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Fluid flow enhances the effectiveness of toxin export by aquatic microorganisms: A first-passage
perspective on microvilli and the concentration boundary layer
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A central challenge for organisms during development is determining a means to efficiently export toxic
molecules from inside the developing embryo. For aquatic microorganisms, the strategies employed should be
robust with respect to the variable ocean environment and limit the chances that exported toxins are reabsorbed.
As a result, the problem of toxin export is closely related to the physics of mass transport in a fluid. In this
paper, we consider a model first-passage problem for the uptake of exported toxins by a spherical embryo. By
considering how macroscale fluid turbulence manifests itself on the microscale of the embryo, we determine that
fluid flow enhances the effectiveness of toxin export as compared to the case of diffusion-limited transport. In
the regime of a large Péclet number, a perturbative solution of the advection-diffusion equation reveals that a
concentration boundary layer forms at the surface of the embryo. The model results suggest a functional role for
cell surface roughness in the export process, with the thickness of the concentration boundary layer setting the
length scale for cell membrane protrusions known as microvilli. We highlight connections between the model
results and experiments on the development of sea urchin embryos.

DOI: 10.1103/PhysRevE.91.012709 PACS number(s): 87.16.dp, 47.63.mh, 47.27.T−

I. INTRODUCTION

Aquatic organisms face a variety of challenges in the course
of their development. Central challenges related to their growth
and development are the acquisition of nutrients from the
surrounding fluid and the disposal of waste products or other
toxic materials to the extracellular environment. As a result,
aquatic organisms have evolved a diverse set of strategies to
search for, acquire, and dispose of small molecules. Successful
strategies reflect fundamental constraints imposed by the
physical laws that govern the transport and motion of small
particles in a fluid. This line of physical reasoning has shaped
our understanding of a variety of problems in biology, from
bacterial chemotaxis [1,2] to the origin of multicellularity in
algae [3,4].

The present paper highlights a connection between the
physics of mass transport in a fluid flow and the problem
of removing toxic molecules or other waste products from
a developing embryo. The major question addressed can be
stated quite simply. A spherical embryo has identified a toxic
molecule for export to the extracellular fluid. Once exported,
the molecule will be subject to diffusion and advection in
the surrounding fluid. How far away from the body of the
embryo should the molecule be released, so as to reduce the
chances that the toxin encounters the embryo surface and is
reabsorbed? The view advocated in the present paper is that the
physics underlying this transport problem provides an answer
that may shed light on understanding the functional role of
cell surface roughness in embryonic development. Later we
will argue that the length of cell surface protrusions known
as microvilli (the surface roughness elements implicated in
the toxin export process) may be determined in part by
the thickness of the concentration boundary layer for the
advection-diffusion problem.
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The interplay between the thickness of the concentration
boundary layer and the size and functional significance of
biological structures has been documented in a variety of
cases [5]. In particular, our results are probably closest
conceptually to the findings of Short et al. on the role of fluid
flow in enhancing nutrient uptake by Volvox carteri [4]. In that
work, it was demonstrated that beyond a critical bottleneck
radius, diffusion alone is insufficient to meet the metabolic
needs of a growing algae colony. By actively stirring the fluid,
the colony is able to overcome this nutrient deficiency. The
concentration boundary layer thickness is comparable to the
length of flagella, the stirring rods responsible for fluid mixing.

In the present case of sea urchin embryogenesis, several
recent experiments have highlighted the important role that
cell surface roughness plays in toxin export. Early in sea
urchin development, microvilli lengthen, and there is a
coincident localization of transport receptors to the tips of the
microvilli [6,7]. These transport receptors act to export toxic
molecules from the interior of the cell to the extracellular
fluid [8,9]. This suggests that the localization of transport
receptors to the tips of the microvilli may serve a functional
role in the export process. Releasing the toxic molecules at
a distance h (the microvilli length) from the cell membrane
surface may reduce the chances that exported toxins are
subsequently reabsorbed by the cell.

In this paper, we investigate the efficacy of the tip
localization strategy by considering a model first-passage
problem [10] for the uptake of exported toxins by a spherical
embryo. In Sec. II we consider the regime of diffusion-limited
transport. We demonstrate that tip localization does not confer
a significant advantage to the embryo in this case. In general,
the transport of toxic molecules in the extracellular fluid will
depend not only on diffusion, but also on fluid advection. We
quantify the fluid flow surrounding the embryo in Sec. III.
In Sec. IV we discuss the concentration boundary layer that
forms when the toxin is advected along with the flow. We
revisit the first-passage problem in the case of strong advection
in Sec. V. A perturbative solution of the advection-diffusion
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equation in the regime of a large Péclet number reveals that
fluid flow enhances the effectiveness of the tip localization
strategy. In Sec. VI we discuss the effect of surface roughness
on the first-passage probability. We conclude in Sec. VII by
highlighting connections between the model results and recent
experiments on the development of sea urchin embryos.

II. THE CASE OF PURE DIFFUSION

Consider a spherical embryo of radius R ∼ 40 μm. In
the absence of fluid flow, a toxin released from the tip
of a microvilli will diffuse in the extracellular fluid. The
diffusion coefficient of the toxin in the extracellular fluid is
D ∼ 10−5 cm2 s−1, characteristic of small molecules in water.
The goal is to determine the probability that a released toxin
will be reabsorbed by the cell. In this paper, we consider the
case of a perfect spherical absorber. This approximation is not
as severe as one might imagine, as the perfectly absorbing
sphere is a relatively good approximation to the case of
a patchy reactive surface [1]. In what follows, we do not
treat the chemical kinetics associated with the absorption
process. For a discussion of toxin transport in the sea urchin
embryo that includes chemical kinetics, see Chapter 5 of [11].
In the model formulation, all molecules that reach the cell
surface are absorbed. This constitutes a worst case scenario
for the cell. As a result, the first-passage probability calculated
will set an upper bound on the true absorption probability.
In addition, at the outset we will ignore reabsorption by
the microvilli themselves, and only consider absorption by
the spherical surface. In this approximation, the only role
of the microvilli is to release the toxin molecules at a distance
h above the surface of the cell. In Sec. VI we will revisit this
approximation and discuss the role of surface roughness on
the absorption probability in more detail.

