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Confinement-dependent localization of diffusing aggregates in cellular geometries
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Confinement has a strong influence on diffusing nano-sized clusters. In particular, biomolecular aggregates
within the shell-like confining space of a bacterial cell have been shown to display a variety of localization patterns,
from being midcell to the poles. How does the confining space determine where the aggregate will localize?
Here, using Monte Carlo simulations we have calculated the equilibrium spatial distribution of fixed-sized clusters
diffusing in spherocylindrical shells. We find that localization to the poles depends strongly on shell thickness
and the size of the cluster. Compared to being at midcell, polar clusters can be more bent and hence have higher
energy, but they also can have a greater number of defects and hence have more entropy. Under certain conditions
this can lead to polar clusters having a lower free energy than at midcell, favoring localization to the poles. Our
findings suggest possible localization selection mechanisms within shell-like geometries that can arise purely
from cluster confinement.
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I. INTRODUCTION

A variety of examples in nature show that interacting
particles in confined geometries can display a variety of spatial
organization, from the uniform arrangement of clusters on the
surface of a cell [1,2] to the polar localization of proteins
within the cytoplasmic space [3–8]. Modeling efforts showed
that curvature effects due to confinement to the membrane [9]
or the crowding of the bacterial DNA are potential mechanisms
leading to the observed localization [7,10–12]. As another
example, it has long been known that vital dyes show polar lo-
calization in bacteria, and recent experimental work has shown
that they are confined to the shell-shaped space known as the
periplasm [13]. In this case, unlike localization that was due to
interactions with the membrane or the bacterial DNA, model-
ing showed that the shell-like confining space of the periplasm
could be a sufficient localizing mechanism [13]. Support for
the importance of such confinement effects has been found
in colloidal systems both experimentally [14–19] and theoret-
ically [20–22]. In particular, it was found that cluster shape [23]
determines the type of motion it can perform and this strongly
depends on the geometry of the confining space. For a sphero-
cylindrical shell, such as the periplasmic space of a bacteria,
how does the confining space alter the shape of an aggregate
as it moves? and does this play any role in its localization?

Recent simulations have explored the behavior of aggregat-
ing particles that diffuse within confining spaces [7,10–13,21].
In these models, particles have attractive interactions that cause
them to cluster, and then the cluster is free to diffuse within the
space bounded by hard walls. The motion of the center of mass
is determined by the collective behavior of all the particles
which is influenced by the local confining space. A minimal
model was used to explore cluster localization in a confining
space like the periplasm and showed that polar localization
could be favored which depended on the thickness of the shell,
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but was confounded by also depending on the cluster’s rate of
growth [13].

In this paper we explore the equilibrium localization of
fixed-size clusters in a spherocylindrical confining shell [see
Fig. 1(a)]. We find that localization to either the poles or the
midcell region can be favored at particular shell thicknesses.
By analyzing the energetics and entropy of the system we
show that localization is determined by the spatially dependent
packing of its constituents.

II. SIMULATING CLUSTERS IN A CONFINED
SHELL GEOMETRY

We consider N diffusing particles within a confining
volume that consists of a cylindrical shell capped with two
hemispherical shells [see Fig. 1(a)]. Such a geometry is
found in the periplasmic space, or potentially the cytoplasmic
space between the nucleoid and the inner membrane of
rod-shaped bacteria. We consider the cylindrical region to
have length L. The shell has inner and outer radii, RI and
RO , giving the thickness of the shell to be h = RO − RI . In
what follows we will consider both two-dimensional (2D) and
three-dimensional (3D) shells.

The diffusing particles have diameter σ and have an
isotropic attractive interaction between them given by a 12-
6 Lennard-Jones potential. The interaction energy between
particle i and j is

Eij = ε

[(
σ

rij

)12

−
(

σ

rij

)6
]

, (1)

where ε is the strength of the interaction and rij is the distance
between the two particles.

In a given simulation, N particles are added at random lo-
cations within the confining shell. We use a Metropolis Monte
Carlo (MC) method to track the motion and aggregation of
the cluster. Each MC sweep consists of moving all N particles
where each move is in a random direction in three dimensions

1539-3755/2015/91(1)/012705(6) 012705-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.012705


KERAMATI, WASNIK, PING, DAS, AND EMBERLY PHYSICAL REVIEW E 91, 012705 (2015)

h

RR I

L

elopllec−dim

(a)

)c()b(

FIG. 1. (Color online) (a) Schematic of a cluster of N attractive
particles diffusing in thin shell with thickness h. The shell geometry
is a cylindrical shell capped with two hemispheres. The cylindrical
region has a length L, the inner boundary has radius RI , and the outer
one radius R. The thickness of the shell is given by h = R − RI . In
all simulations we consider the aspect ratio to be (2R + L)/2R = 2.
Shown is a cluster positioned at two locations: the midcell region and
at one of the poles (for N = 20 from a 2D simulation). (b) A cluster
with N = 80 at midcell for h/σ = 1.25 showing a highly regular
hexagonal close packed structure. (c) A polar cluster with N = 80
for the same shell thickness h/σ = 1.25 showing the existence of
defects (open circles) that reduce the number of nearest neighbors to
fewer than six.

