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Period of a comblike pattern controlled by atom supply and noise
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Pattern formation of a step on a growing crystal surface induced by a straight line source of atoms, which
is escaping from the step at a velocity Vp, is studied with the use of a phase field model. From a straight step,
fluctuations of the most unstable wavelength λmax grow. Competition of intrusions leads to coarsening of the
pattern, and survived intrusions grow exponentially. With sufficient strength of the crystal anisotropy, a regular
comblike pattern appears. This peculiar step pattern is similar to that observed on a Ga-deposited Si(111) surface.
The final period of the intrusions, �, is determined when the exponential growth ends. The period depends on the
strength Fu of a current noise in diffusion as � ∼ λmax| ln Fu|: such a logarithmic dependence is confirmed for the
first time. A nonmonotonic Vp dependence of � indicates that the comblike pattern with a small Vp is related to an
unstable growth mode of the free needle growth in a channel. The pattern is stabilized by the guiding linear source.
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I. INTRODUCTION

Atomic steps or two-dimensional crystals growing in the
diffusion field show various pattern formation [1–4]. Recently
a strange comblike pattern was observed in steps on a Ga-
deposited Si(111) surface [5], and a similar morphology was
seen in graphene films formed on a SiC substrate [6–8]. The
pattern is very different from those reported previously [1–3].
The mechanism for the Si(111) case is proposed in Ref. [5]
as follows. (We show a simplified model in Fig. 1, which we
investigate in the present paper.) Caused by the deposition of
Ga, the surface structure changes from 7 × 7 to

√
3 × √

3
structure and, with further deposition, from

√
3 × √

3 to
6.3 × 6.3 structure. The latter starts at the (most likely lower)
step edge, and the phase boundary between

√
3 × √

3 and
6.3 × 6.3 structures proceeds by the deposition of Ga. When
the structural transition occurs, excess Si atoms are emitted
to the surface from the phase boundary. Thus, for the step,
an advancing source of adsorbed atoms (adatoms) is present
in front. This adatom source induces growth and wandering
instability of the step, which results in the comblike pattern.

We have set up a very simple model for this kind of
systems (Fig. 1). A straight line source of adatoms (it is
supposed to represent the structural phase boundary) is placed
in front of a step and moves forward at a constant speed
Vp, which is proportional to the Ga deposition rate in the
experiment [5]. The observed phase boundary is rather straight,
which indicates its stability, and we simplify the situation by
assuming the straight source. The amount of adatoms supplied
onto the surface is c0Vp per unit time and per unit length of
the linear source, where c0 is a constant density. For simplicity
we assume that diffusion of adatoms between the step and the
straight source is relevant. Therefore our problem of the step
morphology is equivalent to a pattern formation problem of a
two-dimensional crystal in a diffusion field of atoms supplied
by the escaping linear source.

*uwaha@nagoya-u.jp

To study pattern formation of steps, three types of models
are widely used: discrete lattice models, continuous sharp-
interface models, and phase field models. We first adopted
lattice models with Monte Carlo dynamics [9,10] similar to
Ref. [11]. In these studies, as well as in the present paper,
a square lattice is used for simplicity. The comblike patterns
are reproduced in the Monte Carlo lattice models with an
escaping linear source of atoms. A step in the lattice model
(LM) exhibits various morphologies from a thick comblike
pattern to a thin treelike fractal pattern as the velocity of the
source, Vp, becomes faster. The realization of the comblike
pattern relies on the crystal anisotropy. The comblike step is
seen in growth towards the [11] direction, but not towards the
[01] direction: growth in softer directions, but not in stiffer
directions (the step stiffness β̃ is larger in the [01] direction
than in the [11] direction). The characteristic length scale of
the pattern is proportional to the wavelength of the initial
Mullins-Sekerka instability, and the pattern shows coarsening
during growth. Although the coarsening seems to proceed via
competition between intrusions formed by the instability [12],
the mechanism of the termination of coarsening is not known.
In addition, the step patterns seem to be sensitive to fluctuations
of the step. Fluctuations induce tip splitting and ultimately a
fractallike pattern in the LM in an uncontrollable way [10].
Although fluctuation is necessary for the instability, it destroys
the stable pattern: competition between the fluctuation and the
anisotropy is the key factor for the pattern formation.

