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Nucleation and propagation of solitary Schallamach waves
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We isolate single Schallamach waves—detachment fronts that mediate inhomogeneous sliding between
an elastomer and a hard surface—to study their creation and dynamics. Based on measurements of surface
displacement using high-speed in situ imaging, we establish a Burgers vector for the waves. The crystal dislocation
analogs of nucleation stress, defect pinning, and configurational force are demonstrated. It is shown that many
experimentally observed features can be quantitatively described using a conventional model of a dislocation
line in an elastic medium. We also highlight the evolution of nucleation features, such as surface wrinkles, with
consequences for interface delamination.
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I. INTRODUCTION

While the phenomenological study of friction between solid
surfaces has a long history [1], it was not until the mid-20th
century that the microscopic aspects were first probed [2].
Subsequently, significant attention has been devoted to the
fundamental microscale mechanisms underlying the phenom-
ena of static and dynamic friction [3–5]. Simple universal
laws such as those of Amontons and Coulomb, though used
extensively, frequently remain unsatisfactory [6]. For example,
under extreme sliding conditions, the friction depends on the
area of contact [7]. Likewise, at low sliding velocities, sliding
friction is nontrivially dependent on velocity [8] and normal
load history [9], resulting in the occurence of inhomogeneous
modes of sliding with localized slip.

A soft adhesive elastomer sliding on a smooth surface is
a model system that exhibits inhomogeneous sliding modes,
while also capturing the physics underlying processes of
practical and industrial interest [10]. At a length scale of a
few hundred micrometers and low relative sliding velocity
(�10 mm/s), motion between the two surfaces does not
occur homogeneously but via the propagation of “waves of
detachment,” also known as Schallamach waves [11–13].
Under similar conditions, sometimes another inhomogeneous
mode of sliding, called the “self-healing slip pulse” is also
observed [14]. Schallamach waves have been likened to
crystal dislocations [15] or rucks in carpets [16,17]. Such
comparisons have only been qualitative; however, they have
helped rationalize some observed features such as the locality
of surface slip and existence of a nucleation stress.

Motivated by these considerations, we have further ex-
plored, using experiments, the similarity between a single
Schallamach wave and a dislocation line in an elastic medium.
For this purpose, a long adhesive contact was established
between an elastomer and a solid surface, enabling observation
of solitary Schallamach waves (wave pulses). This provides
a suitable framework in which to study their characteristics
quantitatively. High-speed in situ imaging was used to capture
their nucleation and propagation, at resolution of ∼2 μm.

Improved observations of the intrinstic features of isolated
Schallamach waves should help us to better understand
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inhomogeneous interfacial sliding phenomena prevalent in
earthquake ruptures [18], polymer friction [4,5], and locomo-
tion of soft-bodied animals [19]. It could also shed new light on
the relation between Schallamach waves and the self-healing
slip pulse mode of sliding [14].

The paper is organized as follows. Details of the experi-
mental setup are provided in Sec. II followed by high-speed
photographic observations of Schallamach wave nucleation
and propagation (Sec. III). Using image analysis techniques,
we obtain quantitative information about the individual wave
properties that help explain various features of the nucleation
and propagation stages. The results are analyzed in detail in
Sec. IV, along with a discussion of why inhomogeneous sliding
modes occur. The principal findings are summarized in Sec. V.

II. EXPERIMENTAL DETAILS

The adhesive contact used is that between an uncoated
planoconvex lens made of synthetic glass (Edmund Optics)
and the elastomer polydimethylsiloxane (PDMS, Sylgard 184
from Dow Corning). A schematic of the experimental setup
is shown in Fig. 1. The elastomer and the lens are optically
transparent. The contact region is illuminated by a 120-W
halogen lamp and observed by a microscope (Nikon Optiphot)
mounted in front of a high-speed camera (PCO dimax).
This system was used to image the contact region at frame
rates of 5000–8000 Hz. The resulting spatial resolution was
1.9–2.8 μm per pixel, depending on the microscope lens used.
Normal and tangential forces in sliding were measured using
a piezoelectric dynamometer (Kistler).

Two different planoconvex lens geometries were used
for the experiments—a spherical lens of radius Rs = 5 mm
and a cylindrical lens of radius R = 16.25 mm and length
L = 25 mm. Sample images of the contact region with the
cylindrical lens [Fig. 1 (right, top)] and the spherical lens
[Fig. 1 (right, bottom)]. In both cases, the size of the contact
region was maintained constant between experiments. For the
cylindrical lens geometry, the angle subtended by the contact
region at the lens axis was around 1.7◦; the lens curvature
caused a shift in the image of �1 μm, which was, however,
not resolvable by the imaging system. Upon contact, the
cylindrical lens formed a long aspect-ratio adhesive “channel”
in which to propagate solitary Schallamach waves. From the
high-speed observations, this was found to be most conducive
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FIG. 1. (Color online) Schematic of the experimental setup, with reference coordinates. Images on the right show the contact regions for
the cylindrical (top) and spherical (bottom) lens geometries. Scale bar corresponds to 200 μm.

for the production of single wave pulses at the interface.
Characteristics of wave nucleation were studied using the
spherical lens geometry, because the resulting finite contact
region allowed complete observation of the contact edges.

