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Weak correlation of starch and volume in synchronized photosynthetic cells
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In cultures of unicellular algae, features of single cells, such as cellular volume and starch content, are
thought to be the result of carefully balanced growth and division processes. Single-cell analyses of synchronized
photoautotrophic cultures of the unicellular alga Chlamydomonas reinhardtii reveal, however, that the cellular
volume and starch content are only weakly correlated. Likewise, other cell parameters, e.g., the chlorophyll
content per cell, are only weakly correlated with cell size. We derive the cell size distributions at the beginning
of each synchronization cycle considering growth, timing of cell division and daughter cell release, and the
uneven division of cell volume. Furthermore, we investigate the link between cell volume growth and starch
accumulation. This work presents evidence that, under the experimental conditions of light-dark synchronized
cultures, the weak correlation between both cell features is a result of a cumulative process rather than due to
asymmetric partition of biomolecules during cell division. This cumulative process necessarily limits cellular
similarities within a synchronized cell population.
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I. INTRODUCTION

For technical reasons, most studies in the Ohmic area
require the analysis of relatively large cell populations.
Essentially, this approach implies that the average values
obtained from population measurements closely reflect data
from single cells. However, this assumption is safe only when
the cells composing a given population are homogeneous with
respect to their physiological state, to their developmental
states, and to the content of the analytes to be assayed.

For obtaining homogeneous cell populations, experimen-
talists rely on various techniques. To maintain both constant
efficiency of external conditions and unchanged cell density,
continuous cultures are typically used in which the culture
medium is continuously renewed [1]. Under these conditions,
the average growth rate can be adjusted to a constant value, i.e.,
the so-called steady-state or bound growth. The number of cells
per suspension volume can also be kept constant if the number
of daughter cells released exactly matches the number of cells
lost through the outflow of the culture vessel. Uniformity of
the cellular developmental state is obtained by synchronization
techniques. These approaches aim at establishing cell cultures
that, temporarily or permanently, will reside in the same
phase of the cell cycle. To achieve this goal, various methods
exist [2–4].

Nevertheless, single-cell analyses are providing increasing
evidence that a truly homogeneous cell suspension is more
difficult to obtain than expected. Indeed, the single cells com-
posing isogenic populations can be largely different from each
other even when they are grown in the same environment [5].
The reasons for the heterogeneity at the cellular level have been
investigated for several model systems, including prokaryotic
and eukaryotic cells, indicating that stochasticity in gene
expression and cell division can play a major role [5–7].
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However, the impact of these sources of stochasticity on
synchronized cell cultures is still not completely understood
and must be carefully taken into consideration. We address this
issue in this paper. In particular, we focus on the unicellular
eukaryotic alga Chlamydomonas reinhardtii, which is one of
the most studied plant model organisms.

When grown photoautotrophically, the vegetative cell cycle
of C. reinhardtii depends on the photoperiod. During the light
period, photosynthesis drives the growth of cell volume, the
DNA replication, and the biosynthesis of all other cellular
constituents. The transition to the dark phase instead marks
the release of daughter cells. These features are typically
used for continuous synchronization of photoautotrophic cells.
Exposing a cell culture of unicellular algae, such as Chlorella
or Chlamydomonas, to a relatively short alternating series of
light-dark phases results into a population that, at the onset of
the light-dark cycle, consists essentially of young and small
daughter cells. Photosynthesis-driven growth continues during
illumination, leading to cell division and finally to the release
of the offspring [8,9]. Readers interested in a comprehensive
overview of the development of synchronized algal cells can
consult Ref. [10].

Single-cell analyses, however, provide a different view on
the homogeneity of synchronized cell cultures. Indeed, as
reported in [11], synchronized cells of C. reinhardtii exhibit a
relatively broad distribution of both cell sizes v and the cellular
starch content y as shown by the coefficients of variation
of cellular starch density, which ranges between 0.51 and
0.63. For the details about this issue, we refer the reader to
Appendix A. Moreover, throughout the entire cell cycle, v and
y are only weakly correlated [11]. Indeed, the Spearman rank
correlation coefficient between relative cellular starch content
and cellular volume ranges from 0.08 to 0.30, thus confirming
that there is no obvious correlation. This finding is surprising
because, intuitively, larger cells are expected to contain more
starch than smaller cells. Furthermore, one may ask whether
this counterintuitive experimental finding holds also for other
cellular constituents. Our results will show that the ingredients
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causing the weak correlation are not specific to starch, thus
indicating that this phenomenon is likely to apply to other
metabolites as well.

This weak correlation between volume and other cellular
constituents plays a major role in determining the heterogene-
ity of synchronized cultures, together with other peculiarities
of C. reinhardtii, such as its characteristic cell division process,
which consists of a sequence of binary divisions. According
to a widely accepted view, the size of the offspring formed
by a single cell is determined by the size of the mother cell
at the time of cell division [12,13] and the division time is
short compared to other time scales (e.g., the duration of
fission bursts), at least under the conditions considered in [11].
The cellular volume of any eukaryotic unicellular organism is
thought to define the onset of cell division [14].

The interplay of all cellular features outlined above points
towards a higher degree of heterogeneity in synchronized C.
reinhardtii cells. In this paper we present a more realistic
model of a synchronized cell population. The model embeds
in a coherent framework the potential sources of variability
outlined above. In the following we will build the model in
subsequent steps. Starting from a very basic description of
the cellular volume growth, we progressively include all the
relevant sources of heterogeneity in our model.

II. THEORY AND MODEL

In a very general scenario the volume growth rate of
each cell can be regarded as depending on its age τ and
on its volume v [15]. In a synchronized culture, τ coincides
with the observational time, counting from the onset of
each synchronization period. Thus, the cell volume growth
during the light period is deterministic and can be effectively
described by the growth rate function

dv

dτ
= f (v). (1)

In (1) we assume that the impact of an increasing cell density
on the growth process can be ignored given that experiments
are performed in sufficiently diluted cell cultures. The volume
growth law of algal organisms such as Chlamydomonas can
be modeled after weakly curved functions. Hence, we assume
that the power law

f (v) = fαvα (2)

holds. The curvature of this function is low if α is close
to 1. Values α < 1 imply the concave form of the growth
rate function. Although (2) is well supported by empirical
data collected under the growth conditions used in [11], an
approximate growth law of this kind can be postulated by
assuming that cells are approximately spherical and that cell
growth is determined by the surface of the sphere, which gives
α = 2/3. In general, deviations from this growth law should be
expected at very large cell volumes, which have been reported
for these growth conditions.

The two parameters α and fα are sufficient to determine
the curvature and slope of f (v) for the empirical data
presented in this paper. The power law (2) is particularly
suited for analyzing multiple-cell division as occurring in C.
reinhardtii [15]. In various strains of C. reinhardtii values of α

were found to be in the range α ∈ (0.85–0.95) (see also [16]).
Presumably, values of α exceed 2/3 as light absorbance by the
cellular chlorophyll rather than the uptake of nutrients from
the medium limits growth. After 12 h light, cells are darkened
and this transfer arrests volume growth. Cell volume remains
essentially constant during the entire dark period.

In synchronization experiments the transition from light
to dark marks the time when daughter cells are released.
However, this timing is not precise and does not take place
at exactly one time point (see, e.g., [17]). At the single-cell
level, the release of daughter cells (as well as the preceding cell
division) apparently lacks synchrony. Rather it proceeds over
several hours and is, to some extent, affected by stochasticity.
As revealed by detailed single-cell analyses, this is also true
for the preceding cell division. When cells are grown under
conditions of high productivity multiple-cell division occur
frequently. Stochastic elements will be introduced into the
model later. Furthermore, two assumptions are made in the
model presented here. First, the release of daughter cells
immediately follows the last cell division. Second, both cell
division and the release of daughter cells are affected by the
same stochastic elements.