In order to find the mechanism of the termination of
coarsening and the stability of the comblike pattern induced
by the guiding linear source of adatoms, we make a phase field
model (PM) which represents the simplified growth conditions
described above. The main reason for using the PM is to
perform simulations with controlling the crystal anisotropy and
the noise that induces fluctuation of the step. Also, compared
to the sharp interface model, the PM has the advantage that
it does not require any special treatment when two steps
collide or disconnect. Although in real experiments the crystal
anisotropy is set by the nature of material and the strength of
noise in thermal equilibrium is uniquely determined, it is our
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FIG. 1. (Color online) A simplified model for Ga-deposited
Si(111) surface. Ga deposition expands the 6.3 × 6.3 area, and the
phase boundary emits the excess Si atoms, which make the step grow.

purpose to control these parameters to find the mechanism of
pattern fomation. The simulation model is described in Sec II.

In Sec. III, the results of our simulation are presented and
analyzed. We show the change of morphology of a step with
the change of the source velocity Vp and the strength of crystal
anisotropy in Sec. III A. The characteristic length (the period of
intrusions) � of the comblike pattern for slow Vp is compared
with that in the LM in Sec. III B. Taking account of the effect
of the noise, we discuss the coarsening process of the pattern
in Sec. III C. For a fast Vp, the Vp dependence of � changes
remarkably. This behavior is compared with the crystal growth
problem in a narrow channel [13], and the stability of the
pattern is discussed in Sec. III D. We summarize our results in
Sec. IV.

II. PHASE FIELD MODEL

The PM we adopt here is similar to that of Refs. [14,15].
Instead of evaporation and impingement of adatoms [16],
a moving straight line source in front of the step supplies
adatoms. To simplify the situation, we consider only two
atomic planes, the lower terrace z = 0 and the upper terrace
z = a, where a is the lattice constant.

Although the experiment [5] suggests existence of the
Ehrlich-Schwoebel (ES) barrier and the LM [10] assumes
this condition, we adopt a different condition in the PM for
simplicity. We assume infinitely fast step kinetics in the PM
with adatom supply only from the phase boundary so that the
diffusion on the upper side of the step is negligible. (Small
deviations from the equilibrium density for a straight step due
to the Gibbs-Thomson effect vanish apart from the step on the
upper terrace.) The condition corresponds to the case of the
Burton-Frank-Cabrera (BCF)-type step [15] of infinitely fast
kinetics without impingement and desorption of adatoms, and
the extra features of step growth are neglected [17]. Therefore
the motion of the step is determined by the diffusion field
between the step and the straight line source, and the model is
effectively one-sided (Fig. 1). Our system is equivalent to the
growing two-dimensional crystal with a diffuse step. The phase
field parameter takes the value −1 � φ � 1. Its equilibrium
values are φ = ±1, which correspond to the two flat terraces.
The value of φ is related to the smooth “average” height z as

φ = 2z

a
− 1. (1)

The excess of the adatom density per unit cell (here and after
we use the lattice constant a as the unit of length) compared to

the equilibrium one for a straight step, c0
eq, is the dimensionless

density variable,

u = �
(
c − c0

eq

)
, (2)

where � = a2 = 1 is the atomic area. u takes the value 0 �
u � c0, where c0 is the density at the source. In the case of
Ga-deposited Si(111), c0

eq is an unknown small value, and
c0 ≈ 0.5 so that the linear source supplies about half of atoms
for a straight step to grow at the same speed Vp [5,10]. If we
apply the model to the graphene film on SiC, the density at
the source, which is a single height SiC step, corresponds to
c0 ≈ 0.33 [8,10].