The toxin concentration C satisfies the diffusion equation

∂C

∂t
= D∇2C. (1)

Defining the dimensionless length ξ = r/R, concentration
c = R3C, and time τ = (Dt)/R2 yields

∂c

∂τ
= ∇2

ξ c. (2)

∇2
ξ c = 1

ξ 2
∂
∂ξ

(ξ 2 ∂c
∂ξ

) + 1
ξ 2 sin θ

∂
∂θ

(sin θ ∂c
∂θ

) + 1
ξ 2 sin2 θ

∂2c
∂φ2 denotes

the Laplacian with respect to the dimensionless radial variable
ξ . Considering the Laplace transform of the concentration
c̃ = ∫ ∞

0 e−sτ c dτ gives the partial differential equation

∇2
ξ c̃ − sc̃ = −c(τ = 0) = −δ3(�ξ − �ξ ′). (3)

The initial condition corresponds to a point source at the
microvilli tip, and it reveals that the Laplace transform of
the concentration is the Green’s function for the modified
Helmholtz operator. A solution in spherical polar coordinates
can be obtained by introducing the expansion

c̃ =
∞∑

�=0

�∑
m=−�

a�m(ξ,ξ ′)Y ∗
�m(θ ′,φ′)Y�m(θ,φ). (4)

The resulting radial equation for a�m(ξ,ξ ′) is solved with
the absorbing boundary condition at the cell surface,
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FIG. 1. (Color online) The first-passage probability 	D as a
function of the microvilli tip location ξ ′ = 1 + h

R
for the case of pure

diffusion. The microvilli have length h and the embryo has radius R.

a�m(ξ = 1,ξ ′) = 0, and requiring the solution to be finite
at infinity. The solution can be expressed in terms of the
spherical modified Bessel functions [12] i�(x) = √

π
2x

I�+1/2(x)

and k�(x) =
√

2
πx

K�+1/2(x) as

a�m(ξ,ξ ′) = γ k�(γ ξ>)

[
i�(γ ξ<) − i�(γ )

k�(γ )
k�(γ ξ<)

]
, (5)

where γ 2 = s. Here ξ< (ξ>) represents the smaller (larger) of
ξ and ξ ′. The first-passage probability is determined from the
time integral of the diffusive current density impinging on the
sphere surface,

	D =
∫ ∞

0
dt

∫∫
�J · �da. (6)

Evaluating �J · �da = D ∂C
∂r

|r=RR2 sin θ dθ dφ on the surface
of the sphere, the first-passage probability can be written
simply in terms of the Laplace transform of the dimensionless
concentration,

	D = lim
s→0

∫ π

0
sin θ dθ

∫ 2π

0
dφ

∂c̃

∂ξ

∣∣∣∣
ξ=1

= 1

ξ ′ . (7)

This remarkably simple and well-known result [10] is illus-
trated in Fig. 1. The details of the derivation are outlined in
Appendix A. The result indicates that, in the case of pure
diffusion, tip localization is not a very effective strategy for
reducing the chances that exported toxins get reabsorbed. In the
dimensionless coordinates, the tip of the microvilli is located
at ξ ′ = 1 + h

R
. With microvilli of length h ∼ 2 μm and an

embryo of radius R ∼ 40 μm, the absorption probability is
	D = 0.95. Examining the structure of the microvilli solely
through the lens of toxin export, if transport were diffusion-
limited, one might expect significantly longer microvilli than
what is observed experimentally.

012709-2



FLUID FLOW ENHANCES THE EFFECTIVENESS OF . . . PHYSICAL REVIEW E 91, 012709 (2015)

III. FLUID FLOW

In reality, the transport of toxins in the extracellular fluid is
determined not only by diffusion, but also by advection. The
dimensionless Péclet number Pe characterizes the competition
between advection and diffusion,

Pe = RU0

D
. (8)

Here U0 is a characteristic flow velocity, which will be
discussed in more detail shortly. We define the dimensionless
fluid velocity as �u = �U

U0
. For an incompressible fluid �∇ξ · �u =

0, and the dimensionless toxin concentration satisfies

∂c

∂τ
+ Pe �u · �∇ξ c = ∇2

ξ c. (9)

An important property of the fluid flow is the Reynolds number

Re = RU0

ν
, (10)

where ν ∼ 10−6 m2 s−1 is the kinematic viscosity of ocean
water. To proceed, we investigate the nature of the fluid
flow in the vicinity of the embryo. In particular, the wave-
swept rocky shore that is the habitat for the sea urchin
is an environment where turbulent mixing takes place on
the macroscale [13,14]. The question is how this turbulence
manifests itself on the microscale of the embryo [15–17].
Kolmogorov’s first similarity hypothesis states that small-scale
fluid motion is universal and determined by two parameters,
namely the kinematic viscosity ν (m2 s−1) and the turbulent
kinetic energy dissipation rate ε (m2 s−3). The unique length
η = (ν3/ε)1/4 and time τη = (ν/ε)1/2 scales characterize the
smallest dissipative eddies in the flow [18]. In particular, the
size of the smallest turbulent eddies is ∼2πη [15]. As a result,
the smallest eddies are at least an order of magnitude larger
than the embryo, and the local fluid environment of the embryo
is one characterized by velocity gradients ∼1/τη.

To calculate the first-passage probability, we need to specify
the specific form of the fluid velocity appearing in Eq. (9). In
what follows, we will work with the model introduced earlier
by Batchelor [19,20]. The model is applicable in the present
case because Re 	 1, and we are considering the case of an
isolated embryo. For the calculation, only the fluid velocity
relative to the embryo matters. This velocity is due in part
to the motion of the embryo through the fluid as a result
of an applied force and in part due to the ambient motion
of the fluid, which would be present even in the absence
of the embryo. The former takes into account gravity and
includes the effect of buoyancy, since in general the density
of the embryo will differ from that of the fluid. One expects
that in an otherwise quiescent fluid, this density mismatch
would lead a nonmotile embryo to sink under the influence
of gravity. This behavior is observed experimentally in sea
urchin embryos. For example, the sinking velocity of Strongy-
locentrotus purpuratus is V ∼ 0.4 mm s−1 [21]. Interestingly,
this is comparable to the embryo’s swimming velocity later
in development. The second contribution to the fluid velocity
stems from the universal small-scale motion of the fluid as
a result of turbulent dissipation discussed above. These two
sources make independent contributions to the fluid velocity
in the vicinity of the embryo. Relative to the velocity of the

embryo center, the fluid velocity �U can be expressed as [20]

�U = �V ·
[(

3

4ξ
+ 1

4ξ 3
− 1

)
I +

(
3

4ξ
− 3

4ξ 3

)
�ξ �ξ

]
+ R � · �ξ

+R �ξ · E ·
[(

1 − 1

ξ 5

)
I − 5

2

1

ξ 3

(
1 − 1

ξ 2

)
�ξ �ξ

]
. (11)

Here I is the unit tensor. The first term accounts for the afore-
mentioned sinking behavior due to gravity and the disturbance
motion this generates in the flow. As for the contribution from
the ambient fluid motion (subscript a for ambient), the velocity
gradient tensor �∇ �Ua = E + � corresponds to the ambient
fluid motion and has been decomposed into its symmetrical (E)
and antisymmetrical (�) parts. The antisymmetric part �ij =
− 1

2εijkωk represents the rigid body rotation of the embryo
with angular velocity 1

2 �ω, where �ω = �∇ × �Ua is the vorticity
of the ambient flow [19]. Here εijk is the Levi-Civita symbol.
As discussed in [20], in the low Reynolds number regime
the embryo will rotate with the ambient fluid at all times. In
contrast, the embryo cannot follow the straining motion of
the ambient fluid represented by the symmetric rate of strain
tensor E, which generates a disturbance motion in the flow.