Figure 1 illustrates possible division times τ1,τ2, . . . ,τn

that all are occurring shortly before the light-dark transition.
The times Tlight and Tdark indicate the boundaries of the two
synchronization periods. In the following we suppose that
division times τk obey a characteristic distribution density
function �(τ ) with well-defined standard deviation στ and
average value τ . The ratio of both numbers defines the
coefficient of variation Cτ , which indicates how strongly
division times of individual cells are scattered around the
average value.

It is also reasonable to assume that asymmetric division
is a source of noise and consequently increases the cell-to-
cell diversity in populations (see, e.g., [18]). In the case of
binary-cell division the volume of two newly formed daughter

Light

τ1

τ2

τ3

Time t

Tlight Tlight + Tdark

Dark

FIG. 1. Schematic representation of the timing of the cell division
of C. reinhardtii embedded in the dark-light cycle. For the sake of
readability, only two subsequent periods of the cycle are considered.
The time τk represents the time instant of cell division. The figure
illustrates the fate of three different cells. Note that τ1, τ2, and τ3 are
different, according to our assumption stating that cell division starts
at a random time τk � Tlight. Consequently, a new cell cycle begins
in the vicinity of the light-dark transition, following immediately the
release of daughter cells. However, as reported in the text, the time
intervals Tlight − τk are negligible with respect to the duration of the
light period.
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cells (DCs) is v1 = λvdiv and v2 = (1 − λ)vdiv, where λ is
assumed to be a random variable with average λ = 0.5 and
coefficient of variation Cλ = σλ/λ.

Following [19], the growth process of individual cells is cast
into a time-discrete model that describes the size distribution
at the onset of the growth phase. In this context the index
k numbers the light-dark cycles. We consider f (v) to take
the format displayed in Eq. (2). Moreover, any cell division
requires photosynthesis-driven growth, therefore time points
satisfy τk � Tlight. After division, growth continues until cells
have approached Tlight. However, an effect of synchronization
is to push the beginning of the division time τk very close to
the end of the light period. As a consequence, the time interval
Tlight − τk becomes usually small in comparison to τk and thus
this little growth of the daughter cells before the onset of the
dark phase will be neglected here. Nevertheless, we will keep
considering the effects of stochasticity of τ on the variation
of the volume and starch content, as we will see. Hence, the
balance of growth and division results in the time-discrete
equation

vk+1 ≈ λk

[
v1−α

k + fα(1 − α)τk

]1/(1−α)
, (3)

which relates the volume vk that the mother cell had at birth
with the volume vk+1 that the daughter cell has when released.
Equation (3) relates the volumes of mother and daughter cells
along a single line of the cell division tree. This implies that
the statistical distribution of the cell ensemble in cycle k

reflects the statistical properties along the time path derived
from Eq. (3) over infinite generations k = 1,2, . . . ,∞.

Size plays an important role in the control of the cell
cycle [10]. For this reason we presume size-dependent growth
of starch content y. The accumulation rate of starch, for
instance, can be directly linked to the cell volume. Hence,
the time course of v(τ ) determines the dynamics of y(τ ). We
assume therefore that there is a function h[v(τ )] that captures
the synthesis rate of starch at each time point τ during the light
period. For the moment we leave the function h unspecified,
but we will discuss its specific form for starch later. This
assumption leads to the growth equation

dy

dτ
= h[v(τ )]. (4)

Integration of Eq. (4) yields

y(τ ) = y(0) + H [v(τ )] − H [v(0)], (5)

where H (x) is defined as the antiderivative

H [v(τ )] =
∫ v(τ )

dx
h(x)

f (x)
. (6)

At the time of division cell content y(τ = τdiv) is distributed
among daughter cells. According to Eq. (3), the mother cell
has reached the size v(τdiv) = vk+1/λk at this point. Notice
that both f (v) and h(v) are strictly positive functions, so both
variables v and y are monotonically increasing with age τ .

After combining Eq. (4) with degradation and asymmetric
partitioning, we obtain the time-discrete process describing y:

yk+1 = γkmk

(
yk + H

[
vk+1

λk

]
− H [vk]

)
, (7)

where we assume that partitioning of starch content y is
governed by the random variable γk ∈ (0,1), which is not
necessarily identical to λk used in Eq. (3) to describe the
partitioning of the cell volume. The parameter mk � 1 in (7)
instead takes the possible degradation process into account.
The random multiplier mk , which describes the decrease of
y subsequent to cell division, encodes our assumption that
degradation is a stochastic process. In particular for starch this
term is biologically meaningful since starch is metabolized
by the cell during the dark period as a source of energy. As
we will discuss later, the parameter mk is not a determinant
of the weak correlation between the cell parameters v and y.
Equations (3) and (7) constitute the basic model for analyzing
the distributions of y and v, as well as the correlation between
these two cell parameters.

III. CELL SIZE DISTRIBUTION

We denote the probability density of cell volume at the onset
of each synchronization by �(v). The shape of �(v) results
from growth and division of individual cells (see [18]). One
method of analyzing the distributions analytically makes use
of renewal equations, which describe the population balance
of dividing cells and newly generated daughter cells (see,
e.g., [20]). We use the discrete process in Eq. (3) and derive
an approximate expression for the size distribution �(v).

A. Asymmetric binary division

Equation (3) is a nonlinear autoregressive equation in which
τk and λk are noisy parameters. Both affect the formation of
the size distribution at the beginning growth phase. We will
use the notation 	x to describe the relative deviation 	x of
parameter x from its average x, that is,

	x
k ≡ xk − x

x
. (8)

Furthermore, we assume that fluctuations around the steady
state are small, which implies Cτ � 1 and Cλ � 1. This can
be experimentally shown for deviations of the average division
time of cells of C. reinhardtii (see, e.g., [21]), where the
coefficient of variation takes values Cτ � 0.1.

From Eq. (3) it is possible to derive an equation for 	v
k and

thus obtain a derivation of the coefficient of variation, if one
notices that

C2
x = 〈(

	x
k

)2〉
k
. (9)

In the case that noise terms 	xk are uncorrelated, the following
relation for the variation coefficients holds (see Appendix B
for details of the derivation):

C2
v (α) ≈ 1

1 − 22(α−1)

(
C2

λ + 1 − 2α−1

1 − α
C2

τ

)
. (10)

Equation (10) shows to what extent Cτ , Cλ, and the parameter
α influence the heterogeneity of cell sizes. A comparison of
this result with computer simulations is shown in Fig. 2.

If the growth rate function is weakly sloped the parameter
1 − α becomes very small and amplifies the variation coeffi-
cient Cv . Furthermore, it can be shown (see Appendix B) that
the underlying process (3) generates naturally the log-normal
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FIG. 2. (Color online) Comparison between the theoretical result
of Eq. (10) and computer simulations of the binary division process
with a fixed value of fα = 0.3 μm1−α h−1 and different magnitudes
of the parameter Cλ to describe asymmetric cell division. The lower
curve corresponds to Cλ = 0 and the higher curve to Cλ = 0.15.
Cell age at division obeys the Weibull distribution density function
We(τc,a,b) with the parameters τc = 2 h, a = 2 h, and b = 3.4.
Under this assumption, a coefficient of variation with the value
Cτ ≈ 0.1 is obtained.

distribution of cell volumes that is so universally observed in
single-cell populations of many different organisms.