(or two dimensions) with a maximum step size of equal to 0.1
σ . A move is accepted or rejected based on the Boltzmann
weight that depends on the change in total energy [evaluated
by summing over all pairwise interactions using Eq. (1)]. The
walls of the confining shell are treated as hard barriers, and
any move that takes a particle outside the shell is rejected.

The particle interaction energy is set at a value of ε = 3kBT

to ensure that on average all N particles reside in a single
cluster, as this is well below the liquid-gas transition for a
Lennard-Jones system. Each simulation begins with a cluster
formation step where particles are added one by one every
10 000 sweeps. We find that this procedure is sufficient to
generate a single cluster containing all N particles. After
the cluster formation step, we typically carry out >4 billion
sweeps and sample the configuration every 25 000 sweeps.
This amount of sampling leads to a cluster traversing the shell
length, 100s to 1000s of times. At each sample, the location
of the center of mass (CoM) of the cluster is calculated.
We determine which particles are in the cluster using an
equivalence class algorithm [24] with a cutoff distance of
rcut = 2.5σ , which is the cutoff distance on the Lennard-Jones
potential. The total binding energy of the cluster of particles
is also calculated at every sample step.

III. DEPENDENCE OF CLUSTER LOCALIZATION
ON CONFINEMENT

For a cluster consisting of a fixed number of particles N ,
we use our MC method above to generate the equilibrium
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FIG. 2. (Color online) Calculated fractional residency as a func-
tion of shell thickness, h/σ . (a) Dependence of fractional residency
on the cluster size, N , for a 2D shell geometry with R = 8σ and
L = 16σ . (b) Dependence on cluster size N for a 3D shell, with
R = 8σ and L = 16σ . (c) Effect of shell curvature (changing the
outer radius) on fractional residency for a fixed-size cluster with
N = 80 in 3D shells. (Error bars were estimated by halving the
number of samples and calculating the change in fp/fm.)

distribution of its CoM coordinate, x, along the length of
the spherocylindrical shell. Over the course of a simulation
the cluster diffuses within the restricted volume. In order
to characterize the effect of confinement, the ratio of the
probability of being at the poles to the midcell is calculated.
This fractional residency is given by fp/fm = np/nm, where
np is the number of samples when the CoM is in one of the
polar hemispheres (|x| > L/2) and nm is number of times it is
in the central cylindrical shell (|x| � L/2).

In Fig. 2 we plot the fractional residency, fp/fm, as a
function of the shell thickness scaled by the particle size,
h/σ , under various conditions. Shown in Fig. 2(a) are the
results for clusters of different sizes diffusing in a 2D shell.
For very thin shells that admit just a single row of particles,
the fractional residency is near unity. As the thickness of the
shell increases, residency at the poles drops to near zero,
and then when h/σ becomes large enough to admit a near
circular cluster, the fractional residency again returns to being
near unity. Figures 2(b) and 2(c) show the results for a cluster
diffusing in a 3D shell where much more complex behavior
emerges. Interestingly, the system alternates between having
the cluster being strongly favored at the poles (fp/fm > 1) for
half integer values of h/σ , to being localized at the midcell
(fp/fm < 1) at integer values. At larger shell thicknesses the
fraction of time spent at the midcell compared to the pole
is limited to the value expected for a free spherical cluster
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diffusing in the confined space, namely, the ratio of the sizes
of the two regions (the same for 2D shells). We now discuss the
dependency of the fractional residency fp/fm on other factors
such as cluster size and shell curvature.

In Figs. 2(a) and 2(b) the fractional residency is shown
for different values of N inside a shell whose outer boundary
RO = R is fixed. Smaller clusters [(a) N = 15 or (b) N =
80] will be able to fit as a (circular) spherical cluster within
the shell at smaller values of h/σ , which explains why the
fractional residency tends to the free spherical cluster limit
sooner. In 3D shells, as N increases, the effect of confinement
continues to larger values of h/σ with a new peak emerging at
h/σ ≈ 4.5. Interestingly the polar localization decreases with
N at h/σ ≈ 2.5 but increases with N at h/σ ≈ 3.5.