The PDMS elastomer sample was prepared by mixing a
base (vinyl-terminated polydimethylsiloxane) with a curing
agent (methylhydrosiloxane-dimethylsiloxane copolymer) in
the ratio 10:1 by weight. The resulting mixture was cured for
12 h at 60 ◦C. The PDMS was cast in a mold into slab type
specimens, with dimensions of L = 70 mm × H = 22 mm in
the xy plane (see Fig. 1). L is the length in the sliding direction.
The thickness of the slab was 12 mm. For experiments
requiring a longer sliding length, a slab with L = 90 mm was
used. The Young’s modulus and Poisson’s ratio for PDMS
were estimated from reported shear [20] and bulk modulus
[21] values for Sylgard 184 as E � 800 kPa and ν = 0.45,
respectively. The sample was mounted on a linear slide which
could impose sliding velocities of 10 μm/s–20 mm/s. The
camera and the indenter (lens) were fixed on rigid supports as
shown in Fig. 1 (left).

The starting contact size was kept constant in all the
experiments by maintaining the applied initial normal load
at 35 mN (spherical lens) and 55 mN (cylindrical lens). The
dynamics of the interface maybe expected to vary with the
normal load.

The high-speed image sequences obtained in the experi-
ments were analyzed to obtain displacements for each pixel
between successive images. This is done by assuming that
the image intensity is convected with the physical velocity
field. Since the frame rate is kept constant, the interframe
displacement is proportional to the instantaneous velocity. A
brief description of the image processing methods is provided
in the Appendix. Once the velocities of every pixel are obtained
for each image, specific surface properties are determined by

following a set of predetermined “virtual” tracer points. These
are pixel locations in the first image (with perfect adhesive
contact) spaced two pixels apart, along the horizontal contact
midline (x = 0) in the middle of the contact region. Their
positions (xi,yi) are altered between successive frames, using
the local velocity field determined for that particular frame.
All of the results are presented and discussed in the elastomer
rest frame. It is in this sense that the “leading” and “trailing”
edges of the lens are defined.

III. OBSERVATIONS

Interfacial slip via Schallamach waves consists of two main
stages—nucleation of a wave and its propagation through the
interface. These are studied using the spherical and cylindrical
lens geometries, respectively. The former is chosen due to the
small circular contact zone, which enables easier observation.
The latter removes the effects of contact geometry, thereby
allowing us to observe the intrinsic propagation characteristics
of individual Schallamach wave pulses.

A. Nucleation of Schallamach waves

Schallamach waves nucleate due to a buckling instability of
the elastomer surface [11,12]. A prototypical nucleation event
is shown in Fig. 2 (top row) with the corresponding schematic
side view in Fig. 2 (bottom row). Initially, in Fig. 2(a), the
spherical lens and the elastomer surface are in adhesive contact.
When a relative sliding velocity is imposed, the elastomer-free
surface ahead of the lens is compressed, causing it to buckle
[Fig. 2(b)]. This compression results from a combination of
the applied tangential force and adhesion at the interface.

In order to maintain a constant sliding velocity vs , continued
application of the tangential force is necessary. The van der
Waals force between the surfaces causes the elastomer to
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(a) (b) (c) (d)

FIG. 2. (Color online) Four frames from a high-speed sequence showing the nucleation of Schallamach waves (top row) with a schematic
side view (bottom row). (a) Circular contact region before application of tangential force. (b) Change in shape of contact region and accompanying
buckling instability that initiates wave nucleation. (c) The surfaces readhere ahead of the lens (point B). (d) A single Schallamach wave pulse
travels through the contact region. vs = 20 mm/s, spherical lens.

reattach to the lens, at point B in Fig. 2(c). An air pocket
(region A1B) is thus trapped inside the contact region. The
presence of a strong shear stress gradient causes this pocket
to traverse the length of the contact region in the form of a
single Schallamach wave, as seen in Fig. 2(d). The region BC
in the wake of the wave is now again in adhesive contact.
These waves hence travel from the leading edge of the lens to
the trailing edge, i.e., in a direction opposite to the imposed
sliding velocity vs .