B. Multiple-cell division

As mentioned earlier, C. reinhardtii cells do not necessarily
form a progeny of two equally sized cells but often divide
into 2n daughter cells. Therefore, we introduce a probability
πn(τ |v(i)) that tells us how likely it is that a mother cell divides
into exactly 2n daughter cells given its age τ at division and its
initial size v(i). It is assumed that on average the fold change
of cell volume v(τ )/v(i) during the growth phase determines
the number of progeny (compare, e.g., [22]). This implies the
dependence of the probability πn on the size ratio v/v(i) that
manifests in the functional form πn(v/v(i)).

Apart from that, Eq. (2) implies the unique relation
between age τ and the cell volumes v and v(i). We can
simplify the treatment further if we recognize, based on the
experimental data, that α is very close to unity and thus that
cell volume growth is nearly exponential. As a consequence
of the exponential growth of the volume, the ratio v/v(i) turns
out to depend only on the time of division. This means that
πk becomes independent of v and v(i) and thus dependent
only on the timing of cell division. If division times are
concentrated around the average value τ , we can approximate
the random division times τk by the average τ . Here the time
τ roughly coincides with the length of the light period Tlight.
Hence, since Tlight is fixed by the experimental conditions, the
probabilities πn = πn(τ ) are considered constant throughout
one set of experiments under fixed light-dark conditions.

The net productivity can be defined as the average relative
fold change of the cell number at the end of one cell cycle.
Using πn, the relative fold change in population size is

determined by the weighted average N = ∑∞
n=1 2nπn. Since

division occurs with constant probability πn, the parameter λk

introduced in Eq. (3) is a random number whose probability
distribution is

P (λk = 2−n) = 2n

N
πn. (11)

Obviously, πn is weighted by the relative number of progeny
resulting in 2n daughter cells, which is 2n/N .

Consequently, in the light of Eq. (3) multiple division
appears as a particular form of binary asymmetric cell
division. This parallel is clearly restricted to the use that we
intend to make of Eq. (3). Nevertheless, it has far reaching
consequences, because we can now use the simpler results
obtained earlier for the binary asymmetric cell division and
derive the statistics of the cell volume by simply adjusting the
parameter λk .

Indeed, the average value of λk is now λ = N
−1

, while
the coefficient of variation Cλ is determined by σ 2 =∑∞

n=0 N
−1

2nπn2−2n − N
−2

. Hence, the explicit expression for
Cλ reads

C2
λ = N

∞∑
n=0

πn

2n
− 1. (12)

For clarification we use data of C. reinhardtii CC1690 that
divide on average into N = 14–15 daughter cells under the
conditions described in [11]. We estimate the probabilities πn

with π3 = 0.2 and π4 = 0.8, by which the mother cell produces
8 DCs or 16 daughter cells, respectively. After inserting these
numbers in Eq. (12), we obtain Cλ ≈ 0.3, which serves as an
orientation for the upcoming analysis.

If we make the heuristic argument that mother cells produce
N instead of two daughter cells in one cycle we can replace

21−α by N
1−α

in Eq. (10) (compare with Appendix A). By
exploiting the analogy with the asymmetric binary division,
directly from Eq. (10) we obtain the coefficient of variation

C2
v = 1

1 − N
2(α−1)

[
C2

λ +
(

1 − N
α−1

1 − α

)2

C2
τ

]
, (13)

where we see that large numbers of progeny, i.e., large N ,
increase the relative impact of Cτ in comparison to Cλ. If α � 1

holds, we will make use of the approximation 1 − N
α−1

/

(1 − α) ≈ ln N . As a side result, by exploiting the similarity
to the asymmetric binary division, we obtain the explicit
expression for the cell volume probability density �(v) under
the multiple-cell division scenario, as shown in Eq. (B12). A
comparison with the empirical data, shown in Fig. 3, provides
an excellent fit.

IV. CORRELATION BETWEEN CELL PARAMETERS

We aim to elaborate the mechanisms that cause the
weak correlation between the cell parameters. These are the
asymmetric division of cell content and the accumulation
process and its dependence on the cell volume. We will further
incorporate degradation of starch during the dark period. As
will be shown below, degradation processes are not major

012711-4



WEAK CORRELATION OF STARCH AND VOLUME IN . . . PHYSICAL REVIEW E 91, 012711 (2015)

0 100 200 300 400 500 600
0

0.002

0.004

0.006

0.008

0.010

v (µm3)

Φ
(v

) (
µ m

−
3 )

50 100 200 400
10−6

10−4

log v (µm3)
lo

g
Φ

(v
)

FIG. 3. (Color online) Size distribution of synchronized cells of
C. reinhardtii (strain CC 1960) at the onset of the light-dark cycle
in comparison to theoretical results. The parameters are α = 0.85,
Cτ = 0.1, and Cλ = 0.25 with π3 = 0.18, π4 = 0.82, and N = 14.6
(the continuous line corresponds to a solution based on the numerical
integration of the theory and the histogram corresponds to data
from [11]). The inset depicts the double logarithmic (log10 scale)
representation of the same data. The distribution density function
is obtained by numerically solving Eq. (3) [23,24] under the
assumption of Weibull-distributed times of daughter cell release with
the parameters τ ∼ We(τc,a,b), with a = 4 h, b = 3, and τc = 9.8.
The fit of parameters gives good agreement for α = 0.86 and fα =
0.72. The intergenerational correlation of cell sizes is approximately

E[	v
k+1	

v
k] = N

α−1 ≈ 0.7. Details of the experimental procedure
can be found in Ref. [11] and are summarized in Appendix A.

determinants for the weak correlation between cell volume
and starch content.

Equation (3) describes a process that generates the size
distribution of multiply dividing C. reinhardtii cells. We
argue that size is fundamental for the understanding of the
starch distribution in cells. This is due to the fact that starch
accumulation can be unambiguously linked to the cell cycle,
which in turn relies on volume growth. As a consequence,
Eq. (7) determines the distribution of y at the onset of each
synchronization cycle.

To give an example, we consider a situation in which the
synthesis rate of y is proportional to the growth rate f (v). Thus,
we have h(v) = cf (v) with an unspecified constant c. For the
sake of simplicity, we assume symmetric division into exactly
N = 2n daughter cells. This assumption implies that Cγ =
Cλ = 0. If N � 1 holds, as it is the case for C. reinhardtii, we
can justify the elimination of yk and H [vk] from Eq. (7). As a
result, the problem is reduced to a dynamical equation of the
form

yk+1 	 cvk+1. (14)

Equation (14) implicates that the size distribution �(v)
simultaneously determines the statistical distribution of the
starch content per cell. In this case we obtain perfect correlation
between both cell parameters that give rise to a high product-
moment correlation [Corr(v,y) = 1]. However, in reality one
observes a quite distinct behavior. The broad distribution of
starch content and the weak correlation with the cell volume

in C. reinhardtii cells demonstrates this exemplarily. We must
therefore identify mechanisms that lead to the characteristic
distribution and correlation function of both cell parameters.

The discussion below will focus on two mechanisms that
both contribute to the observed cell-to-cell diversity: the
asymmetric partitioning of cell content and the functional form
of the starch accumulation process.