The effect of changing the shell’s curvature is shown in
Fig. 2(c) for 3D shells. Here N was fixed, but the outer radius
was changed. Peaks in the fractional residency still occur at
half integer values of h/σ , but the effect is less pronounced
as the shell curvature decreases (i.e., R increases). Clusters at
the pole experience additional bending compared to those at
midcell, and decreasing the curvature of the cellular geometry
reduces the energy difference between the two locations,
thereby changing the fractional residency. We now examine
the role of how confinement influences the energy and entropy
of a cluster and the resulting effect on the fractional residency.

IV. ROLE OF ENERGY AND ENTROPY
IN LOCALIZATION

The results from the previous section showed that the
thickness of the shell can favor a cluster to reside at either
the pole or the midcell in 3D shells, but not in two dimensions
where the midcell was always preferred. At equilibrium, the
fractional residency will depend only on the relative size of
the polar to midcell regions as well as potentially any free
energy difference between them. Our simulations show that
for the sizes of clusters studied, confinement restricts the CoM
motion to a surface that lies midway between the inner and
outer radii of the shell. If the free energy difference between
the pole and midcell were zero, then the fractional residency
would simply go as the ratio of the surface area (or arc length in
two dimensions) at the poles, Ap, to that at midcell, Am. Given
that the spherocylindrical surface on which the CoM travels has
a radius R̄ = R − h/2, where R is the outer radius, this gives
the ratio of areas to be Ap/Am = 2(R − h/2)/L. In all of our
simulations we have used L = 2R, so Ap/Am = 1 − h/2R,
which ranges from 1 to 1/2 when h goes from 0 to R.
[For 2D shells, with L = 2R, the ratio of arc lengths is
Ap/Am = (π/2)(1 − h/2R), which limits to Ap/Am = π/2
as h → 0.] At large values of h/σ where clusters are spherical
and have little to no free energy difference between the pole
and midcell, we see that fp/fm does indeed limit to 1/2 in 3D
shells [see Figs. 2(b) and 2(c)].

For thinner shells, where the cluster is no longer spherical,
fp/fm departs from the above limit of the ratio of the sizes
of the polar to midcell regions, and this results from a free
energy difference between the pole and midcell. To aid our
analysis, we assume that as the cluster diffuses at either the
pole (p) or midcell (m), it can be characterized by an average
free energy, Gp or Gm which is roughly constant over the

(b)
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FIG. 3. (Color online) Dependence of average energy difference
(in units of kBT ) between polar and midcell clusters, Ep − Em, on
(a) cluster size for 2D shells with R = 8σ , and for 3D shells where
(b) N is varied with shell curvature fixed or (c) curvature is varied
with N fixed. The number of particles or the size of the outer radius
is shown in the legends. (Error bars were estimated by halving the
data and calculating the fluctuation in Ep − Em.)

respective region. This average free energy for a cluster at
μ = {p,m}, can be written as Gμ = Eμ − Sμ where Eμ is the
average cluster binding energy, and Sμ is the associated cluster
entropy (using β = 1/kBT = 1). The entropy of the cluster
can be written as Sμ = log(wμ) where wμ is the number of
cluster configurations, which may differ between the poles
and midcell. At equilibrium, the fractional residency can then
be written as

fp

fm

= Ap

Am

e−(Gp−Gm) = Ap

Am

e−(Ep−Em) wp

wm

. (2)

We first look at how the variation in the cluster’s binding
energy affects localization.

In Fig. 3 we plot the energy difference between the poles
and midcell as a function of shell thicknesses. For clusters
in 2D shells, polar clusters always have greater energy [see
Fig. 3(a)] due to being bent, and this energy difference increase
with N . This energy difference goes away in thicker shells as
the cluster becomes circular. This also occurs in 3D shells,
and at large values of h/σ > 5 the energy difference vanishes
as the cluster is spherical regardless of whether it is at the
pole or midcell. For very thin shells (h/σ < 1.5) the cluster
is a 2D sheet consisting of a single layer of particles, and the
energy difference is greater than zero as the sheet has additional
bending energy at the pole. At intermediate h/σ , the cluster is
neither a 2D sheet nor spherical, and its energy at the pole is
always greater than at midcell. The largest energy difference
happens when a cluster goes from one layer thick to two. When
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FIG. 4. (Color online) Energetics (all energy is in units of kBT ) of polar and midcell clusters with N = 90. (a) Energy per particle of polar
and midcell clusters versus shell thickness in a shell with R = 8σ . (b) Fitted bending energy cost, AB (in units of kBT /σ 2) for polar and midcell
clusters versus shell thickness. (c) Difference in fitted cluster energy per particle, εC , between pole and midcell versus shell thickness. Error
bars on fitted parameters shown in (b) and (c) were determined using the bootstrap method. (d) The dependence of bending energy per particle,
εB as a function of 1/R2 (in units of 1/σ 2) at different shell thicknesses.

