analytical expression gives a good
approximation over the whole range of constrictions for the
length of the constriction region Lm, the bending energy Em,
the constriction force Fc, the area A, and the volume V .
However, a sixth-order approximation is required to have a
good approximation for the excess of surface area δa, the
change of area at constant volume, the change of volume at
constant area, and the stability coefficients of symmetrical
constriction (for both constant area kA and constant volume
kV constriction).

The results found here correspond to the tensionless case
� = 0, with no pressure difference �p = 0, and for zero
spontaneous curvature C0 = 0, a case where the curvature
energy is size invariant. Further extensions to cases where one
or several of these restrictions are eliminated are more involved
and are beyond the scope of the present paper. The analytical
expressions provided give an easy and compact way to predict
the requirement for successful symmetrical constriction. In
particular, they indicate that constriction forces on the order of
the piconewton (for κ ≈ 10kBT ) if the vesicles (or cells) are of
micron size, while a mechanism that generates a stabilization
potential with a constant of ∼30kBT or greater is needed to
stabilize symmetric constriction. The results derived from this

method can be used to guide the design of synthetic divisomes
and the understanding of cell constriction. Other biological
processes involving membrane bending (such as exocytosis
and endocytosis) can also benefit from the insight these results
and this method can provide.
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APPENDIX A: NUMERICAL ALGORITHM USED
FOR COMPARISON

We have used for comparison and to verify the analytical
results the numerical procedure described in Refs. [19,20] by
applying it to axisymmetric shapes stressed upon equatorial
constriction while the maximum radius remains constant. In
this method the profile is parametrized by its arc length S. The
tilt angle ψ(S) and the distance to the symmetry axis X(S) are
sufficient to determine the shape. The energy functional can be
restated in terms of these coordinates and its derivatives with
respect to S as

Em = 2πκ

∫ S1

0
L(ψ,ψ̇,X,Ẋ,γ )dS, (A1)

where the integrand L(ψ,ψ̇,X,Ẋ,γ ) is

L ≡ X

2

(
ψ̇ + sin ψ

X

)2

+ γ (Ẋ − cos ψ). (A2)

The first term reflects the mean curvature bending energy
contribution. The last term involves the Lagrangian multiplier
γ , which is introduced to maintain the relation Ẋ = cos ψ

between X(S) and ψ(S).
The corresponding Euler-Lagrange equations for the mini-

mization of Em are

ψ̇ = U, (A3a)

U̇ = −U

X
cos ψ + cos ψ sin ψ

X2
+ γ

X
sin ψ, (A3b)

γ̇ = U 2

2
− sin2ψ

2X2
, (A3c)

Ẋ = cos ψ. (A3d)

By applying the appropriate boundary conditions, the system
of ordinary differential equations can be solved and the equi-
librium shapes can be obtained. Note that this method includes
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FIG. 11. (Color online) Scheme of the parametrization used for
the numerical solution.

not only the constriction region, but also the description of the
caps. In the case of constriction shapes, a set of conditions

must be satisfied: At the beginning X(0) = 0, ψ(0) = 0, and
γ (0) = 0; at the end of the cap ψ(S1) = π/2, X (S1) = Rm; at
the constriction ring ψ (S2) = π/2 and X (S2) = Rc; and the
corresponding symmetric boundary conditions are to the right
of the constriction ring (see Fig. 11).

Maintaining the boundary conditions of radius Rm and Rc at
S1 and S2 requires line tensions σm and σc, respectively. They
act in opposite directions: Increasing σc forces Rc to decrease,
thus increasing constriction, which requires an increase of σm

to maintain constant Rm during the constriction process. The
boundary matching conditions at these points S1 and S2 are
given by [20]

γ + − γ − = �γ = σ, (A4)

where the plus and minus superscripts refer to the value at
the right and at the left of the boundary, respectively. The
numerical solution is found by using the shooting method,
adjusting the values of U (0) = ψ̇(0) and σm to make the
solution verify the boundary conditions. In the case of
symmetric constriction, the line tension at S2 is given by
σc = 2γ (S2).