A. Asymmetric distribution of cell content

The characteristic distribution of the amount of starch per
cell emerges partially as a result of asymmetric partitioning
of cell content during the division process. Obviously, the
asymmetric distribution of y increases the heterogeneity of
the starch distribution. We already know from experiments
(see, e.g., [13,25]) that cell division into 2n daughter cells
can be viewed as the fast iteration of n bisections. In accord,
with experimental observations, we assume that daughter cells
have equal size after each bisection, while the partitioning of
the starch content is subject to asymmetries.

Since starch is stored in the chloroplast, it is bound to the
physical structure of the organelle. We can therefore argue
that asymmetries arise from the uneven division of organelles
or the patchy storage of starch at different locations of the
chloroplast, which both lead to an irregular endowment of
cells with starch content.

We describe asymmetric division with the help of n

independent and identically distributed random numbers
γ (1),γ (2), . . . ,γ (3), where the superscript index (l) numbers the
sequence of bisections. The numbers γ (l) capture the stochastic
distribution of starch content during the division process. The
average of these random numbers is each γ (l) = 1, while
the coefficient of variation satisfies Cl = C = const at each
instance. Since the partitioning of y results from n bisections,
the product of all the partitions determine γk in Eq. (7), i.e.,
we have after n bisections

γk = 1

2
γ

(1)
k

1

2
γ

(2)
k · · · 1

2
γ

(n)
k = 1

2n

n∏
l=1

γ
(l)
k . (15)

Equation (15) implies that γk and the variation 	
γ

k depend
on the total number of bisections n, that is, n ∼ − ln λk . The
calculations of the coefficient of variation Cγ are performed in
Appendix B and lead to an approximate expression

C2
γ = C2

λ +
∞∑

n=1

nπn

N
2

22n
C2, (16)

which takes multiple division and asymmetric partitioning of
cell content into account. Here Cλ is calculated according
to Eq. (12) and allows for different forms of multiple-cell
division; Cγ measures the variation of the amount of starch in
an arbitrarily chosen sample of synchronized cells. If mother
cells divide irregularly and into different numbers of daughter
cells, Cλ will outweigh the effect of the asymmetric distribution
of starch.

Since experiments are not indicative of a very strong
asymmetric distribution of starch content, we estimate C � 0.1
to be a realistic range of values for C. Note, however, that this
estimate gives 2C = 0.2 for n = 4 consecutive bisections and
the symmetric division into 2n = 16 equally sized daughter
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cells [see Eq. (16)]. The value C = 0.1 clearly overestimates
the impact of asymmetric distribution of starch and we
therefore conclude that C is likely well below this value.

We illustrate a realistic case by choosing the parameters
N = 15, π3 = 0.2, π4 = 0.8, Cλ ≈ 0.3, and Cv = 0.5 for a C.
reinhardtii CC1690 culture. The value of Cγ is determined
through Eq. (16), which yields Cγ ≈ 0.34 for the given set
of parameters. Consequently, Cγ keeps relatively close to the
value of Cλ. In summary, this means that the coefficient of
variation Cλ related to the division in a random number of
daughter cells almost completely determines the value of the
coefficient of variation Cγ . The latter instead is related to the
asymmetric partitioning of starch content to the daughter cells.
Hence, this indicates that the asymmetric partitioning of starch
content is determined more by the stochasticity in the number
of daughter cells than by the random process that governs the
redistribution of cell content. If, however, we had a dominant
form of division, we would have observed a pattern of cell
division that produced 2n descendants at each iteration of the
synchronization cycle. In this case, the heterogeneity of the
distribution of starch can originate only from the second term
on the right-hand side of Eq. (16) and thus from the asymmetric
partitioning.

B. Starch accumulation

Let vk+1 be the size in the (k + 1)th synchronization cycle.
Preliminary considerations led to Eq. (7) and showed that
vk+1 and the initial size vk of the mother cell determine the
starch content yk+1 at the (k + 1)th cycle. Hence, yk+1 becomes
almost proportional to the difference H [Nvk+1] − H [vk]. For
simplicity, we will further consider an approximation of Eq. (7)

by eliminating the contribution of the term N
−1

yk . This
is possible since N becomes large in the considered case.
Given a fixed size vk+1, it is the size vk of the progenitor
cell that determines the starch content through the relation
yk+1 ∼ H [Nvk+1] − H [vk].

Equation (3) leads to the approximate expectation value
E[vk+1|vk] ≈ vk for parameter choices α � 1. If we reverse
the process and use a simple symmetry argument, we can state
the conditional expectation value E[vk|vk+1] ≈ vk+1 for sizes
vk of the preceding cycle in order to obtain vk+1 (compare,
e.g., Appendix B).

Similarly, we introduce a coefficient of variation C̃v that
quantifies the region in the vicinity of E[vk|vk+1] from where
progenitor cells most likely originate. This simply means
that the values of vk are spread around their expectation
value, while the variation 	̃v

k around this expectation value
is conditional on the size in the (k + 1)th cycle. For α ≈ 1 and
relatively small variation of the division times Cτ , we use the
estimate 	̃v

k ≈ 	v
k . In this situation the coefficient of variation

satisfies C̃v ≈ Cv . However, it should be noted that parameters
α < 1 and large values of Cλ and Cτ considerably complicate
the calculation of C̃v but do not result in different qualitative
results.

We can now discuss the impact of the deviations 	̃v
k on

the fluctuation of the parameter yk+1. To that end we assume
vk+1 to take a fixed value in the (k + 1)th cycle. Hence, the
magnitude of the fluctuations of yk+1 around the average yk+1
measures how heterogeneously starch is distributed in cells

with the fixed size vk+1. Due to this mechanism, the correlation
between size and starch content decreases as the outcome of
the fluctuations of cell sizes in two consecutive cycles.

To show this we evaluate the first-order derivation of H [vk]
at the size E[vk|vk+1] ≈ vk+1 and calculate the variation 	y

of y. The result is a relation between the fluctuations of the
starch content 	

y

k+1 and the fluctuations of cell sizes, i.e.,

	
y

k+1(vk+1) ≈ H ′(vk+1)vk+1

H (Nvk+1) − H (vk+1)
	v

k. (17)

Equation (17) demonstrates that fluctuations of yk+1 around the
average y(vk+1) depend on the value of vk+1. For this reason
the factor in front of 	v measures the strength of fluctuations
as a function of cell size v.

Equation (17) allows us to compare different types of
accumulation processes. In what follows we assume that h(v)
is a monotonically increasing function of size v. In the simplest
case h(v) is proportional to the growth rate f (v), which leads
to the expression H [v] = cv and the unspecified constant c. If
we plug h(v) into Eq. (17) and if we further assume N � 1,

we obtain the relation 	
y

k+1 	 N
−1

	̃v
k . However, this means

that Cy will be small in comparison to Cv if N becomes large.
By this means both parameters, size and starch content, are
tightly correlated.

