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Absence of jamming in ant trails: Feedback control of self-propulsion and noise
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We present a model of ant traffic considering individual ants as self-propelled particles undergoing single-file
motion on a one-dimensional trail. Recent experiments on unidirectional ant traffic in well-formed natural
trails showed that the collective velocity of ants remains approximately unchanged, leading to the absence of
jamming even at very high densities [John et al., Phys. Rev. Lett. 102, 108001 (2009)]. Assuming a feedback
control mechanism of self-propulsion force generated by each ant using information about the distance from
the ant in front, our model captures all the main features observed in the experiment. The distance headway
distribution shows a maximum corresponding to separations within clusters. The position of this maximum
remains independent of average number density. We find a non-equilibrium first-order transition, with the
formation of an infinite cluster at a threshold density where all the ants in the system suddenly become part of a

single cluster.
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I. INTRODUCTION

The study of collective motion of self-propelled particles—
from sub-cellular machines like molecular motors moving
on polymeric tracks to unicellular life forms like bacteria,
from the coordinated motion of insects as small as ants to
large mammals like humans—shows the emergence of rich
dynamical behavior and patterns starting with simple rules for
the motion of individual units [1-3]. The study of ants, in
particular, is fascinating from more than one perspective [4].
From a traffic point of view, the collective motion of ants shows
self-organization of flow to maximize efficiency in transport
[5,6], and spontaneous formation of lanes in bi-directional
traffic [7,8]. Another interesting feature of ant motion is the
spontaneous selection of shortest path between the nest and
the food source by using only local dynamical rules, without
the aid of a global perspective. This has inspired theoretical
work on new kinds of optimization algorithms [9,10]. While
walking, ants leave chemical trails in the form of pheromone,
that later ants follow leading to ant trail formation [4,11-16].
Formation of these trails have been described theoretically in
terms of active-walker models. The mechanism is ubiquitous
in nature and similar to river basin formation [17], formation
of pedestrian trails [18,19], and formation of axon bundles in
mammalian sensory neurons [20,21].

A recent experimental study on the collective motion of
ants within preformed natural trails in the species Leprogenys
processionalis showed several intriguing features [22]. It
found an absence of jamming in ant-traffic even at very high
densities—with only a minor decrease in velocity at higher
density, reduction in velocity fluctuations with increasing
densities, as well as the formation of clusters of ants within
the trail. The flow behavior is in contrast to vehicular traffic
where a decrease of flux is observed at high densities,
indicating congestion and a tendency to form jams, captured
by flux-density plots known as fundamental diagrams of traffic
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flow [23]. In this paper, we present a model of self-propelled
particles performing single file motion, which captures all the
main observations of Ref. [22]. In single-file motion particles
constrained to move in one dimension cannot overtake each
other, performing sub-diffusive dynamics [24-28].

Earlier theoretical work on ant traffic using asymmet-
ric hopping and a particle exclusion process on discrete
lattice showed various interesting features, including the
non-monotonic dependence of velocity on density [29,30].
However, these models predict jamming at high densities
associated with exclusion interaction in a discrete lattice
and random sequential movement of entities governing the
dynamics. They fail to capture the absence of jamming in ant
traffic as observed in Ref. [22]. Our model takes a different
approach. The ants are viewed as particles interacting via
nearest-neighbor repulsion. The particles perform continuum
dynamics and move together, as opposed to random sequential
hopping on a discrete lattice considered in Refs. [29,30]. The
biological inputs in the model come through the generation
of an active self-propulsion force in the particles, that has a
deterministic part and a stochastic noise.

Most ants have extremely limited eyesight, but are still able
to efficiently manage traffic by co-operative trail formation.
These trails are made by ants depositing pheromones on
the ground which act as signals for the trailing ants to
follow the same path. Pheromones evaporate with a rate
dependent on environmental factors. Ants use differential
sensing of pheromones to guide their motion. The sensitivity
to concentration gradient decreases at high concentrations.
An earlier model of diffusing agents interacting with an
external field of pheromone, which itself undergoes addition,
evaporation, and diffusion dynamics led to the emergence
of trails at reasonable parameter regimes [16]. With time,
continuous deposition of pheromones make the signal from
a trail strong enough such that all successive ants follow
the same path without straying. Our model considers ant
motion on preformed trails, thus considering ants as particles
moving in one dimension (1D). The motion within this trail
could be guided by local sensing—Ilimited vision or antennal
touch. We incorporate a feedback mechanism based on inputs
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from these local interactions into the active force generation.
Our model captures all the main features of experimental
results, showing how this feedback can crucially control ant
motion. We present further predictions that are amenable to
experimental verification.

