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Fragmentation processes in two-phase materials
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We investigate the fragmentation process of solid materials with crystalline and amorphous phases using
the the discrete element method. Damage initiates inside spherical samples above the contact zone in a region
where the circumferential stress field is tensile. Cracks initiated in this region grow to form meridional planes. If
the collision energy exceeds a critical value which depends on the material’s internal structure, cracks reach the
sample surface resulting in fragmentation. We show that this primary fragmentation mechanism is very robust
with respect to the internal structure of the material. For all configurations, a sharp transition from the damage to
the fragmentation regime is observed, with smaller critical collision energies for crystalline samples. The mass
distribution of the fragments follows a power law for small fragments with an exponent that is characteristic for
the branching merging process of unstable cracks. Moreover this exponent depends only on the dimensionally of
the system and not on the microstructure.
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I. INTRODUCTION

Multiphase materials, which are composed of different
homogeneous phases, are abundant in nature and constitute
basic raw ingredients for many industrial processes. Com-
minution is an important and energy-intensive process where
various physical principles are applied to fragment multiphase
material down to a powder. Grinding of clinker to produce
the major component in Portland cement and thus the binder
in concrete [1,2] is an example of a process which consumes
a significant portion of the energy consumed by mankind.
Clinker is the product of calcination of a mixture of co-grinded
minerals (80%) and clays (20%). The blended compound
is a complex mineral product composed of at least four
principal mineral phases C3S, C2S, C3A, C4AF (in cement
chemist notation) [3]. The first two phases [Alite (50–65%)
and Belite (10–20%)] are crystalline, with the rest being
amorphous. Several improvements have been conceived [2]
in order to boost the efficiency of the comminution process.
In particular fragmentation studies have shown the potential
to substantially reduce the energy consumption of the overall
cement production [4,5].

In the past, statistical models and corresponding simulation
schemes have been developed to systematically investigate
brittle fragmentation [6–11] in terms of the resulting fragment
size distribution, crack merging and propagation, instability
and branching, and the occurrence of damage transition.
Simulations based on Lennard-Jones (Molecular Dynamics)
systems, continuum, elastic element beam, and lattice models,
have been able to reproduce quite nicely the observed behavior.
However for the sake of simplicity and to increase computa-
tional efficiency, most fragmentation simulations only consider
single-phase materials. In this work we address the brittle
fragmentation process of multiphase materials considering
the simplest case of two-phase materials, where a crystalline
elastic phase is embedded in an amorphous elastic matrix. The
nonisotropic structure of the crystalline phase is taken into
account explicitly through a hexagonal close packing (hcp)
lattice. During comminution, the material is reduced from
macroscopic granules to a microscopic powder. We will then

compare fragmentation of purely crystalline and amorphous
samples with the biphase ones throughout this study to explore
the effect of texture.

This paper is organized as follows. In Sec. II we describe
the model used in this work, explaining how multiple phases
are introduced in conjunction with the discrete element
model scheme. In Sec. III results for impact simulations for
amorphous, crystalline, and two-phase materials are presented
and the occurrence of different fragmentation mechanisms,
fragmentation regimes, and resulting fragment mass distri-
butions are analyzed. Finally in Sec. IV we present the
conclusions and perspective of future work.

II. MODEL DESCRIPTION

The most successful numerical approaches to dynamic
fragmentation so far are based on the discrete-element
model (DEM) [12]. This type of technique has been largely
used for the simulation of ball mills [13–15], shear flow
[16–19], compaction [20], and fracture of materials [8,21–27],
among numerous other applications with particles of various
shapes and diverse cohesive elements. The three-dimensional
DEM used in this work [28] discretizes the material by an
assembly of Np spherical elements with different sizes. For
calculating a repulsive Hertzian contact force �Fc as an elastic
interaction, a finite stiffness Ep is assigned, so that two
particles are allowed to overlap slightly. Particles are bonded
by Nb cylindrical beam-truss elements that may deform by
elongation, bending, and torsion, producing bond forces �Fb