Physically consistent way to incorporate crystal anisotropy
and noise in the phase field model was formulated by Karma
and Rappel [18,19], and we follow their prescriptions. The
phase field φ obeys the evolution equation

τ
∂φ

∂t
= −δF

δφ
, (3)

where τ is the relaxation time and F is the free energy
functional given by

F =
∫ [

F (φ,u) + 1

2
W (θ )2|∇φ|2

]
dx dy (4)

with the coordinate axes parallel and perpendicular to the step:
x and y [Fig. 2(a)]. The local free energy F has the form

F (φ,u) = f (φ) − λug(φ), (5)

where

f (φ) = −φ2

2
+ φ4

4
(6)

and

g(φ) = φ − 2φ3

3
+ φ5

5
(7)

with λ a coupling constant. The relaxation time τ and the step
(or the interface) width W are anisotropic and depend on the
angle, θ , of the normal of the step to the x axis. θ is related to
∇φ as θ = tan−1(∂yφ/∂xφ). The explicit form of Eq. (3) is

τ (θ )
∂φ

∂t
= −∂F (φ,u)

∂φ
+ ∇ · [W (θ )2∇φ]

+ ∂

∂x

[
|∇φ|2W (θ )

∂W (θ )

∂(∂xφ)

]

+ ∂

∂x

[
|∇φ|2W (θ )

∂W (θ )

∂(∂yφ)

]
, (8)

where ∂xφ = (∂φ/∂x) and ∂yφ = (∂φ/∂y).
For simplicity and for the comparison with the LM [10],

the relaxation time τ and the width W are assumed to have the
square symmetry as

τ (θ ) = τ0 (1 + ε4 cos 4θ )2 , (9)

W (θ ) = W0(1 + ε4 cos 4θ ), (10)

where τ0 and W0 are constants. The strength of anisotropy
ε4 is a control parameter in the present study. τ (θ ) and W (θ )
are related to the capillary length d0 = �2c0

eqβ̃/kBT (β̃, the
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(a)
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(c)

FIG. 2. (Color online) Schematic diagrams of the PM simulation.
(a) Initial configuration of the system. (b) Initial profile of the fields
φ and u. (c) Profile of φ and u after some advancement of the source.
Computation with Eqs. (8) and (13) is performed between y = 0 and
the position of the linear source at y = yp0 + Vpt (=Ly).

step stiffness; kB, Boltzmann constant; T , temperature) and
the kinetic coefficient K as [18]

d0(θ ) = a1

λ
[W (θ ) + W ′′(θ )]

= d0(1 − 15ε4 cos 4θ ), (11)

K(θ )−1 = a1

λ

τ (θ )

W (θ )

[
1 − a2λ

W (θ )2

Dτ (θ )

]
(12)

with a1 = 5
√

2/8, a2 = 0.6267, and D is the diffusion
coefficient of u [see Eq. (13)]. In the growth direction θ = π/2,

the capillary length is the shortest, which implies that the
growth direction corresponds to the [11] direction [Fig. 2(a)].

The density field u obeys the standard isotropic diffusion
equation with a sink and noise

∂u

∂t
= D∇2u − 1

2

∂φ

∂t
− ∇ · q. (13)

The second term in the right-hand side represents the mass
conservation in the solidification (transformation from u to
φ, a sink term for u). The linear source is not involved in
Eq. (13) because we treat the moving linear source as
expanding the system size as explained later (see Fig. 2). Since
we neglect evaporation and impingement of atoms, the noise
is incorporated as a conserving current noise −∇ · q in Eq.
(13) [19], where q is a Gaussian white noise, which satisfies

〈qμ(r,t)qν(r ′,t ′)〉 = 2DFuδμνδ(r − r ′)δ(t − t ′). (14)

The noise strength at thermal equilibrium is given by Fu =
�2c0

eq to reproduce equilibrium thermal fluctuation of the step.
In general the noise strength is related to the adatom density
[19] (it is related to the incomming flux for a nonconserved
system [20,21]). In order to study the effect of the noise, we
treat the noise strength Fu as a freely controllable parameter
in our study. If the width W0 is much smaller than the
characteristic length scale of diffusion, our model corresponds
to a generalized sharp step model of the BCF type with noise
[15]. The stiffness of the step is anisotropic and the growth
kinetics is fast [1,4].