By having a closer look at Eq. (17) we see that it is the ratio
of H ′[v]v and H [Nv] − H [v] that determines how strongly y

fluctuates around its mean value. If the absolute value |H [v]|
is rapidly decreasing in the vicinity of v, the contribution of
|H [Nv]| becomes negligible for very productive forms of cell
division. We want to describe this behavior more clearly and
consider the function

h(v) = A

{1 + [η(v/v)]B}2

(
v

v

)B

, (18)

which represents a family of functions that, when embedded in
Eq. (4), correctly describes the experimental results reported
in [11] and summarized in Fig. 1 therein. In particular,
Eq. (18) takes into account the slowing down of the rate of
starch production when cells become much larger than v. A
comparison of Eq. (18) with the empirical data reported in [11]
shows that Eq. (18) is indeed a good model for describing the
accumulation of starch during the light period. A reasonable
choice of parameters for fitting the data mentioned above is
η ≈ 0.5–1.0 and B ≈ 2. An analytically tractable case can
be obtained if we integrate Eq. (18) under the assumption
f (v) ≈ f1v and B = 2. With this choice of parameters Eq. (18)
still results in a good fit for the experimental data related to
cell growth and starch accumulation in

H (v) = − A

1 + η2(v2/v2)
, (19)

with the unspecified constant A. The model represented in
Fig. 4 is based on Eq. (19) under the assumption of cell division
into strictly N = 24 = 16 daughter cells. It demonstrates how
	

y

k+1 is affected by the variation of sizes of the progenitor
cell, i.e., 	̃v

k . According to Eq. (17), the magnitude of the
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FIG. 4. (Color online) The behavior of yk+1 can be related to
fluctuations of vk+1 in each cycle. The difference of the accumulation
function H (Nv) − H (v) on average determines the dependence of the
parameter y on size v. Cell sizes are distributed around the average v

and obey a log-normal distribution (gray area). The steep decrease of
|H (v)| compared to |H (Nv)| for typical cell sizes v ≈ v manifests in
the sensitive response of 	y(vk+1)k+1 to deviations 	̃v

k in each cycle.

fluctuations of y is given through

Cy(v) ≈ 2η2v2

v2 + η2v2
C̃v. (20)

Equation (20) establishes a relation between Cy on the one
hand and v and Cv on the other. Since vk+1 is typically located
in the vicinity of the average cell size v, we can estimate
the representative value for the coefficient of variation, which
takes the form

Cy(v) ≈ 2η2

1 + η2
Cv. (21)

Here Cy exhibits a magnitude similar to that of Cv for the
parameter region η ≈ 1 and as a result the starch content
y shows strong fluctuations around its mean value y(v).
The discussed mechanism evidently mitigates the correlation
between y and v and as the example shows is mainly encoded
in the specific form of the function h(v).

V. EXAMPLE

In [11] the authors show that the product moment cor-
relation coefficient Corr(�,v) between cell size and starch
density in the alga C. reinhardtii CC1690 is strictly negative.
Similarly, the rank correlation according to Spearman takes
values in the range CorrS(�,v) = −0.50 to −0.60. At the same
time the correlation coefficient for starch and size takes the
value CorrS(v,y) ≈ 0.2. In order to explain these experimental
results, we study the discrete equations (3) and (7) that
determine the discrete-time starch concentration �k = yk/vk

in each cycle.
The synthesis rate of y is modeled after the concave

function (18). By choosing η = 0.5 and B = 1.93 we obtain
a decent description of starch accumulation during the whole
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Starting degradation of 
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FIG. 5. (Color online) Dynamics of the average starch concen-
tration in C. reinhardtii cells (normalized to the initial concentration
�). Shown are periods of cell growth (light period, from time 0 to
time 12 h) and degradation (initial 6 h of the dark period). The line
across the data in the light period shows the fit function for ρ(t) with
the parameter B = 1.93.

light period. The time course of the starch density per cell
reads �(t) ≈ y(t)/v(t) and is shown in Fig. 5.

The experiments show that starch degrades when cells are
darkened, leading to a decrease of starch content per cell.
Degradation of starch contributes to (7) in the form of the
random variable mk , whose average is m−1 ≈ 1.5. It can be
further assumed that mk is conjecturally dependent on v and
y. Appendix B contains a brief discussion of how the cell size
can affect the degradation of starch and how size-dependent
degradation contributes to the value of the product moment
correlation coefficient. We note here that under plausible
assumptions about the starch degradation mechanism, the
functional form of h(v) keeps the principle determinant for
the strong fluctuations of size and starch content.

For the purpose of calibrating the theoretical model, we use
the parameters α = 0.86, N = 14.6, Cλ = 0.3, and Cτ = 0.1
from fitting the size distribution �(v) in Fig. 3. The cell size
is then calculated on the basis of Eq. (3). We also incorporate
the heterogeneous partitioning of starch content by assuming
C � 0.1. On average the starch density increases by the factor
1.5 during the light period (see Fig. 5) and decreases uniformly
afterward. We do not consider a particular size-dependent form
of the degradation process since it does not fundamentally
change the theoretical results.

The example shows that the theoretical values of the
product moment correlation Corr(v,y) and the rank correlation
CorrS(v,y) are consistent with experiments. We can now assess
to what extent asymmetric division and the functional form of
the accumulation rate h(v) contribute to the joint distribution of
both cell parameters. While moderate asymmetries (C � 0.1)
during the division process can partially explain the observed
heterogeneity of the starch distribution, the form of the
accumulation process h(v) is the principle mechanism that
leads to the strong fluctuation of both cell parameters, a weak
correlation and a broad joint distribution of cell volume and
starch content.
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VI. CONCLUSION

In this paper we reported on a model that explains the origin
of the multivariate statistics of cell parameters. We provided a
mechanism that explains the cause of the log-normal-shaped
size distribution of multiply dividing C. reinhardtii cells in a
widely used synchronization setup. Nearly exponential growth
and variations with respect to the timing of cell division and the
growth process contribute to the considerable heterogeneity
of cell populations. It was demonstrated that multiple-cell
division can be regarded as a form of asymmetric division.
The resulting distribution of cell sizes and their characteristic
moments at the onset of each cell cycle are comparable for
binary and multiple division. The theoretically obtained dis-
tribution density functions compare well with empirical data.

On the basis of the presumed cell cycle control by size,
we elucidated the accumulation of starch per cell. The
correlation analysis reveals that a mutual identification of this
cell parameter with the help of cell volume is restricted by
the form of the accumulation process. This has far reaching
consequences. Under certain conditions it is possible to predict
the value y by measuring a more accessible quantity, such
as the cell volume. However, we can demonstrate on the
basis of starch accumulation that for realistic forms of the
size-controlled accumulation process starch content and cell
volume are weakly correlated in each cycle. The heterogeneity
manifests in a considerable variance of the starch content y for
any given cell volume v. The potential asymmetric distribution
of starch content additionally increases the described effect.

ACKNOWLEDGMENTS

We acknowledge financial support from the German
Federal Ministry of Education and Research within the
program Unternehmen Region (Grant No. 03Z2AN12) and
GoFORSYS (Grant No. 0313924). A.V. thanks Katja Schulze
for help with the manuscript.

APPENDIX A: SUMMARY OF EXPERIMENTAL
SETUP AND RESULTS

Materials and methods

Vegetative cells of strain CC1690 from Chlamydomonas
reinhardtii were obtained from the Chlamydomonas Resource
Center, University of Minnesota, St. Paul, Minnesota (USA).
Preculture and synchronization of the cells using photoau-
totrophic conditions were performed as described in [11].
Under standard conditions, synchronized cells were grown in
a synthetic medium containing ammonium as nitrogen source,
high light intensities (900 to 550 μmol photons m−2 s−1 at
the beginning and the end of the light period, respectively, as
measured inside of the suspension) and 34 ◦C [11]. Cell volume
was determined using a Beckman Coulter Counter MULTI-
SIZER 3 (Beckman Coulter, Krefeld, Germany) as previously
described [11]. Starch content was determined enzymatically
using a photometric assay that is based on the conversion of
starch-derived glucose to glucose 6-phosphate as mediated
by hexokinase and glucose 6-phosphate dehydrogenase. Prior
to the photometric assay, cells were broken by sonification in
80 vol% ethanol. Starch was solubilized by KOH and converted

TABLE I. Summary of the Spearman correlation coefficient ρ

computed in [11] between the relative starch content and the cellular
volume, measured during the first 6 h of the light period in a
synchronized cell culture of C. reinhardtii .