and moments �Mb on the corresponding particle centers. A
detailed description of the force computation (normal, shear,
and damping forces and moments), as well as the three-
dimensional (3D) representation of the beam-truss elements
used in this work can be found in Refs. [28,29]. The time
evolution of the system, namely translation and rotation of
each particle, is followed numerically by solving Newton’s
equation of motion through explicit numerical integration with
a time increment �t [28]. Dynamic fracturing of the material
is incorporated into the model through the sequential failure of
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FIG. 1. (Color online) Cross sections of crystalline (a), amorphous (b), and multiphase samples (c). Colors represent different phases. In
(c), red bonds represent amorphous-crystalline interfaces, while green bonds show the intercrystalline interfaces.

beam-truss elements. Beams are removed once their elliptical
breaking rule [7,28,30,31] based on the von Mises criterion
type [7],

(
ε

εth

)2

+ max(|θi |,|θj |)
θth

� 1,

is fulfilled, where ε is the longitudinal strain and θi and θj are
the general rotation angles at the ends of the beam connecting
particle i with j , respectively. The threshold values, εth and
θth, are sampled from a Weibull distribution [28,32], intro-
ducing quenched disorder in the system. The beam breaking
mechanism is irreversible in the sense that broken beams are
excluded from the force calculations for all consecutive time
steps. The macroscopic strength of the material can be tuned
by adopting the average breaking threshold and the amount of
disorder in each material phase separately.

For comparison, here three different types of samples
are defined as shown in Fig. 1. In the case of type I,
crystalline samples are generated by placing all elements
in a hexagonal close packing (hcp) regular lattice. Nearest
neighbors are connected by beam-truss elements. A spherical
sample [see Fig. 1(a)] is obtained by trimming all elements
and beams outside the desired spherical region. The samples
of type II are amorphous solids generated by positioning
particles randomly in a spherical region and connecting them
using a three-dimensional Voronoi tessellation [see Fig. 1(b)].
The randomization of the initial configuration is achieved
by first placing elements on a hcp lattice, assigning initial
random velocities, and letting the system evolve. A spherical,
slowly shrinking confinement is used to obtain a randomly
packed spherical system. Type III samples are multiphase ones
and their generation follows a more complicated procedure.
Initially a packing of random convex polyhedra of a desired
size and shape distribution is generated, as described in
the Appendix. A hcp particle packing is inserted in every
polyhedron with the respective local crystal coordinate system
and connected like in the method to form crystallites. In a
next step particles are placed in the interstitial spaces between
polyhedra. Random velocities are assigned to all particles
and the system evolves inside a spherical confinement again,
until the newly added particles accommodate in the regions
between the crystallites. The diameter of the confining sphere

is then slowly decreased and the system is cooled by adding
a small viscous force to all elements. The resulting system
has ordered hcp crystals and random regions as shown in
Fig. 1(c). Finally all particles are connected by beams again
using Voronoi tessellation.

Bonds connecting amorphous to crystalline particles are
labeled amorphous-crystalline interface, while those connect-
ing different crystallites are labeled intercrystalline interface
and may also be given different material properties. The final
multiphase sample used in the simulations performed here has
a total of 46 crystallites embedded in an amorphous phase
matrix occupying a volume fraction 0.2. The average number
of elements and bonds in the crystallites is 806 and 6429,
respectively.

III. IMPACT SIMULATIONS

Single particle impact fragmentation against a rigid target
is among the most studied fragmentation scenarios both from
the experimental and theoretical perspective [25,33–35]. For
the sake of comparison, we limit ourselves to this case and
simulate impacts of various collision energies for the three
distinct configurations. The microscopic properties, namely
the elastic properties of the elements and bonds, as well as the
bond breaking thresholds can be chosen to attain the desired
macroscopic stiffness and tensile strength of the respective
phases. In this work all beams are assigned identical elastic
properties so that we focus mainly on the consequence of the
underlying microstructure. Table I summarizes all input values
used in the simulations.