The system consists of an initially straight step located at
y = 100 and a linear source of adatoms in front of the step at
y = yp0 = 103 [Fig. 2(a)]. The initial profiles of φ(y) and u(y)
are plotted in Fig. 2(b). The source starts to move away from
the step with the velocity Vp releasing atoms with the density
c = c0 + c0

eq. Such a situation is implemented in the model by
expanding the area of computation: every time interval �y/Vp

(�y: the grid size in the y direction), new grid points with the
density u0 = �c0 are added to the calculation area, and then the
system size is Lx × Ly(=yp0 + Vpt). This prescription implies
constant adatom supply from the moving phase boundary, and
the mass conservation across the boundary [10,12],(

cVp + D
∂c

∂y

) ∣∣∣∣
Ly

= c0Vp, (15)

corresponds to the boundary condition for u as (u +
(D/Vp)∂yu)|Ly

= u0. At the other end the zero flux condition,
∂yu(x,0) = 0, is imposed. The boundary conditions for φ are
fixed value: φ(x,0) = 1, φ(x,Ly) = −1. In the x direction
the system is periodic: u(x + Lx,y) = u(x,y), φ(x + Lx,y) =
φ(x,y). For better correspondence with our previous study
of the LM [10], we choose the diffusion coefficient D = 1,
the capillary length d0 = 0.05, the width W0 = 3, the time
constant τ0 = 299.12, and the coupling constant λ = 53.033,
which have been adjusted to make the kinetic coefficient infin-
ity, K(θ )−1 = 0. The spatial distance and the time increment
in the numerical calculation are �x = �y = 1 and �t = 0.2.

Since we have chosen large value of W0/d0, our results
do not quantitatively coincide with that of the sharp interface
model [22].
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FIG. 3. (Color online) (a) Morphology diagram with the noise
strength Fu = 10−5 and the source intensity c0 = 0.5. Empty symbols
indicate that the step fails to follow the source. Dendrite implies
pattern with side branches. (b) Irregular pattern with Vp = 0.005,
ε4 = 0. (c) Comblike pattern with Vp = 0.005, ε4 = 0.05. These step
patterns are superposition of the step position [defined as the contour
φ(x,y) = 0] at different times.

III. SIMULATION RESULTS

A. Morphology of the step

In Fig. 3(a) we summarize the results of the simulation with
the noise strength Fu = 10−5 and the source adatom density
c0(=u0/� = u0) = 0.5 [23] with various values of the crystal
anisotropy strength ε4 and the source velocity Vp. There is a
clear distinction of steps that can follow the escaping source of
adatoms and that fail to follow the source, indicated by solid

and empty marks, respectively. If the source is faster than a
critical velocity, which depends on the crystal anisotropy, the
step is left behind the source: the growth velocity is smaller
than Vp. Otherwise the step follows the source, and the growth
velocity coincides with Vp.

In both cases the step pattern is apparently (but not very
clearly) divided into regular patterns and irregular patterns.
With weak crystal anisotropy, the step becomes irregular by
tip splitting of the intrusions and forms a random seaweedlike
pattern like Fig. 3(b) [blue squares in Fig. 3(a)]. When the
velocity of the source is slow, the irregular region shrinks.
Without crystal anisotropy, ε4 = 0, the pattern always looks
irregular even with a small Vp. In dendritic crystal growth it
is known that the crystal anisotropy is necessary to make the
tip stable to maintain a regular shape [24]. The anisotropy
in the diffusion field produced by the source alone is not
sufficient to stabilize the comblike pattern. With a stronger
crystal anisotropy the tips of intrusions are stabilized. Not
only splitting of the tips but also side branching is suppressed,
and a regular comblike pattern like Fig. 3(c) appears [solid red
circles in Fig. 3(a)]. The comblike pattern seen here is similar
to that observed in the LM [10]. [Figure 3(c) corresponds to
Fig. 4(d) of Ref. [10], but with less irregularity because of a
weak noise. Quantitative comparison of the growth velocity
is presented in Sec. III B.] It also looks similar to the pattern
observed in the experiments [5–8] (see Fig. 1 of Ref. [10]).
In the region of fast source velocity and strong anisotropy, the
step pattern seems to develop side branches, and a dendritic
pattern is seen [green triangles in Fig. 3(a)]. Stabilization of
the intrusions by the anisotropy is very effective for slower
velocity of the source.