This motivates defining the characteristic velocity U0 =
(Rω)/2 and hence the associated Reynolds number,

Re = R2ω

2ν
, (12)

and the Péclet number,

Pe = R2ω

2D
. (13)

The microscale velocity gradient is related to the angular
velocity as 1/τη = ω/2. We note that there is a great deal
of variation, both spatial and temporal, in the value of ε and
hence ω. A characteristic value for the upper mixed layer of the
ocean might be ε ∼ 10−6 m2 s−3 [15–17], whereas an embryo
in a surge channel might be subject to instantaneous values a
million times larger, ε ∼ 1 m2 s−3 [13,14]. Using the value of
the kinematic viscosity of ocean water, ν, and an appropriate
range of values for the kinetic energy dissipation rate, ε, one
can see from Fig. 2 that the regime of interest is one in which
Re 	 1, but Pe 
 1. Note that the condition Re 	 1 justifies
the choice of a model in which the fluid velocity is obtained
as a solution of the Stokes equation.

In what follows, we will calculate the first-passage proba-
bility perturbatively, making use of the fact that the quantity
α = 1/Pe 	 1. In spherical polar coordinates, the resulting
partial differential equation for the dimensionless concentra-
tion Eq. (9) is

α
∂c

∂τ
+ uξ

∂c

∂ξ
+ uθ

ξ

∂c

∂θ
+ uφ

ξ sin θ

∂c

∂φ
= α∇2

ξ c. (14)

The dimensionless velocity components (�u = �U/U0 and �v =
�V /U0) can be calculated as

uξ = (A + B)vξ + (F − G)eξξ , (15)

uθ = Avθ + Feξθ , (16)

uφ = Avφ + ξ sin θ + Feξφ. (17)
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FIG. 2. (Color online) The dimensionless Péclet number Pe (blue
line) and Reynolds number Re (red line) as a function of the turbulent
kinetic energy dissipation rate ε (m2 s−3).

Here we have introduced the shorthand notation

A = 3

4ξ
+ 1

4ξ 3
− 1, (18)

B = 3

4ξ

(
1 − 1

ξ 2

)
, (19)

F = ξ − 1

ξ 4
, (20)

G = 5

2ξ 2

(
1 − 1

ξ 2

)
. (21)

In addition, we have introduced the dimensionless velocity
gradient tensor �∇ξ �ua = e + ψ with �ua = �Ua/U0, e = R

U0
E,

and ψ = R
U0

�. Note that the rotation of the embryo with the

ambient fluid corresponds to �φr = 1
2ω sin θ and hence ψφr =

sin θ .
The small quantity α multiplying the highest order spatial

derivative in Eq. (14) is the hallmark of a boundary layer
problem. Physically this is an indication that the toxin concen-
tration changes from its far-field value to the value c = 0 at the
surface of the embryo (ξ = 1) in a thin concentration boundary
layer in the vicinity of the surface. A piece of information
of central importance to the current study is the dependence
of the concentration boundary layer thickness on the Péclet
number Pe, which was a result originally obtained by Lévêque
in 1928 [22]. We will discuss this result in much greater detail
in Sec. IV.

Within the concentration boundary layer, the dominant fluid
motion is an azimuthal rotation, which corresponds to a solid
body rotation of the embryo with the ambient fluid. Superim-
posed on top of this rotation is a small fluctuation. To proceed
with the analysis, we move to a reference frame rotating with
the embryo, denoting the fluid velocity components in this

frame by
∗
uγ with γ ∈ {ξ,θ,φ}. The velocity components in

the rotating frame can be obtained by removing the term
ξ sin θ from uφ , and making the replacement φ → φ − Pe τ .
In the rotating frame, defining a Cartesian coordinate system

(x1,x2,x3) with the x3 direction along the direction of the
ambient vorticity, the velocity components are obtained from
the following relations:

∗
vξ = v1 sin θ cos(φ − Pe τ ) + v2 sin θ sin(φ − Pe τ )

+ v3 cos θ, (22)

∗
vθ = v1 cos θ cos(φ − Pe τ ) + v2 cos θ sin(φ − Pe τ )

− v3 sin θ, (23)

∗
vφ = −v1 sin(φ − Pe τ ) + v2 cos(φ − Pe τ ), (24)

∗
eξξ = e11 sin2 θ cos2(φ − Pe τ ) + e22 sin2 θ sin2(φ − Pe τ )

+ e33 cos2 θ + e12 sin2 θ sin[2(φ − Pe τ )]

+ e13 sin(2θ ) cos(φ − Pe τ )

+ e23 sin(2θ ) sin(φ − Pe τ ), (25)

∗
eξθ = cos(2θ )[e13 cos(φ − Pe τ ) + e23 sin(φ − Pe τ )]

+ 1

4
sin(2θ ){e11 + e22 − 2e33 + (e11 − e22)

× cos[2(φ − Pe τ )] + 2e12 sin[2(φ − Pe τ )]}, (26)

∗
eξφ = cos θ [e23 cos(φ − Pe τ ) − e13 sin(φ − Pe τ )]

+ e12 sin θ cos[2(φ − Pe τ )]

+ 1
2 (e22 − e11) sin[2(φ − Pe τ )]. (27)

In principle, the quantities vi , eij ({i,j} ∈ {1,2,3}), and Pe
are functions of time, fluctuating over a time scale τ ∼ 1/Pe
corresponding to the eddy turnover. Following Batchelor [20],
we calculate the average velocity field in the vicinity of the
embryo by averaging over a time scale τlong 
 1/Pe that is
long compared to the fluctuation time scale,

〈∗
uγ 〉 = 1

τlong

∫ τlong

0

∗
uγ dτ. (28)

Assuming that vi , eij , and Pe are stationary random functions
of τ , the average of many terms is zero, like vi cos(φ − Pe τ )
and eij sin(φ − Pe τ ). The result for the averaged components
is

〈∗
vξ 〉 = 〈v3〉 cos θ, (29)

〈∗
vθ 〉 = −〈v3〉 sin θ, (30)

〈∗
vφ〉 = 0, (31)

〈∗
eξξ 〉 = 〈e33〉, (32)

〈∗
eξθ 〉 = − 3

4 sin(2θ )〈e33〉, (33)

〈∗
eξφ〉 = 0. (34)

Here we have invoked the statistical isotropy of the small-scale
turbulence, and the incompressibility of the ambient fluid,
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x2

x3

FIG. 3. (Color online) The time-averaged velocity field 〈
∗
�u〉 in the

(x2,x3) plane (red arrows). Velocity streamlines starting at the tips of
microvilli (ξ ′ = 1.05) are shown as blue lines.

e11 + e22 + e33 = 0. As discussed in [20], 〈v3〉 = 0. As a
result, the time-averaged, dimensionless velocity field depends
on a single parameter 〈e33〉, which for locally homogeneous
and isotropic turbulence takes on the value 〈e33〉 � 0.18,

〈∗
uξ 〉 = (F − G)〈e33〉, (35)

〈∗
uθ 〉 = − 3

4F sin(2θ )〈e33〉, (36)

〈∗
uφ〉 = 0. (37)

The enhancement of mass transfer in the case of strong
advection is now clear. Within the concentration boundary
layer, the average fluid flow consists of motion toward the
north (θ < π/2) or south (θ > π/2) pole and a radial outflow
(see Fig. 3). Toxin molecules released at the tips of microvilli
will be advected away from the embryo, which will reduce
their absorption probability.