A. Fragmentation mechanisms

We performed a series of numerical impact simulations of
spherical samples against a wall of stiffness Ew � Ep. As
the impactor contacts the target, it begins to deform due to
repulsive contact forces. As a result, a ring of broken bonds
forms due to shear failure in the contact region. At the same
time diffuse damage appears around this region. It can be
seen from Fig. 2 that there is a strong correlation between
the position of the diffuse damage region and the region
where the circumferential stress in the plane perpendicular
to the impact direction is tensile. In this zone, the biaxial
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TABLE I. Microscopic material properties

Beams
Stiffness Eb 6.0 GPa
Average length �o 0.5/0.53/0.61 mm
Cross section diameter db 0.5 mm
Strain threshold εth 0.02
Bending threshold θth 3.5 ◦

Weibull shape parameter m 10

Spherical elements
Stiffness Ep 3.0 GPa
Diameter de 0.5 mm
Density ρ 3000 kg/m3

Hard plate
Stiffness Ew 1000 GPa

Interaction
Friction coefficient μ 1
Damping coefficient γn 0.0001 kg/s
Friction coefficient γt 0.0001 kg/s

System
Number of elements Np 97058/81912/95271
Number of beams Nb 565174/564524/769201
Sphere diameter D 12/12/13.4 mm

stress state is superimposed by a compression in impact
direction. This mechanism was reported both experimentally
and numerically for single phase materials [28,36]. As the
fracture evolves, cracks initiated in the biaxial stress state
region develop to form meridional cracks. If the collision
energy is large enough, these cracks propagate through the
material forming crack planes that reach the sample surface
resulting in fragmentation. Although for multiphase samples
the stress field is more heterogeneous, due to the long
range correlated disorder imposed by the different crystallites,
the crack formation mechanism described above is quite
robust, resulting in meridional cracks in all three types of
samples.

The morphology of the cracks depends strongly on the
texture. For crystalline samples, cracks propagate along well
defined cleavage planes of the hcp lattice. In the amorphous

FIG. 3. (Color online) Dependence of the mass of the largest
fragment on the collision energy. The inset shows the average
total mass of all fragments excluding the largest. The blue square
symbols correspond to crystalline samples, red triangles to multiphase
samples, and black circles to amorphous samples.

samples there are no preferential orientations, but still cracks
form meridional crack planes, cutting the sample into wedge-
shaped fragments [28]. For multiphase samples with the more
heterogeneous stress field, meridional cracks still propagate
from the biaxial stress state region to the sample surface
leading to the fragmentation of the sample. These cracks cut
through cleavage planes in the crystalline particles of the multi-
phase sample, and typically along fixed directions through the
amorphous phase. This results in a more complicated crack
morphology.

B. Fragmentation regimes

Depending on the collision energy, impact does not neces-
sarily result in fragmentation. We average over 30 realizations

(a) (b) (c)

FIG. 2. (Color online) Cross sections showing the damage calculated from DEM impact simulations for (a) crystalline, (b) amorphous, and
(c) multiphase samples. Only beams are shown, colored according to the circumferential stress, in the local coordinate system, ranging from
−100.0 MPa (compression) to 100 MPa (tension) (blue to red). Broken bonds are represented by dark color polygons oriented perpendicular
to their directions.
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FIG. 4. (Color online) Total number of broken bonds as a func-
tion of the collision energy normalized by Kc.