II. MODEL AND SIMULATION

We model the motion of ants in a preformed trail, as a 1D
system of self-propelled particles (SPP). The dynamics of i-th
SPP can be described in terms of the Langevin equations of
motion

).C[:Ul'

v, = —yv +n;(t)+ F; — 0 Z U(xij),
j=il

(D

where F;(x;,x;41) is a self-propulsion force, U (x;;) denotes a
repulsive nearest-neighbor interaction ensuring that particles
cannot cross each other in 1D. The viscous dissipation term
—yv;, models dissipation in energy, whose origin may lie
within the ant’s body—in the movement of muscles that it
utilizes to walk, or in friction with local environment, like the
walking surface. The noise 7;(¢) is interpreted as a stochastic
part of self-propulsion, and thus it has a non-equilibrium
origin. We assume that the time-scales associated with the
generation of self-propelled force that comes from an internal
energy depot is much faster with respect to the mechanical
motion of the ants [31]. Thus the stochastic force is assumed
to be Gaussian white noise with (n;(¢)) = 0, (n;(t)n;(")) =
2Dy8(t — t')8;; where Dy(x;,x;+1) denotes non-equilibrium
fluctuations.

The interaction potential between nearest neighbors U (x;;)
models the impenetrability of the ants, with x;; = x; — x; with
Jj =i £ 1. We choose the repulsive part of Lennard-Jonnes po-
tential U (x;;) = 4e[(0/x;))'? — (0/x;;)® + 1/4], with a cutoff
distance set to r. = 2!/%¢ such that U(x;;) = 0 if |x;;] > re.
Here o sets the unit of length and is of the order of the
average length of one ant, and € sets the unit of energy.
We perform molecular dynamics (MD) simulations using the
velocity-Verlet scheme, with integration time step ¢ = 0.017,
where T = o /m /e is the unit of time and corresponds to 1 s.
We fix the local temperatures at Dy(x;,t)/y kp using Langevin
thermostat characterized by an isotropic friction y = 1/t.

If one uses a constant self-propulsion force F;, the Langevin
model would generate average particle velocity completely
independent of density. However, experiments [22] showed a
weak but steady decline in velocity with increasing density.
This means that the ants sense the local crowding and
use a feedback mechanism to control the amount of self-
propulsion force generated. Thus we model the self-propulsion
force generated by i-th ant as F; = y fo(1 — 1/p78x;), where
8x; = X;4+1 — X;, the separation between i-th ant and the
nearest neighbor in front, and ps is a constant. In using
the distance headway 8x; to model self-propulsion feedback,
we have assumed that the ant senses the position of its
leading neighbor using its limited vision or antennal touch,
but remains indifferent to the trailing neighbor with regard
to self-propulsion force generation. On an average, (8x;)
is a measure of inverse local density 1/p. Using a fit to
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FIG. 1. (Color online) Average velocity with density. The sym-
bols o with error bars denote our simulation results, while the small
A symbols denote data extracted from Fig. 3 of Ref. [22]. The
dashed line is the mean filed estimate (v) = fo(1 — p/py). Inset:
The fundamental diagram showing current as a function of density.
The dashed line is a plot of mean field estimate (j) = p(v).

the experiments on ant trails [22] we choose fy = 6.66 and

= 1.73 to characterize the force F; (Fig. 1).