h/σ ≈ 2 the cluster is able to form a regular hexagonal close
packed arrangement midcell [see Fig. 1(b) as an example],
but is frustrated at the poles. As h/σ increases this frustration
decreases and allows the polar cluster to pack better, reducing
the energy difference. The same phenomenon happens again
when the cluster transitions from two to three layers at h/σ ≈
3. Interestingly at h/σ ≈ 3.5 and h/σ ≈ 4.5 our simulations
show that polar clusters actually have lower binding energy
on average than those at midcell. Not surprisingly, as N

increases [Fig. 3(b)], the energy difference increases. Figure
3(c) shows the effect of curvature on the energy difference. For
nonspherical clusters (h/σ < 3), increasing the outer radius
lowers the energy difference since a portion of the energy
difference arises from bending whose energy goes down with
decreasing curvature.

We now explore the cluster energetics of the 3D clusters
in greater detail and try to determine what factors play a
potential role as both the shell thickness and curvature are
changed. Since the energy of a cluster is an extensive quantity,
we show in Fig. 4(a) the total binding energy at both the pole
and midcell normalized by N . Now the previously described
transitions can be seen more clearly as the cluster changes from
one layer to two, and from two layers to three, etc. We consider
that the energy of a cluster at either μ = {p,m}, can be written
as Eμ/N = ε

μ

C + ε
μ

B where ε
μ

C and ε
μ

B are, respectively, the
packing and bending energy per particle. The packing energy
will depend on h and potentially on R and in principle could be
different between the pole and midcell due to defects that may
be different between the two locations. The bending energy, εμ

B ,
depends on both h and R and will be different between midcell

and the poles. At fixed shell thickness h, this bending energy
should go as ε

μ

B = A
μ

B/R̄2 where R̄ = (R − h/2) is the mean
radius of curvature of the cluster and A

μ

B is a proportionality
constant that gives the bending energy cost. At each h we
fit E/N = εC + AB/R̄2 versus R̄ for both polar and midcell
clusters. The resulting bending energy cost, AB at different
values of h/σ for both polar and midcell clusters is shown in
Fig. 4(b). At values of h/σ before the cluster transitions to
being spherical, polar clusters always show a greater bending
energy cost than do midcell clusters. This is to be expected as
clusters at the pole are bent in two independent directions
whereas those at midcell are only bent in one. Trends in
this cost as the shell thickness increases are less clear. It is
apparent that at near integer values of h/σ , the associated cost
of bending is dramatically increased [see Fig. 4(b)]. In Fig. 4(d)
we show the resulting bending energy per particle ε

p

B at the
pole as a function of the shell radius at different values of the
shell thickness. At large h, clusters are spherical, and so there
is no associated bending energy due to the shell. However, for
thinner shells, the linear dependence of the bending energy
versus 1/R̄2 can be seen.

With respect to the cluster energy associated with packing,
ε

μ

C , we plot the energy difference between the pole and
midcell from the fitted values [Fig. 4(c)]. Interestingly, at
the intermediate values of h/σ , the polar clusters are always
less well packed and hence have a greater energy than
those at midcell [see Figs. 1(b) and 1(c)] for an example
of the existence of additional defects in the polar regions
compared to midcell). As shown below, at certain h/σ this
can lead to greater structural entropy at the poles and, hence,
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FIG. 5. (Color online) (a) Ratio of the number of cluster configu-
rations at the pole to midcell wp/wm as a function of shell thickness,
h/σ . (b) The average number of particles in a cluster, Nμ(r/σ ) within
a fixed-size sphere with radius r/σ at different shell thicknesses (here
μ = m, midcell). (c) The average difference in the number of nearest
neighbors �N between midcell and polar clusters. Positive �N

correspond to midcell clusters having on average a higher number of
nearest neighbors and is a measure of the number of defects that exist
within the polar cluster. In all figures, the cluster size was N = 80
and R = 8σ unless otherwise specified.

potentially a lower free energy which would favor polar
localization.