IV. CONCENTRATION BOUNDARY LAYER

For the purpose of completeness and clarity, in this section
we provide a pedagogical description of the concentration
boundary layer phenomenon. Since boundary layers are a
classic problem in fluid mechanics about which a great deal
has been written, we will not attempt a general review of
the subject, and instead we will restrict our discussion to
the problem at hand. However, we note several references
for the benefit of readers interested in the historical context
of the subsequent mathematical development. The result for
the concentration boundary layer thickness [Eq. (40)] dates
to Lévêque [22], and the matched asymptotic analysis was
originally presented in the context of Stokes flow by Acrivos
and Taylor [23]. An introduction to the subject is presented in
the book by Van Dyke [24]. A modern approach to the subject
based on the perturbative renormalization group is presented
by Chen, Goldenfeld, and Oono [25]. The paper of Veysey

and Goldenfeld compares the renormalization group method-
ology to the matched asymptotic analysis, and it includes a
wealth of information about the historical development of the
subject [26].

In the present context, with the time-averaged velocity
field as input, the advection-diffusion equation for the toxin
concentration reads

α
∂c

∂τ
+ 〈∗

uξ 〉 ∂c

∂ξ
+ 〈∗

uθ 〉
ξ

∂c

∂θ
= α∇2

ξ c. (38)

To investigate the quantitative implications of the boundary
layer, we invoke the technique of dominant balance [25].
Namely, we determine a rescaling of the radial variable
ξ = 1 + αnρ which stretches out the boundary layer. For the
purposes of our first-passage calculation, we find it useful to
rescale the dimensionless time as τ = αmT , but not the angular
variables θ and φ. At this point, the exponents n and m are
unknown, but we are looking for a solution in which the lowest
order governing equation for the concentration is independent
of α and contains temporal, advective, and diffusive terms.
The result of the rescaling is

α2n−m ∂c

∂T
+ αn−1〈∗

uξ 〉 ∂c

∂ρ
+ α2n−1

(1 + αnρ)
〈∗
uθ 〉 ∂c

∂θ

= ∂2c

∂ρ2
+ 2αn

(1 + αnρ)

∂c

∂ρ
+ α2n

(1 + αnρ)2

1

sin θ

∂

∂θ

×
(

sin θ
∂c

∂θ

)
+ α2n

(1 + αnρ)2

1

sin2 θ

∂2c

∂φ2
. (39)

At this point, it is important to remember (see Appendix B)
that when expressed in terms of the radial variable ρ, the

velocity components 〈∗
uξ 〉 ∼ O(α2n) and 〈∗

uθ 〉 ∼ O(αn) have
nontrivial scaling with α. The correct choice of exponents for
the rescaling is seen to be n = 1/3 and m = 2/3. In fact, the
thickness of the concentration boundary layer, �, is determined
by the exponent n as (see Fig. 4) [22,23]

� = R Pe− 1
3 . (40)

FIG. 4. (Color online) The concentration boundary layer thick-
ness � = R Pe− 1

3 as a function of Pe. At large Pe, the length of
embryonic microvilli h ≈ �.
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We can now obtain a perturbative solution for the concen-
tration in the form c = ∑∞

k=0 α
k
3 ck . Inserting this expansion

into Eq. (39) and collecting terms of the same order in α
1
3 , one

obtains a system of coupled equations for the {ck}. Defining
μ = cos θ and the parameter β = 15

2 〈e33〉, the equations
governing c0 and c1 are

∂c0

∂T
+ βρ2 ∂c0

∂ρ
+ βρμ(1 − μ2)

∂c0

∂μ
− ∂2c0

∂ρ2
= 0, (41)

∂c1

∂T
+ βρ2 ∂c1

∂ρ
+ βρμ(1 − μ2)

∂c1

∂μ
− ∂2c1

∂ρ2

= 8

3
βρ3 ∂c0

∂ρ
+ 3βρ2μ(1 − μ2)

∂c0

∂μ
+ 2

∂c0

∂ρ
. (42)

The perturbation program consists in calculating c0 from
Eq. (41), and using the solution to solve the inhomogeneous
equation for c1, Eq. (42). The solutions for c1 and c0 can
then be utilized to calculate c2, and so on [26]. Following
the common practice in boundary layer problems [27,28],
we define similarity variables η = ρ/g and χ = T/g2, where
the positive function g(μ) captures the angular dependence
of the boundary layer. In terms of this similarity transforma-
tion, the zeroth-order equation becomes

∂c0

∂χ
+ βη2

(
g3 − μ(1 − μ2)g2 dg

dμ

)
∂c0

∂η
− ∂2c0

∂η2
= 0. (43)

Provided there is a solution in which the term in large
parentheses is equal to a constant,

g3 − μ(1 − μ2)g2 dg

dμ
= �, (44)

the governing equation becomes

∂c0

∂χ
+ β�η2 ∂c0

∂η
− ∂2c0

∂η2
= 0. (45)

Without loss of generality, we make the choice � = 1. The
differential equation for g(μ) is easily solved, with ϒ a
constant of integration,

g(μ) =
(

1 + ϒ
μ3

(1 − μ2)
3
2

) 1
3

. (46)

We require that g(μ) be bounded, except at the poles μ =
±1 where the boundary layer scaling may break down. As
a result, we make the choice ϒ = 1 for μ � 0 and ϒ = −1
for μ < 0.

Before tackling the first-passage problem, we highlight the
physics of the concentration boundary layer by considering the
steady-state solution ( ∂c0

∂χ
= 0) for the concentration profile in

the presence of a perfectly absorbing sphere (c0 = 0 at η = 0)
with toxin concentration c∞ far away from the sphere (see
Figs. 5 and 6). The solution is readily obtained in terms of the
incomplete Gamma function �(a,z) as

c0 = c∞

(
1 − �

(
1
3 ,

β

3 η3
)

�
(

1
3

)
)

, (47)
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FIG. 5. (Color online) The steady-state concentration profile
c/c∞, normalized by the far-field concentration c∞, as a function
of the dimensionless radial variable ξ . The case of pure diffusion
(Pe = 0), Eq. (69), is shown as a blue line. The concentration
profile (along the line θ = π/4) in the advection-dominated regime
(Pe = 100), Eq. (47), is shown as a red line.