A prominent feature of Fig. 2 is the wrinkle pattern on
the surface (region A1A2) accompanying the wave [22]. This
is seen in the movie M1 (Supplemental Material [23]) and
shown in Fig. 3. These wrinkles are also compression-induced
features, akin to the formation of sulci [24], and have important
consequences for wave propagation. The average spacing
between adjacent wrinkles gives the pattern wavelength. The
initial value of the wavelength λ0, as measured from the
images, is 18 μm, see Fig. 3 (left). Upon further application of
shear, even though the two surfaces remain adhered at the
interface [Figs. 2(b) and 2(c)], there is an increase in the
compressive stress on the elastomer-free surface. The pattern
wavelength correspondingly increases to λ1 = 40 μm [Fig. 3
(right)], which is approximately twice the initial value λ0.
There is an accompanying increase in wrinkle amplitude.

For low sliding velocity (vs ∼ 5 mm/s for the spherical
lens), where the interfacial shear stress is not sufficient to
change the wavelength, large-amplitude wrinkles do not form
on the surface, see movie M1 [23]. In this regard, it is
interesting that an elastic film on an elastomer substrate, under
longitudinal compression—a similar loading condition as in
the present experiments—also exhibits surface wrinkling as
well as a period doubling instability for large loads [25].
The image corresponding to Fig. 2(c) represents the end of

the nucleation of a single Schallamach wave; the wrinkles
subsequently move in consonance with it [Fig. 2(d)].

Another important feature of the wave nucleation is the
shape of the contact region in the sequence in Fig. 2. The
leading edge of the initially circular contact region is stretched
in the forward direction due to the applied force. As this force is
increased, the inclination of the leading contact edge increases
until nucleation is complete [Fig. 2(c)], following which the
nucleated wave maintains its profile [Fig. 2(d)].

FIG. 3. Wrinkles accompanying the nucleated wave. (Left) Initial
pattern, with wrinkle wavelength λ0 = 18 μm. (Right) Increase in
wrinkle wavelength to λ1 = 40 μm due to continued application of
tangential stress.
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FIG. 4. (Color online) Schallamach wavefront and its propagation features. (Top row) Sequence of images showing propagation of a solitary
Schallamach wave. The full length of the contact region is about 20× the length shown in the images. (Bottom) Three-dimensional intensity
plot, derived from the images, showing various features on the elastomer surface. A, initial adhesive contact between the surfaces; B, front of
Schallamach wave; C, extent of trapped air pocket comprising the wave; D, wrinkles on the surface; and E, incomplete readhesion after wave
passage. Wave velocity vw � 110 mm/s. vs = 2.5 mm/s, cylinder lens.

B. Propagation through the interface

Once a solitary Schallamach wave is nucleated, it traverses
the contact region, due to a stress gradient. The propagation
characteristics of the nucleated wave pulse are best observed in
the cylindrical contact. The initial contact region resembles a
long, thin adhesive “channel.” The length of the contact region
L = 2.5 cm and width 2a ∼ 1 mm were kept constant for all
the experiments. The images were recorded in the middle of the
contact but were found to be consistent along the entire length.

A sequence of frames from the cylinder lens contact is
shown in Fig. 4 (top row). The image intensity is depicted
in three dimensions in Fig. 4 (bottom row) and follows the
elastomer surface profile. The elastomer and lens are initially
in perfect contact (region A) with the Schallamach wavefront
clearly demarcated (edge B). The wave itself is seen as a
depression (region C) due to the trapped air pocket. The
surface wrinkles (e.g., at point D) are also visible. Once the
solitary Schallamach wave has passed, readhesion between
the surfaces is incomplete, leaving small stationary residual
air pockets (like at point E). In movie M2 [23], it is seen that
these air pockets form exactly over the free surface wrinkle
pattern, due to increased strain concentration in the wrinkles.
Such wrinkles, formed during wave nucleation, were found to
cause significant interface delamination after the passage of
successive Schallamach wave pulses.

The result of passage of a single Schallamach wave is also
brought out by its effect on the surface displacement of a dirt

particle. Figure 5(a) shows perfect adhesive contact between
the cylinder lens and elastomer surface, with a dirt particle
(point A) on the elastomer surface. As in Fig. 4, the leading
front of the incoming wave pulse is denoted by B. When the
wave propagates through the observed region [Fig. 5(b)], the
wrinkles C again result in incomplete readhesion in the wake
(point D). The dirt particle A is displaced from its original
position as the wave pulse passes over it. A small air pocket is
also left around it in the process [point E in Fig. 5(c)]. From
the initial and final positions of the particle at A in Fig. 5(a), it
is clear that relative motion between the surfaces has occured
intermittently and only due to wave passage, see movie M2
[23]. This cycle is repeated when a second wave [F in Fig. 5(d)]
is nucleated and traverses the contact region. Since the vs in
Fig. 5 is larger than in Fig. 4, more air pockets remain trapped in
the wake of the wave. The contact condition is hence changed
for subsequent wave nucleation and the shape of the following
wave pulses is altered, as in Fig. 5(d).