The last term in Eq. (2), wp/wm, is due to the configura-
tional entropy difference between the pole and the midcell.
The entropy of the cluster, Sμ, is associated with number of
configurations that have the same energy Eμ. For all h/σ

that cause the cluster to be non-spherical, Fig. 3 shows that the
energy of clusters at the pole is always greater than at midcell in
two and three dimensions. For clusters in two dimensions this
always led to localization being favored at midcell. However,
for clusters in 3D shells, localization could occur at the poles
(fp/fm > 1) at certain values of h/σ . Hence for these h/σ , the
entropy of the cluster at the pole must be significantly greater
than that at midcell leading to the polar cluster having a lower
free energy. In Fig. 5(a) we show the calculated wp/wm [using
Eq. (2)] as a function of h/σ for different shell curvatures. We
now show how this entropy difference arises from defects.

From our simulations, we find that non-spherical clusters
at midcell form well-packed configurations [see Fig. 1(b)],
whereas polar clusters are less well packed and possess
additional defects [see Fig. 1(c)]. Ideally, clusters pack into
a hexagonal close packed structure, where within a layer, a
particle has six nearest neighbors, and depending on whether
it resides in the interior or on the surface, may have six or
three additional nearest neighbors respectively. Most particles
show the ideal packing arrangement [see Fig. 1(b)], but some

reside near defects which serve to reduce their coordination
number [see circles in Fig. 1(c)]. To assess how well packed
clusters are in a particular region, we look at the average
number of particles Nμ(r/σ ), that fall within a sphere of radius,
r/σ , around each particle. (We find this by averaging over all
particles in a cluster, and over all clusters in a particular region,
μ). In Fig. 5(b) we show the average number of particles as
a function of radial distance for midcell clusters of differing
shell thicknesses. The distributions show steplike increases as
one passes through the nearest neighbor shell and then the
next nearest neighbor shell and so on. Semispherical clusters
(h/σ > 2.0) have ≈ 9 nearest neighbors at r/σ1.1, whereas
single-layer clusters (h/σ = 1.25) have ≈ 6. We find that polar
clusters consistently have a smaller average number of nearest
neighbors than midcell clusters arising from the presence of
defects in the polar cluster [compare Fig. 1(b) and 1(c)].
We characterize the number of defects, �N , by taking the
difference �N = Nm(r/σ ) − Np(r/σ ) at r/σ = 1.1. This is
shown in Fig. 5(c) as a function of shell thickness. The greater
the �N , the more defects there are at the pole, each of which
can take various positions within the polar cluster. This results
in the polar cluster having greater entropy. Indeed, we find a
high correlation between �N and wp/wm.

V. DISCUSSION

We have shown that a cluster confined within a sphero-
cylindrical shell can be localized to either the pole or midcell,
depending on the shell’s thickness. The selective pressure
results from a competition between bending energy cost and
the entropic gain associated with defects. For clusters in 2D
shells, the additional bending energy of a cluster at a pole
always favored localization midcell. However, in 3D shells,
the interplay between the cluster’s energy and entropy became
more complex and led to the possibility of localizing to either
region. We showed that the additional entropy at the pole
was related to the presence of additional defects in polar
clusters compared to midcell. At certain shell thicknesses, this
additional entropy could give polar clusters an overall lower
free energy, favoring localization there.

Our simulations were motivated by recent cell biology
experiments showing the localization of molecules within the
periplasmic space of certain bacteria. In order to relate our
findings to bacterial geometries, we note that bacteria have
diameters around 1 μm, and in our simulations we used
D = 8σ to 12σ , which would correspond to particle diameters
of σ ≈ 80–100 nm. This is clearly much bigger than the
periplasmic space, which is around 20 nm in thickness, but
could be comparable to the space between the nucleoid and the
inner membrane. Nevertheless, we did find that as the particle
number was increased, confinement effects extended to larger
thicknesses, and so we would predict that if we could simulate
much larger systems of particles similar trends would be seen.
Indeed, for the localization of small dye molecules in the
periplasm whose clusters consist of several layers, the clusters
grow to sufficient size where they become nonspherical and
confinement effects as identified here could still play a role.

Kinetic effects may also be important in the localization of
biomolecular clusters in cellular systems. We have found that
clusters at the pole tend to have smaller diffusion coefficients
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on average than those at midcell (data not shown). If we
consider that most biomolecular clusters grow throughout a
cell’s life cycle, these differences in diffusion between pole
and midcell could favor the cluster being trapped at the pole.
We are currently exploring this topic further. Studying the
localization of clusters in confining shells such as presented
here could be tested experimentally using suspended colloids
in confining microfluidic channels to potentially examining
the localization of molecules in bacteria that have periplasmic
spaces of differing thickness. Further experiments are needed

to determine the relevance of the competition between entropy
and energy identified in this work for localizing clusters within
real systems.
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