�(a,z) =
∫ ∞

z

ta−1e−t dt. (48)

To quantify the mass transfer from the sphere in the case of
strong advection, we calculate the zeroth-order result for the
dimensionless Sherwood number,

Sh0 = 1

4πc∞

∫ π

0
sin θ dθ

∫ 2π

0
dφ

∂c0

∂ξ

∣∣∣∣
ξ=1

. (49)

FIG. 6. (Color online) Steady-state concentration contours of
c/c∞ in the (x2,x3) plane for the case of strong advection (Pe =
100). Note the thickness of the concentration-boundary layer. The
concentration rapidly approaches its far-field value (c/c∞ = 1) in a
thin layer surrounding the embryo.
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FIG. 7. (Color online) Steady-state concentration contours of
c/c∞ in the (x2,x3) plane for the case of pure diffusion (Pe = 0).
Note the thickness of the concentration-boundary layer. At twice the
embryo radius, the concentration has approached roughly half of its
far-field value (c/c∞ = 1).

Using the above results, we find

Sh0 =
(

3
2
3 β

1
3 I

2 �( 1
3 )

)
Pe

1
3 ≈ 0.59 Pe

1
3 , (50)

I =
∫ 1

−1

dμ

g(μ)
≈ 1.66. (51)

Based on the mathematical equivalence of the mass and heat
transfer problems, Eq. (50) can be compared to the result of
Acrivos and Taylor for the dependence of the Nusselt number
Nu on the Péclet number Pe [23]. The exponent 1/3 is the same
in both cases, but the dimensionless prefactor differs (0.99
versus 0.59), which is unsurprising since the fluid models are
not the same in the two cases. Acrivos and Taylor also report
the leading-order corrections to this result for small Reynolds
number Re, whereas in the present section we restrict our
attention to the case Re = 0.

Defined in the same manner, ShD = 1 for the case of
pure diffusion (Pe = 0), which can be readily obtained
using the appropriate diffusive concentration profile c =
c∞(1 − 1

ξ
) for the given boundary conditions (see Fig. 7).

This highlights the advective enhancement of mass trans-
fer away from the sphere ∼ Pe

1
3 at Pe 
 1, with the

exponent 1/3 coming from the boundary layer analysis.

V. THE CASE OF STRONG ADVECTION

We now consider the first-passage problem for the case of
strong advection. For the purposes of the present calculation,
we consider a spatial domain where all toxin molecules
released at the tips of microvilli are eventually captured with
probability 1. To do so, consider two perfectly absorbing
surfaces, the first at the surface of the spherical embryo
(η = 0), and a second at some prescribed distance (η = η+).
We define the time-integrated concentration

C0 =
∫ ∞

0
c0 dχ. (52)

The equation governing C0 becomes

c0(χ = ∞) − c0(χ = 0) + βη2 ∂C0

∂η
− ∂2C0

∂η2
= 0. (53)

Since all toxin molecules are absorbed with probability 1,
c0(χ = ∞) = 0. The initial condition corresponding to a
point source at the microvilli tip is c0(χ = 0) = δ3(�ξ − �ξ ′).
By considering the sequence of variable transformations
introduced earlier, (ξ,τ ) → (ρ,T ) → (η,χ ), and transforming
the initial condition, we arrive at the governing equation,

∂2C0

∂η2
− βη2 ∂C0

∂η
= −

δ
(
η − g(μ′)

g(μ) η
′)δ(μ − μ′)δ(φ − φ′)

α
1
3 g(μ)(1 + α

1
3 g(μ)η)2

.

(54)

The two independent solutions to the homogeneous equation
[right-hand side of Eq. (54) = 0] are a constant C(1)

0 = κ ,
and the incomplete Gamma function C(2)

0 = �( 1
3 ,

β

3 η3). The
solution for C0 with absorbing boundary conditions can
evidently be written in the form

C0 = Q

[
�

(
1

3
,
β

3
η3

<

)
− �

(
1

3

)]

×
[
�

(
1

3
,
β

3
η3

>

)
− �

(
1

3
,
β

3
η3

+

)]
. (55)

Here η< (η>) is the smaller (larger) of η and η′. To determine
the constant Q, we integrate both sides of the governing equa-
tion

∫ 1
−1 dμ

∫ 2π

0 dφ
∫ η=η′+ε

η=η′−ε
dη to determine the discontinuity

in the first derivative of C0,

4π
∂C0

∂η

∣∣∣∣
η=η′+ε

η=η′−ε

= − 1

α
1
3 g(μ′)(1 + α

1
3 g(μ′)η′)2

. (56)

A short calculation gives

Q = − e
β

3 (η′)3

4π3
2
3 (βα)

1
3
[
�

(
1
3

) − �( 1
3 ,

β

3 (η+)3)
]
g(μ′)(1 + α

1
3 g(μ′)η′)2

. (57)

The first-passage probability is calculated from the concen-
tration as

	0 =
∫ ∞

0
dτ

∫ 1

−1
dμ

∫ 2π

0
dφ

∂c0

∂ξ

∣∣∣∣
ξ=1

. (58)

Making the same sequence of variable transformations in-
troduced earlier, the result can be written in terms of the
time-integrated concentration C0 as

	0 = α
1
3

∫ 1

−1
dμ

∫ 2π

0
dφ

∂C0

∂η

∣∣∣∣
η=0

g(μ). (59)
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The result of the angular integration gives

	0 = e
β

3 (η′)3
�( 1

3 ,
β

3 (η′)3)J
2
[
�

(
1
3

) − �( 1
3 ,

β

3 (η+)3)
]
g(μ′)(1 + α

1
3 g(μ′)η′)2

,

(60)

J =
∫ 1

−1
dμg(μ) ≈ 2.97. (61)

The result of the calculation can be greatly simplified by
changing back to our original variables, and noting that
ez �( 1

3 ,z) ≈ z− 2
3 + O(z− 4

3 ) for z 
 1. This approximation is
justified in our case since α = 1/Pe 	 1 and therefore z =
β(ξ ′−1)3

3αg(μ′)3 
 1. Taking the outer absorbing surface to infinity,
η+ → ∞, we arrive at the final result:

	0 ≈
(

3
2
3 J

2�( 1
3 )β

2
3

)
g(μ′)

(ξ ′)2(ξ ′ − 1)2
Pe− 2

3 + O(Pe− 4
3 ). (62)

The result can be interpreted simply as follows. The first
term in parentheses is a dimensionless number of order unity,

( 3
2
3 J

2�( 1
3 )β

2
3

) ≈ 0.94, which depends on the properties of the

microscale velocity gradient (β = 15
2 〈e33〉) and the angular

dependence of the concentration boundary layer thickness
(through J ). The second term gives the dependence of the
first-passage probability on the location (μ′) and length (ξ ′)
of the microvillus that releases the toxin. The last term gives
the dependence of the first-passage probability on the Péclet
number ∼ Pe− 2

3 . Note the dramatic reduction (see Fig. 8) of

1 1.2 1.4 1.6 1.8 2
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0.4

0.6

0.8
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ξ

Π

ΠD

Π0

FIG. 8. (Color online) The first-passage probability 	 as a func-
tion of the microvilli tip location ξ ′. The result for the case of pure
diffusion (Pe = 0), 	D , is shown as a blue line. The zeroth-order
result for the case of strong advection (Pe = 2062), 	0, is shown
as a red line. Note that in the advection-dominated case, the values
of ξ ′ over which there is a rapid decrease in absorption probability
agree quite well with the length of embryonic microvilli. Microvilli
of height h = 2, 5, and 10 μm correspond to ξ ′ = 1.05, 1.125, and
1.25, respectively.

the first-passage probability as compared to the earlier case of
diffusive transport (Pe = 0), for which 	D = 1/ξ ′.