APPENDIX B: ANALYTICAL EXPRESSIONS FOR TENSIONLESS VESICLES UP TO SIXTH-ORDER
PERTURBATIVE EXPANSION

Including all the terms in the expressions below one gets the sixth-order expression in the perturbative expansion of the energy
integrand, omitting the two last terms the fourth-order expressions, and omitting the four last terms the second order expressions:

Lm(s) = 1

2
61/4πRm

√
s

[
1 − 31

√
6 + 144

576
s − 1488

√
6 + 4327

110 592
s2 − 103 939

√
6 + 291 312

21 233 664
s3

−9 364 320
√

6 + 49 536 593

24 461 180 928
5s4

]
, (B1)

Em(s)

8πκ
= 1 + 1

6
61/4π

√
s − 11

√
6 − 48

1152
61/4πs3/2 − 1584

√
6 − 7439

221 184
61/4πs5/2

− 2 103 403
√

6 − 11 091 600

382 205 952
61/4πs7/2 − 215 694 752

√
6 − 1 247 254 465

48 922 361 856
61/4πs9/2, (B2)

Fc = π261/4κ

3Rm

[
2√
s

− 11
√

6 − 48

32

√
s − 1584

√
6 − 7439

18 432
5s3/2 − 2 103 403

√
6 − 11 091 600

31 850 496
7s5/2

− 215 694 752
√

6 − 1 247 254 465

452 984 832
s7/2

]
, (B3)

A(s)

4πR2
m

= 1 + π61/4√s

2
− 7

√
6 + 432

1152
π61/4s3/2 + 336

√
6 + 10 121

221 184
π61/4s5/2

+ 18 341
√

6 + 154 032

42 467 328
π61/4s7/2 − 11 201 760

√
6 + 67 237 621

48 922 361 856
π61/4s9/2, (B4)

V (s)
4
3πR3

m

= 1 + 3

4
π61/4√s − 31

√
6 + 720

768
π61/4s3/2 + 4464

√
6 + 64 793

147 456
π61/4s5/2

− 246 787
√

6 + 1 451 184

28 311 552
π61/4s7/2 − 50 504 544

√
6 + 270 990 229

32 614 907 904
π61/4s9/2, (B5)
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kV ≈ −π2κ

(
R0

Rm

)2
kN
V

kD
V

, (B6a)

kN
V = 61/44

3

√
s + 1 + 72

√
6

48
πs + 11

√
6 + 336

48
61/4s3/2 − 9113

√
6 + 69 984

41472
πs2

− 31 051 + 13 200
√

6

9216
61/4s5/2 − 104 556

√
6 + 723 971

663 552
πs3, (B6b)

kD
V = 63/4

16
π3√s +

√
6π2s + 56

√
6π2 + 2560 − 93π2

512
π61/4s3/2 + 16π2

√
6 − 31π2 + 128

16
s2

+ 1 327 104 − 122 016π2 + 16 399
√

6π2 − 476 160
√

6

589 824
π61/4s5/2 + 419

√
6 − 26 748

27 648
π2s3, (B6c)

kA ≈ −π2κ

(
R0

Rm

)2
kN
A

kD
A

, (B7a)

kN
A = 61/48

3

√
s + 13 + 48

√
6

24
πs + 11

√
6 + 208

24
61/4s3/2 − 15 245

√
6 + 38 160

20 736
πs2

− 24 907 + 8976
√

6

4608
61/4s5/2 − 33 032

√
6 + 348 203

331 776
πs3, (B7b)

kD
A = 63/4

8
π3√s + 2

√
6π2s + 40

√
6π2 + 2560 − 69π2

256
π61/4s3/2 + 128 − 25π2 + 12

√
6π2

8
s2

+ 344 064 − 26 912π2 + 5909
√

6π2 − 134 144
√

6

98 304
π61/4s5/2 + 4319

√
6 − 20 592

13 824
π2s3. (B7c)
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