An interesting phenomenon is observed during propagation
past stationary dirt particles attached to the lens, as shown in
Fig. 6. Here the wavefront approaches a static dirt particle
A in the contact region and gets “pinned,” causing a bend
in the wave profile (point B). As the front moves away from
the particle, the wave regains its original profile, leaving a
residual air pocket C around the particle. This resembles the
motion of dislocations in crystals past static obstacles (solute
particles), leaving behind so-called Orowan loops [26]. For
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(a) (b) (c) (d)

FIG. 5. (Color online) Propagation of single Schallamach wave pulses in an adhesive contact. The waves retain their profile over long
distances. The length of the contact region is 2.5 cm. Scale bar corresponds to 250 μm; wave velocity vw � 380 mm/s. vs = 10 mm/s, cylinder
lens

dislocations in metals, this is known to lead to the Fisher, Hart,
and Pry effect [27]. Under dilute solute particle concentration,
the dislocation line is bent by the obstacles and it eventually
relaxes its shape.

C. Properties of a solitary Schallamach wave

In studying the propagation of a single Schallamach wave,
three different velocities must be distinguished—the imposed
(remote) sliding velocity vs , the local material velocity vp,

FIG. 6. Pinning of a single Schallamach wave by static dirt
particles. The wavefront approaches a single dirt particle A (top row),
and is bent by it (point B, middle row). The wave then regains its
original shape, while leaving behind an air pocket C around the dirt
particle.

and the velocity vw of propagation of the Schallamach wave.
In each sliding experiment, vp and vw could, in principle, vary
along the contact.

Standard image analysis techniques were applied to the
high-speed image sequences of an isolated wave to obtain
the material velocity vp(x,y) for each pixel (x,y) in an
image frame (see Appendix for details). By tracking a set
of horizontal “virtual” tracer points (xi,yi) lying in the initally
perfect contact region, the relative interframe displacement
of the surfaces during wave propagation was obtained. This
is shown for four different values of vs in Fig. 7(a). The
graph shows a distinct jump, implying that relative motion
occurs only due to wave passage; the surfaces are otherwise
stationary and in perfect contact. An analogous situation
prevails during the irreversible displacement (slip) caused by
motion of an edge dislocation on a crystal glide plane. In this
case, the displacement magnitude is given by the dislocation
Burgers vector. Similarly, the displacement jump in Fig. 7(a)
can be associated with a Burgers vector b for the solitary
Schallamach wave. It is clear from Fig. 7(a) that |b| = 255 μm
and is independent of vs . It is determined, for a given contact
geometry, by the substrate material properties. Both of these
characteristics are also true for the dislocation Burgers vector
[26]. The value of |b| for a Schallamach wave depends on the
contact dimensions and, hence, on the normal load.

The velocity magnitudes |vp(xi,yi)| of each of the material
tracer points (xi,yi) may now be assembled in the form of
a space-time diagram, as shown in Fig. 7(b). The x axis is
the initial location of the material tracer points and the y axis
denotes time. The pixel color values denote |vp(xi,yi)| of each
tracer point for a particular time slice. The leading edge of
the Schallamach wave pulse is represented by the line AB and
the trailing edge by CD. The slopes of these lines are equal,
giving a wave group velocity vw = 110 mm/s and vw/vs � 45.
The equal values of the slopes show that a Schallamach wave
pulse maintains its shape during propagation over the long
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(a)

(b)

FIG. 7. (Color online) Burgers vector and group velocity of a
Schallamach wave pulse. (a) Mean surface displacement due to a
single Schallamach wave, for various values of vs ; the magnitude of
the jump denotes the |b| of the wave. (b) Space-time diagram showing
local velocity |vp| for points on surface, vs = 2.5 mm/s. AB and CD
denote the front and rear of the wave pulse. Cylinder lens.

contact. In general, when vs is increased, vw also increases but
vw/vs appears to reduce a little. For the range of vs used, this
ratio was between 35 and 50. Note that along the wave pulse
profile, vw differs from the local phase velocity |vp(xi,yi)|
(=50 140 mm/s). It is interesting that both vw and vp are much
smaller than the shear wave velocity for PDMS (∼15m/s).