Comparing to the result in the case of pure diffusion,
Eq. (7), we see that in the advection-dominated regime,
the first-passage probability is reduced as compared to the
purely diffusive first capture probability. One can continue
the perturbation program by calculating more of the {ck} and
the leading-order corrections to the first-passage probability.
Provided that α

1
3 = Pe− 1

3 is small, these corrections will not
change the qualitative result of the zeroth-order calculation.

The drastic reduction of uptake probability for microvilli
lengths in quantitative agreement with experimental measure-
ments of microvilli structure supports a functional significance
to tip localization of toxin transporters. When viewed through
the lens of the toxin transport problem, one might say that the
microvilli length has been evolutionarily selected to probe
the thickness of the concentration boundary layer. Toxin
molecules released at the tips of microvilli will be advected
away from the embryo, decreasing the probability that they
will be reabsorbed and have to be exported again, which
is energetically costly for the embryo. Within the biological
transporter literature, this sequence of export and subsequent
reabsorption is referred to as futile cycling [29].

Within the present first-passage formalism, we can quantify
the cost associated with futile cycling of toxin molecules. The
cost to the embryo to efflux a single toxin molecule is two
molecules of ATP. As a result, the average number of ATP
consumed to efflux a single toxin molecule is

〈NATP〉 =
∞∑

n=1

2n	n−1(1 − 	) = 2

1 − 	
. (63)

As demonstrated in Fig. 9, the effect of reducing the absorption
probability is compounded when computing the cost of the
transporter system for the embryo, with a significant reduction

1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

ξ

NAT P

Pe = 2062

Pe = 0

FIG. 9. (Color online) The average number of ATP molecules
〈NATP〉 required to efflux a single toxin molecule as a function of
the microvilli tip location ξ ′. The result for the case of pure diffusion
(Pe = 0) is shown as a blue line. The zeroth-order result for the case
of strong-advection (Pe = 2062) is shown as a red line.
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in the energy budget for the transporter system provided by
the enhanced mass transport at large Pe.

VI. SURFACE ROUGHNESS

Thus far in our discussion, the role of the microvilli has been
simply to displace the toxin above the surface of the embryo,
where it is subsequently released into the extracellular fluid.
In our calculations of the first-passage probability, we have
only considered absorption on the smooth spherical surface of
the embryo. In this approximation, the phantom microvilli do
not contribute to the surface area available for absorption, and
they do not modify the fluid flow in the vicinity of the embryo.
In this section, we discuss how modifying these assumptions
might affect the first-passage probabilities.

To begin, we collect some results about the microvillar
architecture during sea urchin embryogenesis [see Figs. 10(a)
and 10(b)]. The microvilli are solitary, unbranched, cylindrical
cell membrane protrusions. There is substantial heterogeneity
in the length of microvilli on the sea urchin embryo, with
at least two populations of microvilli [30,31]. The short mi-
crovilli (SMV) have a length of hSMV � 2–3 μm, comparable
to the thickness of the hyaline layer that surrounds the em-
bryo [6,32]. The elongated microvilli (EMV) are substantially
longer, spanning the perivitelline space between the embryo
surface and the fertilization envelope. Their length depends
on the width of the perivitelline space, in Strongylocentrotus
purpuratus hEMV � 35 μm. The radius � � 0.1 μm of the
microvilli is the same for both populations (SMV and EMV).
According to studies on Strongylocentrotus droebachiensis,
there are N ≈ 3 × 105 microvilli covering the embryo [31].

The presence of microvilli increases the effective surface
area of the embryo available for absorption, and as a result
it should increase the first-passage probability. The embryo’s

RR

c = 0 on smooth surface

c = 0

c = 0 on smooth surface

on rough surface

h ≈ 2 μm

λ

ξ = 1

ξ = 1 + λ

microvilli

≈ 0.1 μm
(a) (b)

(c)

FIG. 10. (Color online) (a) Hundreds of thousands of microvilli
(short lines) roughen the surface of a spherical embryo of radius
R ≈ 40 μm in a microscale velocity gradient (blue arrows). (b)
Schematic of an individual microvillus, a cylindrical cell membrane
protrusion of radius � ≈ 0.1 μm and length h ≈ 2 μm. (c) In the
multiple scattering calculation, the effect of surface roughness is to
displace the smooth surface by a distance λ.

total surface area is

Aembryo = 4πR2 + N (2π�h). (64)

The first contribution is from the smooth spherical surface, and
the second takes into account the cylindrical microvilli with
average length h. For an embryo with radius R = 40 μm, the
smooth surface provides an area of 2.0 × 104 μm2. With an
average length of h = 2 μm, the microvilli provide an area of
3.8 × 105 μm2. The result is that a rough embryo has a surface
area at least 20 times as large as its smooth counterpart.

To calculate the effect of surface roughness on the first-
passage probability presents a significant challenge. The
technical problem is how the absorbing boundary condition
can be applied on the rough surface. An analytic approach
to related problems has been developed based on ideas from
multiple scattering theory [33]. In principle, the idea is to
replace the exact boundary condition for the concentration c on
the rough surface (in our case the Dirichlet condition c = 0 on
the rough surface) by an effective boundary condition for the
ensemble-averaged concentration 〈c〉rough on the underlying
smooth surface [34]. The subscript “rough” has been utilized
so as not to confuse this averaging procedure with the temporal
average utilized earlier in the paper for the computation of the
fluid velocity. The ensemble-averaged concentration is defined
as

〈c〉rough(�ξ ) = 1

N !

∫
dCN P (CN ) c(�ξ |N ). (65)

The notation c(�ξ |N ) emphasizes that the concentration de-
pends not only on the position �ξ but also on the configuration
of the microvilli. The averaging procedure is with respect
to all possible arrangements of the microvilli on the smooth
spherical surface. Each arrangement of the microvilli is called
a configuration denoted by CN ≡ ( �Y1, �Y2, . . . , �YN ). Here �Yi

denotes the position of the base of microvillus i with respect
to a curvilinear coordinate system on the smooth surface. The
normalization is defined by

N ! =
∫

dCN P (CN ) =
∫

d2 �Y1 · · ·
∫

d2 �YN P (CN ), (66)

with a configuration appearing in the ensemble with probabil-
ity P (CN ). The theory has been worked out in detail for the case
of Laplace’s equation [34], ∇2

ξ c = 0, which is the same as the
steady-state diffusion equation. The main result is an effective
boundary condition for the ensemble-averaged concentration,
which, for a uniform spatial distribution of microvilli, takes
the form

〈c〉rough

∣∣∣∣
ξ=1

= −λ
∂〈c〉rough

∂ξ

∣∣∣∣
ξ=1

. (67)

Note that the effect of surface roughness is to introduce a new
length scale in the problem through the effective boundary
condition. The physical interpretation of λ is a measure of
the displacement of the 〈c〉rough = 0 surface above the smooth
surface, as shown in Fig. 10(c). In other words, if the Dirichlet
boundary condition c = 0 applies at the smooth surface ξ = 1,
the effect of surface roughness is to impose the condition
〈c〉rough = 0 at the surface ξ = 1 + λ. Introducing the fraction

of the smooth surface covered by the microvilli, ϕ = Nπ�2

4πR2 , the
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dimensionless length

λ = (1 + k)ϕ
h

R
. (68)

Here k is a dimensionless number that depends in general on
ϕ. In the dilute limit, ϕ 	 1, k depends only on the shape of
the microvilli.