The morphology change of a free dendrite has been studied
by Brener, Müller-Krumbhaar, Temkin, and Ihle [25–27].
They classified the pattern into four: compact dendrite, fractal
dendrite, compact seaweed, and fractal seaweed. As explained
in Sec. III D, our step growth is related to free crystal growth
in two dimensions. As a function of the crystal anisotropy ε4,
there is a resemblance between their classification and our mor-
phology diagram of Fig. 3(a): random seaweed versus regular
dendrite (comblike-pattern). However, we have not succeeded
in clear distinction between various morphologies, particularly
between fractal and compact morphologies. Therefore in the
present paper we focus on quantitative changes within the
regular comblike morphology.

B. Period of the comblike pattern compared with the LM

In our previous studies of the LM [10,12], we found that
the characteristic length of the branches (the period of the
pattern �) is several times longer than the wavelength of
the initial instability, i.e., the Mullins-Sekerka wavelength
λmax ∼ 2π

√
3Dd0/Vp. The coarsening of the pattern proceeds

via competition between the intrusions. Fewer and fewer
intrusions survive as the initial small intrusions grow. With
the increase of the source velocity, � and λmax decrease. In
other words, if Vp is large, the step follows the source by
adjusting the characteristic length so as to make the diffusion
length lD = D/Vp shorter.

In Fig. 4 solid symbols show the period � of the regular
comblike pattern as a function of the source velocity Vp for
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FIG. 4. (Color online) Change of the period � with the source
velocity Vp (solid marks). The fixed parameters are c0 = 0.5, d0 =
0.05, Fu = 10−5, and Lx = 800. The data are averaged over 20
independent runs. The velocity of a free dendrite without noise, in a
channel of width � with u(t = 0) = 0.5, is plotted with empty marks
(see Sec. III D).

three different values of the anisotropy parameter ε4. When
the source velocity is small, Vp � 0.01, comblike steps grow
with a similar period as in the LM simulation. The period in
the LM [Fig. 6(a) in Ref. [10]] is

� ≈ 10√
Vp

, (16)

for the kink energy ε/kBT = 2.0, which corresponds to the
capillary length d0(11) = c0

eq β̃(11)/kBT = 0.05 × 1.23 =
0.061 (we have assumed the value c0

eq = 0.05). The period
in the PM with ε4 = 0.03 (green squares in Fig. 4) is

� ≈ 17√
Vp

. (17)

The parameter value corresponds to the capillary
length d0(11) = d0(1 − 15ε4) = 0.05 × (1 − 0.45) = 0.0275.
The capillary length is shorter in the PM, but � is slightly
longer. Considering that the noise is much stronger in the LM,
the shorter � in the LM is reasonable (see Sec. III C). We
think that the two completely different models give essentially
the same result for the step pattern when the velocity of the
source is small. Now we look at how the coarsening from λmax

to � occurs, and how the noise affects the period of the final
pattern.

C. Coarsening of the pattern and the noise

To study the effect of noise we perform simulation with
various noise strength. Time evolution of the step pattern is
shown in Fig. 5. It is evident that the period of the pattern
is smaller with a stronger noise. It should be noted that the
starting time of the wandering instability is earlier with a
stronger noise, but the initial period of the instability is not
much different.