The stochastic force 7;(¢) helps the ants to explore the
area around them, e.g., for food, in the absence of external
cue like a well-formed trail, or odorants from food source.
While this noise is a good strategy for exploration, it can
be a hindrance in traffic flow once a trail is formed, since
it can lead to enhanced collisions. In fact, it is well known
from the work by Nagel and Schreckenberg [32] that the
introduction of noise in lattice models of traffic leads to traffic
jams. We model our ants to have a feedback mechanism that
reduces noise as the local density increases, leading to reduced
collisions and thus reducing the probability of traffic jams. As
for the self-propulsion force above, the simplest such choice
would be a linear decrease with local density (~1/4x;), i.e.,
Do(x;,t) = Do(1 — 1/ppdx;) with Dy = ykpT characterizing
an equilibrium-like fluctuation strength, and pp is a constant.
However diffusivity Dy has to be positive for all possible
8x;, a condition that would be violated at high densities
if the above-mentioned linear form were chosen. Thus we
choose Dy(x;,t) = Dy exp(—1/ppdx;) which captures well
the experimentally obtained fluctuations in velocities with
Dy = 7.66 and pp = 0.47, and remains positive at all densities
(Fig. 1).

III. RESULTS AND DISCUSSION

We have chosen our parameters defining the self-propulsion
force and fluctuations to fit the data from experiments [22]. As
can be seen from Fig. 1, our results for the mean velocity
as well as the variance describe the data well. Replacing
dx; by the mean-field value (8x;) = 1/p, the steady state
mean velocity obtained from Eq. (1) is (v) = fo(1 — p/py),
leading to a mean flux j = p(1 — p/ps) which agrees with
simulation results. Note that our simple assumption for
feedback controlled self-propulsion gives an expression of flux
Jj that has the same behavior as the discrete totally asymmetric
simple exclusion process (TASEP) [2], however with a pf
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FIG. 2. (Color online) Distribution functions. (a) Probability distribution of velocity of each particle at densities p = 0.1, 0.3, 0.5, 0.7, 0.9.
The points are obtained from simulation, and the lines show expected Gaussian distributions with varying peaks and widths. (b)—(d) Simulation
results for probability distributions of distance headways, at densities p = 0.2, 0.5, 0.7.

that lies at an inaccessibly large value. Thus (v) shows a
slight decrease with density in the experimentally accessed
regime. Unlike the usual traffic model, the current or flow in
our system (Fig. 1: inset) does not show a congested branch
at high densities thus reflecting the absence of jamming. In
Fig. 2(a) we show the probability distribution of velocities of
individual particles at various values of mean density. The
width of the velocity distribution reduces with increasing
density. This happens as the ants reduce the strength of the
noise 1;(¢) in self-propulsion using feedback from the local
density. Thus, our model captures the two main features of ant
traffic on well-formed trails [22]: absence of jamming even at
high densities, and a decrease in velocity fluctuations with an
increase in density.

A comparison of our model for ants with Langevin models
for traffic [33] shows that the central difference between cars
and ants is in the choice of self-propulsion force. In traffic
models, self-propulsion is reduced to zero as the distance
between two cars vanishes, to avoid collision between cars.
Whereas in natural ant traffic, ants may come into touching
distances. In our model for ants, the active forces decrease but
by a small amount as ants approach each other within touching
distances (F; > 0 at x; = 1). The fact that ants collide with
each other is not surprising since they are practically blind and
navigate essentially through pheromone sensing.

The fluctuations reveal another important aspect of ant
traffic. The reduction of velocity fluctuation with density led
to our choice for the diffusion constant getting exponentially
suppressed when local density increases. This ensures that the
ant fluid reduces the local effective temperature when density

increases, to keep a control over the local pressure. This means
that while ants do not completely avoid collisions among
themselves, they do make sure that the number of collisions
per unit time are kept largely unchanged. The reduction of
noise strength Dy, ensures that at high densities, all ants will
generate almost exactly the same self-propulsion force, thus
everybody may move together although being within touching
distances. Note that if the noise were independent of local
density, a faster ant would stop because of a collision with
a slower ant—but if everyone moves with exactly the same
velocity, jamming is avoided.