As an example to illustrate the potential effect of surface
roughness, consider the solution of Laplace’s equation ∇2

ξ c =
0 for the dimensionless concentration c, with the Dirichlet
boundary condition c(ξ = 1) = 0. If the far-field boundary
condition is a constant concentration c∞, the solution is readily
obtained as

c = c∞

(
1 − 1

ξ

)
. (69)

The dimensionless Sherwood number is calculated as

ShD = 1

4πc∞

∫ π

0
sin θ dθ

∫ 2π

0
dφ

∂c

∂ξ

∣∣∣∣
ξ=1

= 1. (70)

To determine the effect of surface roughness, consider the
related problem for the ensemble-averaged concentration
〈c〉rough, with the Dirichlet boundary condition replaced by
Eq. (67). We calculate the concentration

〈c〉rough = c∞

(
1 − 1

1 − λ

1

ξ

)
. (71)

The result for the Sherwood number is then

〈ShD〉rough = 1

1 − λ
. (72)

The increase of toxin current density impinging on the rough
sphere should translate into an increase in the first-passage
probability. Unfortunately, a direct application of these results
to the first-passage problem is somewhat problematic, since
the effective boundary condition Eq. (67) is specific to
the homogeneous Laplace equation. For the first-passage
application, we would need results for Poisson’s equation (for
the case of pure diffusion), and the equation governing C0 (for
the advection-dominated regime). An interesting avenue for
future research is to extend the work of [34] to the present
first-passage formalism.

In what follows, we consider a slightly more heuristic
approach to capturing the effect of surface roughness. Recall
that the effective boundary condition can be interpreted as
displacing the Dirichlet boundary condition above the smooth
surface. This suggests that we might be able to capture the
effect of surface roughness by increasing the radius of the
embryo and decreasing the length of the microvilli,

Rrough = R + λR, (73)

hrough = h − λR. (74)

Considering our earlier result for the diffusive first-passage
probability, 	D = 1/ξ ′, and recalling ξ ′ = 1 + h

R
, after rescal-

ing we find

〈	D〉rough = 1

ξ ′
rough

= (1 + λ)

ξ ′ = (1 + λ) 	D. (75)
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FIG. 11. (Color online) The first-passage probability 	 as a func-
tion of the microvilli tip location ξ ′. The effect of surface roughness
is to increase the first-passage probability. Heuristic estimates for the
magnitude of the effect are provided by the dashed lines.

This result is in agreement with our calculation of the
Sherwood number, which suggests enhancement by the factor
1/(1 − λ), with deviations at O(λ2). By performing the same
rescaling (see Fig. 11), a naive extension to our result in the
advection-dominated regime suggests that

〈	0〉rough ≈
(

3
2
3 J

2�
(

1
3

)
β

2
3

)
g(μ′)(

ξ ′
1+λ

)2( ξ ′
1+λ

− 1
)2 Pe− 2

3

+O(Pe− 4
3 ). (76)

To determine λ, we first calculate the surface fraction ϕ ≈
0.47. This is not so small so as to safely rely on the dilute results
for k, so as a first approximation we consider the numerical
results derived at finite ϕ. Note that the numerics are for the
case of hemispherical microvilli [34]. We find 1 + k ≈ 1.93
and λ ≈ 0.05.

We caution the reader that the discussion above is somewhat
speculative, since the effective boundary condition Eq. (67) is
specific to the homogeneous Laplace equation. An interesting
avenue for future research is to extend the work of [34]
to the present first-passage formalism. This would entail
deriving an effective boundary condition similar to Eq. (67)
for the inhomogeneous equations governing the concentration.
Multiple scattering methods have also been applied to the
problem of determining the disturbance in the flow field
produced by surface roughness elements [35]. The ensemble
averaged flow field could then be utilized as input for the
advection-diffusion equation to capture the effect of the
microvilli on modifying the flow in the vicinity of the embryo
surface. This is a significant task for future research.

VII. CONCLUSIONS

In this paper, we considered a spherical embryo of radius
R ∼ 40 μm in a flow-field with characteristic velocity U0 ∼
R/τη as is typical for the smallest eddies in a turbulent
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macroscale flow. The diffusion coefficient of the toxin in the
extracellular fluid is D ∼ 10−5 cm2 s−1. The dimensionless
Péclet number, which characterizes the competition between
advection and diffusion, is

Pe = RU0

D

 1. (77)

This means that relative to transport of the toxin in the
extracellular fluid, advection is much more important than
diffusion. In this regime of large Pe, a concentration boundary
layer forms near the embryo. The boundary layer length scales
as

� = R Pe− 1
3 . (78)

This gives a boundary layer of several microns in thickness.
Interestingly, this agrees quite well with the microvilli length,
and it would provide a physical reason for a distribution of
transporters localized on the tips of the microvilli. At the
tips of the microvilli, the toxin concentration approaches the
far-field value. Toxins released at this height will be advected
away from the embryo before having a chance to diffuse
to the surface and be internalized. The major result of the
paper, Eq. (62), is illustrated in Fig. 8. The argument is that
the tip-localized transporter distribution and the microvilli
architecture are evolutionarily adapted to probe the thickness
of the concentration boundary layer. The success and efficiency
of the multidrug transporters rely crucially on the presence of
fluid flow in the open ocean environment of the sea urchin
embryo. Ignorant of the biochemical details of the transporter
system, the physics governing mass transport at large Péclet
number provides a compelling reason for the observed length
of embryonic microvilli during sea urchin development.

A number of simplifications have been made in the present
paper. For the purposes of building a tractable model system
that does not obscure the underlying physics, many details
of sea urchin biology have been stripped away, including the
presence of the hyaline layer surrounding the embryo and
the fertilization envelope. We have not considered how the
microvilli will alter the fluid flow in the vicinity of the embryo.
Further work, in a computational fluid dynamics framework,
could address these issues and incorporate a spatially varying
toxin diffusivity. Incorporating details of the chemical kinetics
of the transporter system would pose a challenging problem of
reaction, advection, and diffusion in a heterogeneous media.