D. Motion of multiple Schallamach waves

The tangential force FT on the elastomer was measured
during sliding and is shown [in blue (dark gray)] in Fig. 8(a).
This force provides a measure of the shear stress at the in-
terface. Since the experiments were performed under velocity
control, the force varies with time. The measured value of

the normal force, FN [in green (light gray)], is also seen to
oscillate with time in Fig. 8(a). The force data were correlated
with the high-speed image data to confirm that only one
wave pulse traversed the contact region at a given time. It
is seen from Fig. 8(a) that, prior to wave nucleation, FT

builds up due to adherence of the two surfaces. There is a
critical tangential force Fc � 1.6 N (point A1), at which a
single Schallamach wave is nucleated and begins to propagate
(point B). The corresponding critical interfacial shear stress is
6.5 kPa. Furthermore, the critical remote strain just prior to
the propagation of a wave was estimated to be εc � 0.03.
This is somewhat larger than the shear strain due to slip
|b|/h0 � 0.015. The shear stress relaxes as the nucleated wave
traverses the interface and exits the trailing edge of the contact
(point C). This cycle then repeats with another wave nucleation
event. Incomplete readhesion at the interface, caused by the
surface wrinkles, results in a reduction of the critical force
(Fc) in the cycles that follow the passage of the first wave
pulse (point A2).

Each Schallamach wave pulse produces the same amount
of slip [cf. Fig. 7(a)] irrespective of the sliding velocity.
The interface accommodates the imposed vs by changing the
frequency n with which waves are nucleated. The value of n

may be obtained from the force trace or the image sequences,
both of which are correlated. Figure 8(b) shows the variation of
n with vs . The critical velocity vc = 150 μm/s for sliding by
Schallamach waves is also marked in the figure. The frequency
n is seen to vary linearly with vs over a large range except very
near vc—if the best fit line in Fig. 8(b) is extended to n = 0,
it intersects the vs axis at a small negative value. Schallamach
waves were observed at velocities very close to, but above,
the value vc. The dependence of n on vs was found to be
qualitatively independent of the contact geometry used.

IV. ANALYSIS AND DISCUSSION

The high-resolution measurements provide a basis for
analyzing nucleation and propagation characteristics of Schal-
lamach waves using simple physical models. Based on the
force measurements, we also briefly discuss the stability of
homogeneous sliding.

A. Wrinkle pattern during wave nucleation

The free surface wrinkles, ahead of the lens, result from
compression of the elastomer. Correspondingly, an analysis
of surface instabilities in a compressed elastic half-space [28]
shows that at a critical compression ratio ∼0.5, the surface is
unstable to perturbations of all wavelengths. Hence this cannot
explain the observed wavelength pattern.

However, an analysis of the nucleation stage may be guided
by the observed similarity of the surface wrinkle pattern in
Fig. 3 with that seen in compressed elastic films on soft
substrates [29]. Furthermore, the change in pattern wavelength
observed during wave nucleation at large vs , see Fig. 3, appears
very similar to that seen in the longitudinal compression of
such a thin film [25]. Motivated by this similarity, we obtain
an estimate of the wrinkle amplitude using the model of an
elastic thin film on an elastomer substrate, where the elastic
properties of the film and the substrate are identical.
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FIG. 8. (Color online) Normal (FN ) and tangential (FT ) forces, and generation frequency (n) for Schallamach waves. (a) Time variation
of FT (blue or dark gray) and FN (green or light gray) for vs = 1 mm/s. Each oscillation of FT represents the propagation of a single wave.
Critical force for nucleation FC is marked by point A1. (b) Dependence of n on vs . The critical velocity for Schallamach wave formation is
vc = 150 μm/s. Cylinder lens.

For such a system, the wavelength λ0 of the first-appearing
wrinkle pattern on the free surface, upon compression, is [30]

λ0 = 2π

[
B(1 + ν)(3 − 4ν)

Es(1 − ν)

]1/3

, (1)

where Es , B, h, and ν are the Young’s modulus of the
substrate and the film’s bending modulus, thickness, and
Poisson ratio, respectively. Using B = h3 Es/(12(1 − ν2)),
λ0 = 18 μm from our observations (Fig. 3) and ν = 0.45 for
PDMS, we obtain h ∼ 5 μm, which gives an equivalent “film”
thickness. A crucial feature is that even though the properties of
the thin film and the elastomer substrate are set to be the same,
the model used here does not simplify to a regular half-space
(Biot’s instability). This is because geometric nonlinearity is
included in the deformation of the “film,” while the substrate
is assumed to experience small displacement gradients. This
approximation is hence consistent, only if the strains are
confined to a thin surface layer, as the small value of h a
posteriori indicates—if h were comparable to the elastomer
slab height, the surface would prefer to stretch instead of
forming wrinkles and buckling, due to energy considerations.