In Fig. 6 the period of intrusions in the comblike pattern,
〈�〉, averaged over 20 runs, is shown as a function of the noise
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FIG. 5. (Color online) Time evolution of a comblike step with
ε4 = 0.05 and Vp = 0.005 under different intensity of the noise
(a) Fu = 10−7, (b) Fu = 10−5, and (c) Fu = 10−3. Time increment of
the successive curves is 2 × 104.

strength Fu. It depends on Fu as

〈�〉 = 7.93|lnFu| + 80.9, (18)

for the source velocity Vp = 0.005 and the anisotropy strength
ε4 = 0.05. The process of coarsening is the same as that in
the LM [12]. In the competition for growth, fewer and fewer

FIG. 6. (Color online) The period � and the strength of the noise
Fu with c0 = 0.5, Vp = 0.005, and ε4 = 0.05.
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intrusions survive, and the distance between them increases
(Fig. 5).

We attribute the logarithmic dependence to the exponential
growth of the fastest intrusions as follows. Without the
instability the distance between the straight step and the
guiding source increases with time as (1 − c0)Vpt . Once the
instability occurs, the amplitude of the fastest intrusions grows
exponentially at the rate ωmax = 2

3kmaxVs, i.e., δy ∼ eωmaxt ,
where Vs = c0Vp is the velocity of the straight step and
kmax = √

Vs/(3Dd0) is the wave number of the fastest growing
mode in the linear stability analysis [9,10]. As intrusions
compete for growth, only the fastest ones grow exponentially
while more and more intrusions stop growing, leading to the
coarsening of the pattern. The exponential growth stops when
the fastest intrusions catch up with the escaping source at time
τ , i.e.,

(1 − c0)Vpτ ≈ δykmax (t0)eωmaxτ , (19)

where δykmax is the amplitude of the fastest growing mode and
t0 (t0 	 τ ) the time at which the instability sets in. The length
(1 − c0)Vpτ determines the length of the highest intrusions of
the step pattern when the coarsening ends.

The initial amplitude of the fastest growing mode, δykmax (t0),
can be estimated with the height correlation function

G(x,t) = 〈(y(x + x ′,t) − y(x ′,t))2〉, (20)

where y(x,t) is the location of the step position defined by
φ[x,y(x)] = 0 [the largest value is used if y(x) is multivalued].
Since the step is initially straight, G(x,t) is evaluated by
looking at roughening due to the noise (see the Appendix).
The amplitude of the fluctuation at t0 is estimated by putting
(δykmax )2 = G(λmax,t0). Since the fluctuation induced by the
current noise q in our system has both conservative and
nonconservative characters for the step, we cannot obtain a
definite formula of G(x,t). However, in any case G(λmax,t0) is
proportional to the noise strength Fu/d0 and the amplitude of
the relevant step fluctuation at t0 must also be proportional to
Fu/d0.

It is natural to assume that the length scale necessary for the
catch-up is the same as the period of the pattern: (1 − c0)Vpτ ≈
�. Taking the dominant contributions for a given c0, Eq. (19)
gives the relation between the period and the strength of the
noise as

� ∼ λmax| ln Fu| + const. (21)

Such a logarithmic dependence on the noise intensity of the
wavelength has been proposed in a context of morphology
diagram [25], where a stable tip radius is related to the noise
strength in a similar way as in Eq. (18). The idea has not been
confirmed in the numerical study [26]. Figure 6 is the first clear
demonstration of the logarithmic dependence on noise, which
strongly suggests the above period selection scenario via the
exponential growth of initial fluctuations.

Coarsening of the step pattern has been studied for step
wandering as well as for step bunching [1,2,4]. For the
case of step wandering five types may be distinguished: (i)
chaotic behavior with a fixed wavelength (during growth
with adatom evaporation [11,28]); (ii) a regular asymmetric
pattern with a fixed wavelength (with electromigration which
breaks inversion symmetry [29]); (iii) a

√
t increase in the

FIG. 7. (Color online) Change of the period � with the density
at the source c0, for Vp = 0.01 in a system of the size Lx = 800. The
noise and the anisotropy are ε4 = 0.05 and Fu = 10−5, respectively.
The dashed line is from Eq. (19).