Time (h) ρ starch vs volume

0 0.30
2 0.12
4 0.08
6 0.13

to glucose by amyloglucosidase treatment (Starch Assay Kit,
R-Biopharm, Darmstadt, Germany). Tables I and II provide
a summary of the key results used in this paper. For further
details, see [11].

APPENDIX B: SIZE DISTRIBUTION AND MOMENTS

If perfectly timed, division always occurs at the average
time point τ . Strictly binary division exhibits the average λ =
1
2 . In order to determine the average cell volume v we expand
the right-hand side of Eq. (3) in powers of 	τ

k , 	λ
k , and 	v

k and
average over the contributing noise terms on both sides of the
equation.

Equation (3) can be linearized in order to analyze the
response of the system to noise. To this end we introduce
the logarithm of cell size uk = ln v/v, which is a good
approximation if 1 − α becomes small. Taking the logarithm
of v on both sides of Eq. (3) and expanding the expression
around v, we obtain

uk+1 = λ
1−α

uk + 	λ
k + 1 − λ

1−α

1 − α
	τ

k . (B1)

This linear autoregressive process is convergent since

γ = λ
1−α

< 1 holds for every choice of α < 1. If noise terms
	x are small, we can approximate uk by

uk = ln
vk

v
≈ 	vk

v
. (B2)

We next Taylor expand the right-hand side of Eq. (3) in
orders of

	x
k = 	xk

x
, (B3)

where 	xk = xk − x denotes the deviation from the average
x. The result of the Taylor expansion of

v
(
1 + 	v

k+1

) = λ
(
1 + 	λ

k

)[
v1−α

(
1 + 	v

k

)1−α

+ · · · + fα(1 − α)τ
(
1 + 	τ

k

)]1/(1−α)
(B4)

TABLE II. Summary of the mean values and width 2σ of the
cellular starch density distribution derived after the log-normal fit,
computed in [11]. The errors refer to the 95% confidence intervals.

Time (h) Mean starch density 2σ

0 2.34 ± 0.08 2.98 ± 0.2
2 4.22 ± 0.32 4.31 ± 0.7
4 10.23 ± 0.67 10.44 ± 1.5
6 15.92 ± 0.82 19.72 ± 2.08
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up to second order reads

v
(
1 + 	v

k+1

) = λ
(
1 + 	λ

k

)
[v1−α + fα(1 − α)τ ]1/(1−α)

× [
1 + a1(v)	v

k + b1(v)	τ
k + c1(v)	τ

k	
v
k

+ · · · + a2(v)
(
	v

k

)2 + b2(v)
(
	τ

k

)2 + · · · ].
(B5)

In a first step we average this expression, where we assume
E(	τ

k	
v
k) = E(	τ

k	
λ
k ) = 0. This is due to the fact that the

different noise terms show no significant correlation in
experiments. After averaging, we have in the first nonvanishing
order

v = λ[v1−α + fα(1 − α)τ ]1/(1−α)

× . . . × [
1 + a2(v)C2

v + b2(v)C2
τ

]
. (B6)

We square Eq. (B6) and average over the noise terms up to
second order. This time we obtain

(1 + C2
v ) = λ

2
(1 + C2

λ)

(
1 + fα(1 − α)τ

v1−α

)2/(1−α)

× · · · × {
1 + [a2

1(v) + 2a2(v)
]
C2

v

+ · · · + [
b2

1(v) + 2b2(v)
]
C2

τ }. (B7)

Both Eqs. (B6) and (B7) determine the average size v and
the coefficient of variation Cv as functions of stochastic
fluctuations Cτ and Cλ, as well as the system parameters α,
fα , τ , and λ.

If we assume Cτ ≈ 0, the coefficients a1 and a2 can be easily
determined. After a short calculation we arrive at the relations

v = λ[v1−α + fα(1 − α)τ ]1/(1−α)

× · · · ×
(

1 − 1

2

αfα(1 − α)τv1−α

[v1−α + fα(1 − α)τ ]2
C2

v

)
(B8)

and

v2 = λ
2 1 + C2

λ

1 + C2
v

[v1−α + fα(1 − α)τ ]2/(1−α)

× · · · ×
(

1 + v1−α(v1−α − α(1 − α)fατ )

[v1−α + (1 − α)fατ ]2
C2

v

)
. (B9)

By replacing Cv in Eq. (B8) with Eq. (B9), we obtain an
implicit relation for v. The first-order approximation of the
problem neglects the impact of Cv in (B8) and thus results
in Eqs. (B10) and (10). Thus, in lowest order we have the
steady-state solution of Eq. (3),

v =
(

fα(1 − α)τ

λ
1−α − 1

)1/(1−α)

. (B10)

This equation constitutes a decent approximation if Cτ and Cλ

are sufficiently small.
Equation (B1) allows us to assess the functional form

of �(v). By definition, the distribution is centered around
the mean value v. The different contributions of the noise
terms broaden the distribution function, where the linearization
around the steady state results in uk+1 = γ uk + ξ 1

k + ξ 2
k , with

ln vk/v = uk . The expectation values of the random numbers
ξ 1 and ξ 2 are 0. Provided the noise terms ξ 1 and ξ 2 are

Gaussian, the distribution of u itself exhibits the form of a
Gaussian distribution.

Even if the noise deviates from a normal distribution, we
will likely see convergence according to the central limit
theorem. The question is how fast the prefactor γ in an infinite
sum declines. If γ is close to 1, which is the case for small
values of 1 − α, the sum uk = ξ 1

k + γ ξ 1
k−1 + γ 2ξ 1

k−2 + · · ·
will eventually converge to a normal distribution. The variation
coefficient of u is approximately given by Eq. (10). Accord-
ingly, the standard deviation of the log-normal distribution is
determined by

σ =
√

ln
(
C2

v + 1
)
. (B11)

After rewriting Eq. (B1) as the infinite sum of random
numbers with zero mean and decreasing standard deviation,
we finally obtain the expression

�(v) ∼ 1

v
exp

(
− (ln v − ln v + ln

√
C2

v + 1)2

2 ln(C2
v + 1)

)
,

to which both random processes contribute via Cv and v.
Equation (B12) is utilized for calculations of the conditional
size distribution in two consecutive cell cycles. This is central
for Sec. IV B. We encounter two conditional size distributions
P (vk|vk+1) and P (vk+1|vk), where the first tells us about the
likelihood that cells with size vk+1 originate from cells with
size vk . According to the Bayes theorem, we have

P (vk|vk+1) ∼ P (vk+1|vk)�(vk), (B12)

which is used to calculate the conditional average μk|vk+1

of the cell size vk . In Eq. (B12) the conditional probability
P (vk+1|vk) can be expressed by the help of the hazard function
p(τ ) of the cell division process. Since division is assumed to
be age controlled, we obtain a survival probability �(S)(τ )
that is linked to the division rate function by the fundamental
relation

�(S)(τ ) = p(τ ) exp

(
−

∫ τ

0
dtp(t)

)
. (B13)

After replacing τ in Eq. (B13) with vk and Nvk+1 as terms
of the growth process (2), we obtain the sought relation for
P (vk+1|vk) ∼ �(S)(τ ). Calculations of the conditional mean
value and standard deviation can now be performed by
evaluating

mn|vk+1 ∼
∫ ∞

0
dx xn−α�(S)

(
N

1−α
v1−α

k+1 − x1−α

fα(1 − α)

)
�(x).