The period doubling with increased compression [Fig. 3
(right)] reinforces the thin-film analogy [25]. As the com-
pression is increased, the critical compression ratio at which
the second (subharmonic) wavelength appears is, to a first
approximation, determined entirely by ν [25]. For ν = 0.45,
this occurs at a critical compression ratio δ � 0.42.
Correspondingly, the amplitude of the wrinkle pattern is
A � h. With further compression, this amplitude increases
with δ. The large-amplitude wrinkles that result in residual
air pockets in Fig. 5 must have an amplitude larger than
the thickness A � h, hence corresponding to large δ. The
increased amplitude of the larger wavelength wrinkles on the
free surface causes incomplete readhesion after the passage

of a single Schallamach wave. This is seen by comparing
images of the contact region in the two cases—low vs (smaller
amplitude, wavelength) in Fig. 4 (top, right) and high vs (larger
amplitude, wavelength) in Fig. 5(c)—as well as movie M1
[23]. It is clear that the number of trapped interfacial air pockets
is much greater in the latter case, resulting from an increase
in wrinkle amplitude during nucleation. Motion of multiple
Schallamach waves hence causes significant degradation to the
adhesive interface. The value of δ obtained from this thin-film
model depends sensitively on ν, for ν values between 0.45 and
0.49, while the resulting h and A remain roughly the same.

The model of a thin elastic film on an elastomer substrate
thus appears to capture key aspects of the mechanics of
nucleation of a single Schallamach wave. This analogy hence
suggests that by suitable surface treatment (e.g., surface
texturing, pattern impregnation, exposure to ozone) of a very
thin (predetermined) surface layer of thickness h, Schallamach
waves can be suppressed. It must be noted, however, that the
thin-film analogy is based only on wavelength observations
and is not fully physically justified. In practice, it is likely that
a crease forms on the elastomer surface due to some localized
imperfection, as suggested, for instance, in Ref. [31].

B. Comparison with dislocations and critical
stress for propagation

The observed propagation characteristics of solitary Schal-
lamach waves help expand on the analogy between wave
propagation and crystal dislocation glide. First, Schallamach
waves are nucleated at a critical stress [point A1, Fig. 8(a)],
similarly to crystal dislocations. This stress is the compression
required for buckling to occur on the elastomer-free surface.
Second, slip at the interface determines an equivalent Burgers
vector b for the Schallamach wave [cf. Fig. 7(a)] with |b|
independent of vs . This b can be obtained from surface
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FIG. 9. (Color online) Geometry of equivalent line during prop-
agation of Schallamach wave. 2a is the width of the contact region.
t denotes tangent vector along the discontinuity line, which has
inclination θ . b is the Burgers vector. Cylinder lens.

displacement measurements and shares key characteristics
with its dislocation counterpart. Third, when Schallamach
waves encounter static dirt particles in the contact region, they
are pinned, leaving behind an air pocket separating the two
surfaces (see Fig. 6). This is akin to the well-known pinning of
a dislocation line by a solute particle and the resulting residual
dislocation loop [26]. Finally, the nature of the driving force
on the wave pulse is similar to the “configurational” Peach-
Koehler force on a dislocation—both the solitary Schallamach
wave and an elastic dislocation translate only because their
constituent material points move collectively.

For the elastic dislocation model, the (Peach-Koehler) force
on the discontiunuity line, arising from applied stress σ , is
given by [26]

F = t̂ × (σ · b). (2)

A typical profile of a single Schallamach wave is reproduced
in Fig. 9. An equivalent dislocation line, subtending an angle
2θ , is superimposed over the wave. This line is acted on
by a stress state with nonzero components σyz = σzy = τ

and σzz = σN , applied at the contact interface. The resulting
surface displacement determines the Burgers vector b in the y

direction.
If the discontinuity line is displaced by δr = 
x x̂ ± 
y ŷ

(for the top and bottom segments), the change in poten-
tial energy is given by δV = (F · δr) L = 4τa|b|

cos θ
(sin θ
x +

sin θ
y), with L the length of the discontinuity line. For the
discontinuity to move, the change in the potential energy of
the medium must be provided physically by the hysteresis in
peeling and readhering of the elastomer surface in the contact
region. This energy balance provides an estimate of the critical
shear stress needed to propagate a single wave pulse. Assuming

x � a, the critical force Fc

s required to move a wave pulse
is hence given by

Fc
s = a Lc 
W

|b| , (3)

where 
W is the adhesion hysteresis and 2a and Lc are the
contact width and length, respectively. Using |b| = 255 μm,
2a = 1 mm, and Lc = 2.5 cm for the experiments and 
W �
10 mJ/m2 for PDMS [32], Fc

s is estimated to be 0.5 mN. This is
the minimum force needed to propagate a single wave through
the contact region. The wave pulse can thus travel through the
interface at a much lower stress than that needed for nucleation
(Fc � 1.6 N). This explains the origin of the drop in tangential
force [blue (dark gray) in Fig. 8(a)]. As the interface relaxes,
the tangential force continues to decrease until it either equals
Fc

s or the wave exits the contact region; the latter occurs in
Fig. 8(a). During propagation, a decrease in the normal force
FN [green (light gray) in Fig. 8(a)] results, due to a change in
contact size when the wave traverses the contact region.