The primary message from the paper on the relationship
between the length scale of surface roughness elements and the
mass transport problem is likely applicable beyond the scope
of sea urchin development. Villi are ubiquitous structures in
biology [36], and similar ideas will carry over in other settings
with a gradient in fluid velocity. The design of a diverse variety
of transport and mechanosensory systems may be guided by
similar underlying principles [4], from toxin export by aquatic
organisms residing in the benthic boundary layer [13,37], to
mechanotransduction by epithelial cells in the kidney [38].
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APPENDIX A: THE CASE OF PURE DIFFUSION (PE = 0)

This appendix outlines the solution for the first-passage
probability in the purely diffusive case, where Pe = 0. Using
the completeness relation for the δ function in spherical polar
coordinates,

δ3(�ξ − �ξ ′) = 1

ξ 2
δ(ξ − ξ ′)

∞∑
�=0

�∑
m=−�

Y ∗
�m(θ ′,φ′)Y�m(θ,φ), (A1)

and inserting the expansion Eq. (4) into Eq. (3) yields the radial
equation

d2a�m

dξ 2
+ 2

ξ

da�m

dξ
− �(� + 1)

ξ 2
a�m − γ 2a�m = − 1

ξ 2
δ(ξ − ξ ′).

(A2)

Here we have defined γ 2 = s. Making the substitution a�m =
b�m

(γ ξ )1/2 , the radial equation becomes

ξ 2 d2b�m

dξ 2
+ ξ

db�m

dξ
−

[(
� + 1

2

)2

+ (γ ξ )2

]
b�m

= −(γ ξ )
1
2 δ(ξ − ξ ′). (A3)

As is evident from the form of the differential equation, the
homogeneous solutions for the b�m are the modified Bessel
functions of order � + 1

2 , denoted by I�+ 1
2
(γ ξ ) and K�+ 1

2
(γ ξ ).

The solution to Eq. (A3) which is finite at infinity is

b�m(ξ,ξ ′) = K�+ 1
2
(γ ξ>)[AI�+ 1

2
(γ ξ<) + BK�+ 1

2
(γ ξ<)].

(A4)

Here ξ< (ξ>) represents the smaller (larger) of ξ and ξ ′. The
absorbing boundary condition b�m = 0 at the surface of the em-

bryo ξ = 1 is satisfied by the choice B = −A
I
�+ 1

2
(γ )

K
�+ 1

2
(γ ) . The

remaining constant A = ( γ

ξ ′ )1/2 is determined by integrating
Eq. (A3) from ξ = ξ ′ − ε to ξ = ξ ′ + ε and noting that the
Wronskian of the modified Bessel functions is given by

I�+ 1
2
(x)

dK�+ 1
2
(x)

dx
−

dI�+ 1
2
(x)

dx
K�+ 1

2
(x) = − 1

x
. (A5)

Hence the solution for the b�m is

b�m(ξ,ξ ′) =
(

γ

ξ ′

) 1
2

K�+ 1
2
(γ ξ>)

×
(

I�+ 1
2
(γ ξ<) −

I�+ 1
2
(γ )

K�+ 1
2
(γ )

K�+ 1
2
(γ ξ<)

)
. (A6)

We define the spherical modified Bessel functions i�(x) =√
π
2x

I�+ 1
2
(x) and k�(x) =

√
2

πx
K�+ 1

2
(x). Note that the numer-

ical factors in the definitions of i�(x) and k�(x) differ [12].
Making this substitution above and recalling the relation
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a�m = b�m

(γ ξ )1/2 , the solution to Eq. (A2) is Eq. (5) from the
main text,

a�m(ξ,ξ ′) = γ k�(γ ξ>)

[
i�(γ ξ<) − i�(γ )

k�(γ )
k�(γ ξ<)

]
. (A7)

To calculate the first-passage probability

	D =
∫ ∞

0
dt

∫∫
�J · �da, (A8)

note that the current density �J = −D �∇C and �da =
−r̂ R2 sin θ dθ dφ. Moving to the dimensionless variables
introduced earlier, the equation can be written as

	D = lim
s→0

∫ ∞

0
e−sτ j (τ ) dτ = lim

s→0
j̃ (s), (A9)

j (τ ) =
∫ π

0
sin θ dθ

∫ 2π

0
dφ

∂c

∂ξ

∣∣∣∣
ξ=1

. (A10)

This establishes that the first-passage probability can be
calculated from the Laplace transform of the current j̃ (s) by
taking the limit that s → 0. We calculate

j̃ (s) =
∞∑

�=0

�∑
m=−�

γ k�(γ ξ ′)
(

∂i�(γ ξ )

∂ξ
− i�(γ )

k�(γ )

∂k�(γ ξ )

∂ξ

)∣∣∣∣
ξ=1

×Y ∗
�m(θ ′,φ′)

∫ π

0
sin θ dθ

∫ 2π

0
dφ Y�m(θ,φ). (A11)

As a result of the angular integration∫ π

0 sin θ dθ
∫ 2π

0 dφ Y�m(θ,φ) = √
4πδ�,0δm,0, the only

nonzero term has � = m = 0. Using the fact that
i0(x) = sinh(x)/x and k0(x) = e−x/x, a short calculation gives

j̃ (s) = e−γ (ξ ′−1)

ξ ′ . (A12)

Recalling that γ 2 = s and taking the limit that s → 0 of the
above expression yields the final result quoted in the main text,

	D = 1

ξ ′ . (A13)

APPENDIX B: THE CASE OF STRONG
ADVECTION (PE � 1)

This appendix provides details necessary for the solution
for the first-passage probability in the case of strong advec-
tion, where Pe 
 1. Defining a spherical polar coordinate
system with the x3 axis along the direction of the ambient
vorticity, the Cartesian components of the antisymmetric
part of the velocity gradient tensor take the form �ij =
− 1

2εij3ω. The spherical polar components are calculated
as ⎛

⎜⎝
�rr �rθ �rφ

�θr �θθ �θφ

�φr �φθ �φφ

⎞
⎟⎠

=

⎛
⎜⎝

sin θ cos φ sin θ sin φ cos θ

cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0

⎞
⎟⎠

×

⎛
⎜⎝

0 −ω
2 0

ω
2 0 0

0 0 0

⎞
⎟⎠

×

⎛
⎜⎝

sin θ cos φ cos θ cos φ − sin φ

sin θ sin φ cos θ sin φ cos φ

cos θ − sin θ 0

⎞
⎟⎠

= ω

2

⎛
⎜⎝

0 0 − sin θ

0 0 − cos θ

sin θ cos θ 0

⎞
⎟⎠ . (B1)

The spherical polar components of the symmetric part of the
velocity gradient tensor E can be calculated in a similar fashion
from the Cartesian components, which satisfy Eij = Eji .
Moving to a frame of reference that is rotating with the embryo
by making the replacement φ → φ − Pe τ , the leading contri-
butions to the time-averaged velocity components expressed
in terms of the radial variable ρ are

〈∗
uξ 〉 = [

15
2 ρ2 α

2
3 − 20ρ3 α + O(α

4
3 )

]〈e33〉, (B2)

〈∗
uθ 〉 = [ − 15

4 ρ α
1
3 + 15

2 ρ2 α
2
3 − 15ρ3 α + O(α

4
3 )

]
× sin(2θ )〈e33〉, (B3)

〈∗
uφ〉 = 0. (B4)
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