for each energy, where fracture thresholds of individual runs
are randomly sampled from the Weibull distribution [28].
The sizes of the final fragments depend on the collision
energy and the internal structure of the sample. In Fig. 3 the
ensemble average of the mass of the largest fragment, m1st ,
normalized by the initial mass of the system, is plotted as
a function of the collision energy K , for the three different
microstructures. The mass averaged of the other fragments,
defined by m21 = m2/m1, where mk = ∑Nf

i mk
i − mk

1st with
Nf being the total number of fragments, is also shown as a
function of K in the inset of Fig. 3. It is evident that in all three
cases a collision energy exists, below which the mass of the
largest fragment corresponds to nearly the mass of the whole
system. This characterizes the damage regime as opposed
to the fragmentation regime, where the mass of the largest
fragment is less than half the sample mass. The transition
from the damage regime to the fragmentation regime occurs
in a narrow energy interval, in which a fraction of the samples
fragment, while in the remaining only damage occurs. We
observe that in the narrow transition interval of energy the

damaged samples usually present a large crack. However,
fragmentation is prevented because the collision energy is
not enough for this crack to reach the sample’s surface. For
individual samples in the ensemble, the transition from damage
to fragmentation occurs more abruptly.

We define the critical collision energy Kc for each type of
sample as the energy at which the variation of the ensemble
averaged mass of the largest fragment is a maximum. The
critical collision energy for the crystalline samples is found
to be Kcr

c = 58 ± 4 J. However this value depends strongly
on the orientation of the sample lattice with respect to the
impact direction. Note that, in the results reported here,
a cleavage plane contains the impact velocity vector. For
multiphase samples K

mp
c = 72 ± 2 J, this value also depends

on the sample orientation, being smaller when there are
crystalline grains in the region where cracks originate having
cleaved planes with normal perpendicular to the impact
velocity vector. For amorphous samples the critical energy
has the highest value of Kam

c = 86 ± 2 J.
At Kc the mass of largest fragment and the average mass

of all other fragments are each approximately half the initial
mass of the system, indicating that, at this energy value, one
of the meridional cracks reaches the surface of the sample
cutting it into two large fragments and a few smaller ones.
Above the critical energy, the sample disintegrates into smaller
fragments. We can observe that the mass of the largest fragment
and the average mass m21 decay slower as a function of
K for the case of crystalline and multiphase samples as
compared to the amorphous ones. This is because the lattice
anisotropy prevents cracks from propagating in the preferred
direction, consequently hindering further fragmentation of
larger fragments by secondary mechanisms. The smaller
critical energy for crystalline samples is also a consequence
of the anisotropy of the crystalline structure which favors
the growth along well defined cleavage planes. This effect
can be clearly seen in Fig. 4 when comparing the number of
broken bonds at the critical collision energy and hence the total
dissipated energy. As can be expected, multiphase samples also
show this effect with crack growth along cleavage planes in
crystallites, but to a much smaller extent.

The orientation of the resulting crack planes at the critical
energy is explored further in Figs. 5 and 6. Figure 5 pictures
the two largest fragments resulting from typical impact
simulations with the critical energy for each of the three

(a) (b) (c)

FIG. 5. (Color online) The two largest fragments for (a) a crystalline sample at collision energy 69 J, (b) an amorphous sample at collision
energy 94 J, and (c) a multiphase sample at collision energy 78 J. The fragments have been translated in the y direction and rotated around the
z axis for better visualization.

012402-4



FRAGMENTATION PROCESSES IN TWO-PHASE MATERIALS PHYSICAL REVIEW E 91, 012402 (2015)

−10−5 0 5 10
x

−10

−5

0

5

10

y

(a)

−10−5 0 5 10
x

(b)

−10−5 0 5 10
x

(c)

FIG. 6. (Color online) Probability for a broken bond at position
(x,y), perpendicular to the impact direction for a typical realization
with (a) a crystalline sample at collision energy 69 J, (b) an amorphous
sample at collision energy 94 J, and (c) a multiphase sample at
collision energy 78 J. Colors correspond to the probability of having
a broken bond.