(B14)
For α → 1 we obtain the relations of Sec. IV B.

APPENDIX C: CORRELATION BETWEEN SIZE v

AND STARCH CONTENT y

The discrete stochastic process for the deviation from the
average cell volume is given by

	v
k+1 = Nα−1	v

k + ln N	τ
k + 	λ

k

=
∞∑
l=0

Nl(α−1)
(

ln N	τ
k−l + 	λ

k−l

)
. (C1)
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The second equation integrates all shock terms 	λ and 	τ

in order to determine the current value of 	v
k . We use the

discrete-time equation (7) to evaluate the mean value of yk:

y = 1

MN − 1

(
H

[
v

λ

]
− H [v]

)
≈ 1

MN − 1

(
H [vN ] + 1

2
H ′′[vN ]v2N

2C2
v + · · ·

)
− 1

MN − 1

(
H [v] + 1

2
H ′′[v]v2C2

v + · · ·
)

. (C2)

In the lowest approximation we have the average

y = 1

MN − 1
[H (vN ) − H (v)]. (C3)

Equation (C3) shows that y explicitly depends on M . It can
be estimated as follows. We introduce a rate function dy(v,y)
that determines the amount of starch as the solution of a decay
process that follows

d

dτ
y(τ ) = dy[v,y(τ )]. (C4)

On average the decrease of starch during the dark period has
to be balanced by faster accumulation of starch during the
preceding light period. This implies that the relative increase
of y exceeds the increase of cell volume v. In other words,
the density of starch per cell volume, i.e., the ratio � = y/v,
increases by the factor M , as depicted in Fig. 5.

The function dy(v,y) has to be specified on grounds of the
underlying degradation mechanism. If degradation is assumed
to be size dependent, we can tentatively cast the problem
into the rate function dy(v,y) = −dyyv, with dy = const. The
argument here is that the depletion of recourses is likely to
proceed faster in large cells. On average the factor M satisfies
the balance condition

1

M
= exp(−dyTdegv), (C5)

where Tdeg is the length of the degradation period. Equation
(C5) allows us to reformulate dyTdeg in terms of v and M . The
particular form of the assumed degradation type introduces the
dependence on the stochastic variable vk+1, namely,

mk(vk+1) = exp

(
− ln M

vk+1

v

)
. (C6)

Equation (C6) makes clear that we will observe no additional
fluctuations if mk is size independent. In this case mk would
simply add a constant factor in front of Eq. (7). If, however,
the degradation of starch is dependent on size, we have in the
linear response

	m
k ≈ − ln M	v

k+1. (C7)

According to Eq. (17), the magnitude of fluctuations decreases
for large values of vk+1 and the decay in the dark is faster if M

becomes large.

For the linearized equation for the shocks 	y we can use

	
y

k+1 = 	m
k + 	

γ

k + 1

MN
	

y

k

+ · · · + H ′[Nv]v

My
	v

k+1 − H ′[v]v

NMy
	v

k. (C8)

Equation (C8) together with the linearization of Eq. (3)
can be used to determine the variance of y and v. After
multiplying Eq. (C8) with 	v

k+1 and averaging both sides
of the equation, the covariance Cov(v,y) is obtained. The
ratio of the covariance and variation coefficients Cv and Cy

defines the product-moment correlation coefficient Corr(v,y)
after Pearson:

Corr(v,y) = Cov(v,y)

CyCv

. (C9)

Here Corr(v,y) serves as an orientation for the strength of the
correlation between size and starch content. In the case that
mk depends on size and γk allows for asymmetric division, we
have

Cov(v,y) = E
[
	m

k 	v
k+1

] + E
[
	

γ

k 	v
k+1

]
MN − N

α−1

+ · · · + C2
v

MN

MN − 1

MN − N
α−1

× H ′[Nv]Nv − H ′[v]N
α−1

v

H [Nv] − H [v]
. (C10)

Averaging of 	m
k 	v

k+1 results in

E
[
	m

k 	v
k+1

] = − ln MC2
v . (C11)

The repeated bisection that produces 2n DCs implies that γk

is a function of 2n = 1/λk . The average of E[	γ

k 	v
k+1] =

E[	γ

k 	λ
k ] is thus dependent on the number of daughter cells.

We can determine E[γkλk] and obtain

E[γkλk] = 1

N
2 E

[
1 + 	

γ

k + 	λ
k + 	

γ

k 	λ
k

]
= 1 + E[	γ

k 	λ
k ]

N
2 . (C12)

Hence, it is possible to determine E[	γ

k 	λ
k ] by evaluating

E[γkλk]. The n-fold iteration leads to

γk = 1

2
γ (1) 1

2
γ (2) · · · 1

2
γ (n) = 1

2n

n∏
l=1

γ (l), (C13)

with γ l = 1 and C = const in each bisection. We find

E[γkλk] =
∞∑
n

[
πn

22n

n∏
l=1

γ (l)

]
. (C14)

The product can be approximated by
n∏

l=1

γ (l) =
n∏

l=1

1 + 	γ (l) ≈ 1 +
n∑

l=1

	γ (l)
. (C15)

It is further assumed that the random terms γ (l) describe
independent events. Consequently, averaging yields
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E[γkλk] = ∑∞
n

πn

22n and finally

E
[
	

γ

k 	λ
k

] = C2
λ. (C16)

Similarly, we find for Cγ

E[γkγk] = 1 + C2
γ

N
2 (C17)

and

E[γkγk] =
∞∑
n

[
πn

22n

n∏
l=1

(1 + 	γ (l)
)2

]

=
∞∑
n

[
πn

22n
(1 + C2)n

]
. (C18)

The variation coefficient for y is obtained after squaring and
averaging Eq. (C8). After the adiabatic elimination of 	

y

k for
N � 1 calculations further simplify. For Cλ = 0 and α = 1
we find the covariance

Cov(v,y) ≈ C2
v

MN

(
− ln MMN

MN − 1
+ H ′[Nv]Nv − H ′[v]v

H [Nv] − H [v]

)
(C19)

and the variation coefficient

C2
y ≈ C2

v

(
ln M + H ′[Nv]Nv − H ′[v]v

H [Nv] − H [v]

)2

. (C20)

Equation (C19) shows that Cov(v,y) and therefore Corr(v,y)
are decreasing functions in M , which can vanish for certain

1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

M

C
or

r(
v,
y)

constant degradation rates

size−dependent 
degradation rates

Cλ = 0.0 Cλ = 0.3

FIG. 6. (Color online) Correlation coefficient as a function of M .
The parameter M describes the difference of the growth process
between y and v. In the case of constant degradation the correlation
between the parameters is always close to 1, while size-dependent
degradation of starch decreases the correlation between both parame-
ters. The plot shows that the decrease of the correlation depends also
on the strength of the coefficient of variation (indicated here with C):
For Cλ = 0 the decrease of the correlation is slow at small M and and
it is stark at intermediate values of M; for Cλ = 0.3 the decrease of
the correlations is fast at small M and slow at large values of M .

values of the parameters N , v, and M (see Fig. 6). According
to Eq. (C19), there is a simple zero that defines the value M ′ for
which the product-moment correlation vanishes. For example,
the case H ≈ cv gives M ′ ≈ 2.71, while a concave function
h(v) entails a smaller value of M ′.
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[10] K. Bišová and V. Zachleder, J. Exp. Bot. 65, 2585 (2014).
[11] A. Garz, M. Sandmann, M. Rading, S. Ramm, R. Menzel, and

M. Steup, Biophys. J. 103, 1078 (2012).

[12] M. McAteer, L. Donnan, and P. C. L. John, New Phytol. 99, 41
(1985).