amplitude with a fixed wavelength (during growth without
evaporation [30], or under several other circumstances [31]);
(iv) a perpetual increase of the wavelength and the amplitude
(during growth without evaporation with an elastic repulsion
[32], or on a vicinal face of alternating surface structures
with electromigration [33]); and (v) an interrupted increase
of the wavelength and a perpetual increase of the amplitude
(during growth with anisotropy [34]). The present step pattern
is the v, that is, so-called interrupted coarsening [35]. Danker
et al. derived a nonlinear evolution equation for a conserved
system with anisotropic step stiffness (and/or an anisotropic
edge diffusion) and demonstrated the interrupted coarsening.
Although our step has the same anisotropy, the present system
is not represented by the same nonlinear equation. We think the
proposed mechanism of coarsening for the comblike pattern is
different from that of Ref. [34].

To check our scenario of coarsening, we also perform
simulation with various densities at the source, c0 (=u0).
Figure 7 shows the simulation results of � as a function
of c0 for the source velocity Vp = 0.01 and the system size
Lx = 800. It also shows the theoretical curve obtained from
Eq. (19), by substituting the parameter values,

� = δykmax (t0) exp

(
0.172 c

3/2
0 �

1 − c0

)
. (22)

In the figure the initial amplitude is arbitrarily put δykmax (t0) =
10−5 (the feature of the curve is insensitive to this value).
The simulation results exhibit little coarsening for c0 � 0.7
and a very strong increase in � as c0 is decreased, in fair
agreement with the theory. With Vp = 0.01 the steady growth
seems possible for the density region 0.35 � c0, but for c0 �
0.32, Vp seems to exceed the limit and the step fails to follow
the source [37].

D. Comblike pattern at a high speed

In Fig. 4 if the velocity of the source is fast, Vp � 0.01,
the period � starts to increase in contrast to the LM, in which
a fine fractal structure is seen [10,36]. In the PM the large
interface width W does not allow short wavelength structures,
and the intrusions fail to follow the fast source. If the number
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c0

FIG. 8. The comblike pattern guided by the source (left) and a
needle pattern in a channel (right).

of intrusions is reduced via competition, fewer large intrusions
can grow faster and follow the source with a wider surrounding
area. The maximum velocity V max

p attained in such a way is the
boundary between the empty symbols and the solid symbols
in Fig. 3(a).

When the linear source escapes away from the step, a
wide area of uniform density c0 remains between the source
and the step, and free dendrites (or needles) can grow.
The maximum velocity is determined by the velocity of a
free needle (dendrite) step growing in a uniform density c0.
If one cuts out a single period of the system, it corresponds
to a needle (dendrite) step growing from a constant density
adatoms in a channel (Fig. 8). In Fig. 4, the velocity V of a
needle step growing from a uniform density c0 in a channel of
the width � is also plotted with empty marks (the data are the
result without noise). The asymptotic behavior of Vp and �

of the comblike step in the region 0.01 � Vp looks similar to
the relation between V and � of a free needle in the channel:
periodic intrusions in the present system are asymptotically
equivalent to the array of free needles in a channel.

The high value limit of Vp for the solid circles in Fig. 4
corresponds to the boundary V max

p (ε4) between the solid red
circles and the empty triangles in Fig. 3. Since the period �

increases as Vp approaches the maximum velocity V max
p , there

are two steady step patterns of the same period and growing
at different speed. An example of the step patterns is shown
in Fig. 9. The two step patterns look similar, but the velocities
differ by more than threefold. A careful observation finds that
the tips are rounder and more distant from the source in the
high-speed pattern [Fig. 9(b)]. The two steady states of the
same period and the different velocity may be related to the two
branches of the analytical solution of channel growth obtained
by Brener, Geilikman, and Temkin (Fig. 3(a) in Ref. [13]). Note
that the low-speed branch of the solution of channel growth,
whose velocity is proportional to �−2, is unstable [13]. This is
because intrusions can grow faster by splitting themselves so
that decreasing �. In the present model, however, the guiding
linear source makes such comblike patterns grow stably by
limiting the growth speed. It has been shown in the LM [12]
that with a sudden change of Vp the step adjusts its velocity by
tip splitting or by thinning out the intrusions. The transition
of step pattern is induced by step fluctuations, which compete
with the stabilizing anisotropy, and peculiar metastability of
the pattern is observed.