The other quantity that we compare with experimental
data is the distribution of headway distances §x;. Similar to
the experiments in Ref. [22], we find log-normal behavior
at short distances P(8x;) = (1/v 2n0120g8xi2) exp[—{In(dx;) —
1 /203,] and exponential behavior at long distances
P(6x;) = Aexp(—dx;/L) as seen in Fig. 2(b)-2(d). To un-
derstand the origin of exponential tail in P(Sx;) we consider
the single-file motion. In a system of 1D hard rods of length
a, the nearest-neighbor distribution at equilibrium is given by
g (x,x") = [p*/(1 — pa) exp[—(|x — x'| —a)/A] with A =
(1 — pa)/p [34]. Although in our case the particles are
self-propelled, we obtain the same predominantly exponential
decay in the distribution of separation between consecutive
particles P(6x;) = A exp(—¥&x;/A) withdecay length A = (1 —
pa)/p that fits well to all the simulation data with a = 0.96
[Fig. 2(b)-2(d)]. The origin of the log-normal behavior at small
8x; is in the non-equilibrium self-propulsion. We find that the
peak in the headway distribution at 6x; = 1.4 is independent of
the mean system density. This suggests formation of clusters
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FIG. 3. (Color online) Cluster-size distributions P(n) at various
densities p denoted in the legend. The largest possible cluster size
is n = N = 4096. The semi-log plots show exponential tails of the
distributions exp(—n/n.).

with this typical interparticle separation within a cluster,
irrespective of overall density. Similar behavior was observed
in the experiment of Ref. [22].

In order to probe this point further, we perform a clustering
analysis. A randomly chosen particle is assumed to be part
of the first cluster. If its nearest neighbors are separated from
this particle by a distance less than 1.4, which is the average
headway separation within a cluster, they are also assigned
to the same cluster. This procedure is continued until no more
particles can be assigned to the first cluster. Then a new random
particle which remained unclustered so far is assigned to the
next cluster, and the clustering procedure continued in the same
way as before until all particles are assigned to a cluster [35].
The size of clusters n may vary from 1 to N, the total number of
particles in the system. The resulting cluster size distributions
P(n) calculated from the steady-state dynamics of our MD
simulation are shown in Fig. 3. In order to obtain better
statistics for larger clusters, we performed these simulations
using N = 4096 particles. The distribution of clusters of ants
P(n) ~ exp(—n/n.) at all densities p < 1, with the tail going
up to higher fractions n /N signifying increase in typical cluster
size. At further higher densities p > 0.95 clusters containing
all the ants in the system starts to emerge. In the limit of
p = 1, all the ants belong to the same cluster, as fluctuations
of headway distances get completely suppressed.

We obtain the typical cluster sizes 7, at various densities by
fitting P(n) to the exponential form exp(—n/n.). n. shows a
sharp increase for densities p > p. where p. = 0.9 (see Fig. 4).
This shows a non-equilibrium first-order phase transition
towards formation of an infinite cluster, containing all the
ants available in the system. Note that this infinite cluster
formation is unlike the aggregation models of Ref. [36] where
the transition was associated with a change in the cluster-size
distribution from exponential to power-law.
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FIG. 4. (Color online) Typical cluster size n. as a function of
overall density p, shows sharp increase in n. at p > 0.9, indicating a
non-equilibrium first-order transition.

IV. SUMMARY AND OUTLOOK

We have presented a model for repulsively interacting
self-propelled particles undergoing single-file motion that
shows properties in good agreement with the experimental
observations on ants presented in Ref. [22]. To describe
ant traffic on pre-formed trails, we assumed a generic local
crowding dependent feedback control for the deterministic and
stochastic parts of self-propulsion force. In agreement with
experiments, we find an absence of jamming at all densities.
Our model captures the decrease in velocity fluctuations
observed in real ants, and shows a peak in the headway
distribution which is approximately independent of ant density.
We performed a clustering analysis to find an exponential
cluster size distribution, independent of mean density. The
typical cluster size shows a discontinuous increase at a
threshold density indicating a first-order transition. These
predictions may be verified from further experiments.

Our model provides a detailed understanding of the dy-
namics of ants in preformed trails and has implications for
technology, e.g., in mechanisms for self-driving cars whose
traffic would not jam and robotic swarms that would carry out
tasks efficiently and safely like ants. It remains to be seen what
patterns emerge from an active walker model with a feedback
controlled self-propulsion mechanism proposed in this paper,
and whether and to what extent they describe formation of
ant trails, in particular, how far they can describe milling or
lane-formation in ants [8].
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