C. Slip accumulation in the contact

Interfacial displacement only results from the passage of
single wave pulses; hence the dislocation model can be used
to obtain an expression for the strain rate. The interfacial shear
strain ε in a time interval 
t is due to the passage of n
t

parallel dislocation lines. This is given by

ε = vs 
t

h0
= |b| 
A

2V
(n
t), (4)

where h0 is the height of the elastomer sample, 
A the area
swept by a single wave in time 
t , n is the wave generation
frequency, and V = 2a h0Lc. The second equality in Eq. (4)
above follows from the expression for shear strain due to glide
of a single dislocation [26].

As seen in the experiments, |b| is constant for each wave
pulse and also independent of vs . In conjunction with Eq. (4),
this shows that n ∝ vs , consistent with the experimental results
of Fig. 8(b). The relation for the strain rate (ε/
t) above
resembles the Orowan equation for dislocation glide, which
relates strain rate in the glide plane to dislocation motion [26].

D. Why inhomogeneous sliding?

Relative motion between two surfaces via propagation of
Schallamach waves is part of a larger class of inhomogeneous
interface motions constituting stick-slip behavior. We have
already mentioned the self-healing slip pulse observed in
other sliding systems [14]. An investigation of forces at
the interface provides insight into why such inhomogeneous
modes occur.

We use the coordinate system shown in Figs. 1 and 9. In
this reference, the interface between the lens and elastomer
forms part of the xy plane. Before vs is imposed, the lens
and elastomer are in adhesive contact. The corresponding
normal force FN introduces a normal pressure distribution
p(x,y) on the elastomer surface. Due to the tangential force
FT (in the y direction), a shear stress q(x,y) also acts on
the elastomer surface within the contact region. Typically, the
pressure distribution p(x,y) is altered upon the application of
FT , but this change is expected to be at most a few percentages
[10] and can be neglected.

We define μ(x,y) = q(x,y)/|p(x,y)| along the interface
and let μ0 = FT /FN . The size of the contact region—the
diameter of the contact circle for the spherical lens and the
width of the contact for the cylindrical lens—is 2a. K = 4E/3
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with 1
E

= 1−ν2
1

E1
+ 1−ν2

2
E2

for the elastic properties ν1,E1,ν2,E2 of
the elastomer and lens, respectively. R is the radius of the lens
and 2L is the length of the cylinder lens. The exact expression
for μ(x,y) will depend on the contact geometry.

When there is no adhesion between the two contacting
bodies, the corresponding ratio μ(x,y) tends to infinity at the
edges of the contact. If a Coulomb friction model is assumed,
then this implies relative slip locally near the outer edge of

the contact zone. Hence a central stick region is postu-
lated inside the contact zone, surrounded by a slip region
towards its periphery [10,33]. This cannot be done for an
adhesive contact, because the pressure distribution changes
sign inside the contact, even in the absence of a tangential
force [34].

The pressure distribution under static adhesive contact is
axisymmetric when FT = 0, given by [10,35,36]

p(ξ ) =
⎧⎨
⎩

−1

2π a2(
√

1−ξ 2)

[
FN

a
− Ka2

R
(3ξ 2 − 2)

]
sphere lens,

−1

2π a2(
√

1−ξ 2)

[
FN

L
− 3πKa2

8R
(2ξ 2 − 1)

]
cylinder lens,

(5)

where ξ = r/a for a sphere lens and ξ = x/a for a cylinder
lens, and 0 � |ξ | � 1.

When FT is applied, if the entire contact region moves
together, i.e., without relative slip, then the tangential stress on
the surface is [10]

q(ξ ) =
{

FT

2π2a2 (
√

1 − ξ 2)−1/2 sphere lens,
FT

πaL
(
√

1 − ξ 2)−1/2 cylinder lens.
(6)

In the second expression above for the cylinder lens, the
shear stress q(ξ ) corresponding to a displacement uy along the
axis of the cylinder (y axis, see Fig. 1) is obtained from the
singular integral equation

∂uy

∂x
= −1

πG

∫ a

−a

q(s)

x − s
ds (7)

for uy = const = δ, i.e., no relative slip between the surfaces.
The ratio μ(ξ ) = q(ξ )/p(ξ ) is given by

μ(ξ )/μ0 =
{∣∣π(

1 − Ka3

FNR
(3ξ 2 − 2)

)∣∣−1
sphere lens,∣∣8 − 3π KLa2

FNR
(2ξ 2 − 1)

∣∣−1
cylinder lens.