[13] H. Oldenhof, V. Zachleder, and H. van den Ende,
Folia Microbiol. 53, 52 (2007).

[14] P. Fantes and P. Nurse, in The Cell Cycle, edited by P. C. L. John
(Cambridge University Press, Cambridge, 1981), p. 11.

[15] M. M. Rading, T. A. Engel, R. Lipowsky, and A. Valleriani,
J. Stat. Phys. 145, 1 (2011).

[16] K. Matsumura, T. Yagi, and K. Yasuda, Biochem. Biophys. Res.
Commun. 306, 1042 (2003).

[17] G. Webb, Math. Biosci. 85, 71 (1987).
[18] N. Brenner, K. Farkash, and E. Braun, Phys. Biol. 3, 172 (2006).
[19] N. Brenner and Y. Shokef, Phys. Rev. Lett. 99, 138102 (2007).
[20] D. Ramkrishna, Math. Biosci. 12, 123 (1969).
[21] J. L. Spudich and R. Sager, J. Cell Biol. 85, 136 (1980).
[22] M. Kazunori, Y. Toshiki, H. Akihiro, S. Mikhail, and Y. Kenji,

J. Nanobiotechnol. 8, 23 (2010).
[23] T. Kuczek, Math. Biosci. 69, 159 (1984).
[24] B. H. Shah, J. D. Borwanker, and D. Ramkrishna, Math. Biosci.

31, 1 (1976).
[25] E. H. Harris, Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 363

(2001).

012711-11

http://dx.doi.org/10.1016/j.ymeth.2009.02.010
http://dx.doi.org/10.1016/j.ymeth.2009.02.010
http://dx.doi.org/10.1016/j.ymeth.2009.02.010
http://dx.doi.org/10.1016/j.ymeth.2009.02.010
http://dx.doi.org/10.1126/science.131.3412.1528
http://dx.doi.org/10.1126/science.131.3412.1528
http://dx.doi.org/10.1126/science.131.3412.1528
http://dx.doi.org/10.1126/science.131.3412.1528
http://dx.doi.org/10.1111/j.1365-313X.2010.04361.x
http://dx.doi.org/10.1111/j.1365-313X.2010.04361.x
http://dx.doi.org/10.1111/j.1365-313X.2010.04361.x
http://dx.doi.org/10.1111/j.1365-313X.2010.04361.x
http://dx.doi.org/10.1016/j.cell.2011.01.030
http://dx.doi.org/10.1016/j.cell.2011.01.030
http://dx.doi.org/10.1016/j.cell.2011.01.030
http://dx.doi.org/10.1016/j.cell.2011.01.030
http://dx.doi.org/10.1098/rsif.2012.0988
http://dx.doi.org/10.1098/rsif.2012.0988
http://dx.doi.org/10.1098/rsif.2012.0988
http://dx.doi.org/10.1098/rsif.2012.0988
http://dx.doi.org/10.1073/pnas.151588598
http://dx.doi.org/10.1073/pnas.151588598
http://dx.doi.org/10.1073/pnas.151588598
http://dx.doi.org/10.1073/pnas.151588598
http://dx.doi.org/10.1111/j.1469-8137.1985.tb03634.x
http://dx.doi.org/10.1111/j.1469-8137.1985.tb03634.x
http://dx.doi.org/10.1111/j.1469-8137.1985.tb03634.x
http://dx.doi.org/10.1111/j.1469-8137.1985.tb03634.x
http://dx.doi.org/10.1093/jxb/ert466
http://dx.doi.org/10.1093/jxb/ert466
http://dx.doi.org/10.1093/jxb/ert466
http://dx.doi.org/10.1093/jxb/ert466
http://dx.doi.org/10.1016/j.bpj.2012.07.026
http://dx.doi.org/10.1016/j.bpj.2012.07.026
http://dx.doi.org/10.1016/j.bpj.2012.07.026
http://dx.doi.org/10.1016/j.bpj.2012.07.026
http://dx.doi.org/10.1111/j.1469-8137.1985.tb03635.x
http://dx.doi.org/10.1111/j.1469-8137.1985.tb03635.x
http://dx.doi.org/10.1111/j.1469-8137.1985.tb03635.x
http://dx.doi.org/10.1111/j.1469-8137.1985.tb03635.x
http://dx.doi.org/10.1007/s10955-011-0305-9
http://dx.doi.org/10.1007/s10955-011-0305-9
http://dx.doi.org/10.1007/s10955-011-0305-9
http://dx.doi.org/10.1007/s10955-011-0305-9
http://dx.doi.org/10.1016/S0006-291X(03)01089-1
http://dx.doi.org/10.1016/S0006-291X(03)01089-1
http://dx.doi.org/10.1016/S0006-291X(03)01089-1
http://dx.doi.org/10.1016/S0006-291X(03)01089-1
http://dx.doi.org/10.1016/0025-5564(87)90100-3
http://dx.doi.org/10.1016/0025-5564(87)90100-3
http://dx.doi.org/10.1016/0025-5564(87)90100-3
http://dx.doi.org/10.1016/0025-5564(87)90100-3
http://dx.doi.org/10.1088/1478-3975/3/3/002
http://dx.doi.org/10.1088/1478-3975/3/3/002
http://dx.doi.org/10.1088/1478-3975/3/3/002
http://dx.doi.org/10.1088/1478-3975/3/3/002
http://dx.doi.org/10.1103/PhysRevLett.99.138102
http://dx.doi.org/10.1103/PhysRevLett.99.138102
http://dx.doi.org/10.1103/PhysRevLett.99.138102
http://dx.doi.org/10.1103/PhysRevLett.99.138102
http://dx.doi.org/10.1083/jcb.85.1.136
http://dx.doi.org/10.1083/jcb.85.1.136
http://dx.doi.org/10.1083/jcb.85.1.136
http://dx.doi.org/10.1083/jcb.85.1.136
http://dx.doi.org/10.1186/1477-3155-8-23
http://dx.doi.org/10.1186/1477-3155-8-23
http://dx.doi.org/10.1186/1477-3155-8-23
http://dx.doi.org/10.1186/1477-3155-8-23
http://dx.doi.org/10.1016/0025-5564(84)90082-8
http://dx.doi.org/10.1016/0025-5564(84)90082-8
http://dx.doi.org/10.1016/0025-5564(84)90082-8
http://dx.doi.org/10.1016/0025-5564(84)90082-8
http://dx.doi.org/10.1016/0025-5564(76)90037-7
http://dx.doi.org/10.1016/0025-5564(76)90037-7
http://dx.doi.org/10.1016/0025-5564(76)90037-7
http://dx.doi.org/10.1016/0025-5564(76)90037-7
http://dx.doi.org/10.1146/annurev.arplant.52.1.363
http://dx.doi.org/10.1146/annurev.arplant.52.1.363
http://dx.doi.org/10.1146/annurev.arplant.52.1.363
http://dx.doi.org/10.1146/annurev.arplant.52.1.363