 0
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FIG. 9. (Color online) Comblike steps of the same period grow-
ing with (a) Vp = 0.005 and (b) Vp = 0.017. The red line is the
position φ(x,y) = 0, and the source is at the right end.

IV. SUMMARY

We constructed a phase field model of step growth with
a guiding linear source, and studied effects of the adatom
supply, the crystal anisotropy and the noise. A tentative
morphology diagram with the strength of the anisotropy and
the velocity of the source is presented. The detailed analysis of
the morphology diagram is a theme of our future study. With
crystal anisotropy, regular comblike patterns, similar to the
one observed during Ga deposition on a Si(111) vicinal face
[5], appear in accordance with the LM [10]. The logarithmic
dependence of the period � on the noise strength Fu has
been confirmed for the first time. The relation of �, Fu,
and c0 suggests the mechanism of interrupted coarsening of
the comblike pattern. The exponential growth of the survived
intrusions settles in steady growth when the step catches up
with the escaping source. The height of the intrusions at the
time determines the length scale of the system. If the source
velocity Vp is increased to the maximum velocity that the
step can follow, in contrast to the fractal growth found in the
LM [10], a rapid increase in � occurs. The relation between
the velocity and the period is reminiscent of the analytic
solution [13] found in needle growth in a channel. In our step
growth, the linear source stabilizes the unstable growth mode
by suppressing the tip splitting of intrusions.
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APPENDIX: ROUGHENING OF A STEP

We suppose that time evolution from the straight step obeys
the Mullins-type relaxation equation with nonconserved shot
noise (incomming flux) and/or conserved current noise along
the step. Then the step position y(x,t) may be described by

∂y

∂t
= −ν

∂4y

∂x4
− �

∂j

∂x
+ η, (A1)

where ν = d0Ds (Ds: the diffusion coefficient of the step), j

is a conservative current noise (diffusive noise [20]) with the
correlation

〈j (x,t)j (x ′,t ′)〉 = 2fj δ(x − x ′)δ(t − t ′), (A2)

and η is a nonconservative shot noise with

〈η(x,t)η(x ′,t ′)〉 = 2fηδ(x − x ′)δ(t − t ′). (A3)

Since the noise in our system is the conservative current
noise on the surface and the step is growing with incomming
flux from the surface, the noise on the step will have both
conservative and nonconservative characters. Solving Eq. (A1)
with the initial condition y(x,0) = 0 by Fourier transformation
[21] we obtain

yk(t) =
∫ t

0
dt ′e−νk4(t−t ′)(−ik�)jk(t ′) (A4)

or

yk(t) =
∫ t

0
dt ′e−νk4(t−t ′)ηk(t ′). (A5)

From Eq. (A2) or from Eq. (A3) the height correlation is

〈yk(t)y−k(t)〉 = �2fj (η)
1 − e−2νk4t

νkn
, (A6)

where n = 2 for the conservative current noise and n = 4
for the nonconservative shot noise. In the long run, with the
conservative noise it becomes

〈yk(t)y−k(t)〉 → �2fj

νk2
= �2fj

d0Dsk2
. (A7)

Since 〈yky−k〉 = kBT /(Lxβ̃k2) (Lx is the system size) in ther-
mal equilibrium, the noise intensity must be f

eq
j = c0

eqDs/Lx ,
or in general we may put fj = cDs/Lx .

The height correlation in the real space is calculated as

G(x,t) =
∑

k

〈yk(t)y−k(t)〉4 sin2 kx

2

≈ Fu

d0

2

π

∫ π/a

−π/a

dk
1 − e−2νk4t

kn
sin2 kx

2
, (A8)

where a is the lattice constant (the short wavelength cutoff),
n = 2, and we have used the correspondence of the noise
in the PM and the adatom density, F

eq
u = �2c0

eq. With the
nonconservative noise the exponent of k in the denominator
becomes n = 4, but the coefficient cannot be determined [38].
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