(8)

This expression for μ(ξ )/μ0 has a singularity at ξc =
( 2

3 + FN R

3Ka3 )1/2 and ξc = ( 1
2 + 4FNR

3πKLa2 )1/2 for the spherical and
cylinder lens geometries, respectively. This ξc corresponds to
the point at which the normal stress p(ξ ) changes sign from
compressive to tensile inside the contact region. It is interesting
to note that ξc is independent of the applied tangential force FT

and always lies within the contact region 0 � ξ � 1. Even if
the singularity inherent in Eq. (8) is replaced by a large finite
value, the fact that no relative homogeneous slip occurs at
the interface ensures that, locally, the static friction coefficient
μ > μ(ξ ).

The implication of the above expression for μ(ξ ) can be
stated as follows, following Ref. [9]. For frictionless contact
between “sufficiently” dissimilar materials, as with the lens-
elastomer system in our experiments, the generalized Rayleigh
wave [37] does not exist. In this case, there is a finite value
of μ0 (�1) above which homogeneous sliding is unstable to
perturbations of all wavelengths.

Assuming a Coulomb model in the experiments and using
the force values in Fig. 8(a), the effective static friction
coefficient, μ0 = FT /FN , is very high. Prior to nucleation, the
surfaces are stationary even when FT � FN , until at FT = Fc,

a Schallamach wave is nucleated. This relaxes the stresses,
thereby lowering the value of μ0. One can thus infer that, for
the lens-elastomer system, homogeneous interfacial sliding
is unstable for large values of μ0. Since μ(ξ ), for |ξ | < 1
is always larger than a finite value, locally homogeneous
sliding is unstable. Furthermore, because the singularity point
ξc in Eq. (8) occurs inside the contact region (and not at the
edge, as in the purely elastic case), interfacial stick and slip
regions cannot exist. This also rules out partial homogeneous
interfacial motion. Thus, inhomogeneous sliding modes are
very likely to occur in cases involving adhesion.

V. CONCLUSIONS

The nucleation and propagation of isolated Schallamach
waves in an adhesive elastomer contact has been studied in
situ using high-speed imaging. These two phases of inhomoge-
neous sliding were observed and characterized using spherical
and cylindrical lens contacts. The former enabled observation
of nucleation features such as the formation of wrinkles and
their subsequent evolution. The latter was conducive for isolat-
ing and analyzing the dynamics of solitary Schallamach waves.
Based on characterization of the individual wave properties,
a Burgers vector, analogous to dislocations, was established.
Pinning of Schallamach waves by static dirt particles and ex-
istence of critical nucleation force were also demonstrated, all
of which have analogs in dislocation glide. Simple analytical
considerations of the contact stresses also provide clues as to
why inhomogeneous sliding modes via Schallamach waves
may be preferred in adhesive contact systems.
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APPENDIX: IMAGE PROCESSING METHODS

The high-speed image sequence obtained from the experi-
ments were analyzed in order to obtain pixel-level velocities.
Even though the elastomer appears transparent, very small
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opaque features (such as embedded minute dust particles)
always exist, providing contrast for tracking purposes. The
estimated interframe pixel displacements are proportional to
the local pixel velocity vp(x,y) because the time between
frames is constant.

In order to do this, the local image intensity I (x) at each
image point x ≡ (x,y) is approximated locally by a quadratic
polynomial, i.e., I (x) = xT Ax + bT x + c, with coefficients
A,b,c determined by a weighted least squares fit to intensity
values in the neighborhood of x. These coefficients are
computed for each pixel in the image. If the image intensity
is convected with the velocity field, I (x + d,t + dt) = I (x,t)
for a pixel x at time t , translated by d to the next frame dt

seconds later; d(x) is obtained by comparing these intensities.
From a practical point of view, this results in significant

noise in the displacement field. This is overcome by assuming
that d is slowly varying and performing a weighted average
over pixels in a window. Furthermore, to minimize estimation

error for large displacements, a priori estimates are used
for each frame by performing the displacement estimation
at multiple length scales [38]. The displacement fields are first
calculated at a coarse scale for large blocks of the image.
Subsequently, the chunk size is reduced and the coefficients
above are iteratively calculated with information from the
previous scale as an a priori estimate. This method hence
works even for large displacements. The entire scheme was
implemented by combining custom code with functions from
the OpenCV code library [39].

For the analyses reported here, a window size of 15 pixels
was found to give the best trade-off between noisy data and
a blurred velocity field. Three successive scales were used
for the a priori estimate and at each scale the image size
was halved. To refine the displacement estimate, the algorithm
was iterated 3 times at each scale. For estimating A,b,c, a
neighborhood size of five pixels was found to give good results
for the least-squares fit.
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