types of material. Figure 6 shows the corresponding two-
dimensional histograms of the number of broken bonds for the
same simulations. All three samples show uncorrelated bond
breaking close to the origin that corresponds to the damage in
the biaxial stress zone at the beginning of the fragmentation
process. At the final stage, well defined diametrical planes
are observed for all configurations, however the one of the
crystalline sample is the sharpest one, corresponding to a
cleavage plane of the hcp lattice. We see that, even for the
multiphase microstructure, the final crack grows along a well
defined diametrical plane. Once a crack is formed in the
diffuse region at the beginning of the fragmentation process, it
does not change its direction until reaching the surface. Note
that the amorphous sample exhibits more uncorrelated cracks
near the impact axis than the others. As the collision energy
is increased, more meridional cracks are formed. Azimuthal
cracks, namely, cracks perpendicular to the impact axis, also
appear breaking fragments even further, in what constitutes a
secondary fragmentation mechanism. These cracks start in a
thin region, where the stress in the direction of the impact axis
is tensile due to bending of the wedge shaped fragments, and
concentrate near the contact disk. Oblique cracks also appear
due to complex stress state that originates when the particle is
already broken into wedge-shaped fragments.
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FIG. 7. (Color online) Mass distribution of the fragments at the
critical energy for all three samples.
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FIG. 8. (Color online) Mass distribution of the fragments for
K = 194 J for all three samples. The solid line corresponds to the
fitting using Eq. (1), and the dotted lines are the contributions from
each term of this equation.

C. Fragment mass distribution

For a more detailed analysis, the fragment mass distribution
F (m) at the critical energy is plotted in Fig. 7. Again values are
averaged over 30 realizations for each type of sample and each
collision energy. The fragment mass distribution is surprisingly
similar for all three microstructures. At the critical collision
energy, F (m) shows a peak for large fragments at about half the
initial system mass. This corresponds to the sample breaking
into two large fragments as described above. For fragments
with typically less than one percent of the system mass, F (m)
follows a power law, F (m) ∼ m−τ , with exponent τ = 1.6 ±
0.1. This power law extends for K > Kc, as can be observed
in Fig. 8, where the fragment mass distributions for K = 194 J
are plotted for the three types of samples. Surprisingly, at this
high collision energy value, the obtained mass distributions of
fragments are very similar for the three types of samples. This
result suggests that, at this point, the energy is so distant from
the critical collision energy that the particular fragmentation
mechanisms causing the differences in Kc for each type of
sample are not so relevant. At this high collision energy, the
fragment mass distribution exhibits more clearly the power-
law behavior for small fragments.

As we can see from Figs. 7 and 8, the fragment mass
distribution is independent of the internal material structure
within our statistical errors and can be described at high
collision energy by the expression

F (m) ∼ (1 − β)m−τ exp(−m/m0) + β exp(−m/m1). (1)

This functional form has been proposed by Åström and co-
workers [6,37] and has been successfully applied to describe
results both experimental and numerical results.

The first term in Eq. (1) is related to the branching and
merging process of unstable cracks. The second term originates
from the Poissonian nucleation process of dominating cracks,
in our case, the meridional cracks nucleated in the beginning
of the fragmentation process.

The exponent τ depends only on the dimensionality of
the system, τ = (2D − 1)/D, and the parameter β controls
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the relative importance of the two mechanisms. In Fig. 8,
Eq. (1) is plotted using m0 = 0.03 ± 0.02, m1 = 0.06 ± 0.06,
and β = 0.9992 ± 0.0005.

IV. CONCLUSIONS

To reveal the role of the internal microstructure in the
fragmentation process, we compare impact fragmentation
of spheres made of pure phases with multiphase ones. We
employed 3D beam-truss cohesion elements with identical
elastic properties for all phases. A transition from a damaged
state to a fragmented state is observed as the collision energy
is increased. Crystalline samples tend to fragment at a smaller
collision energy if there is a cleaveage plane that contains
the impact direction. In this case, the dominant fracture
crack corresponds to a cleavage plane of the crystal. For
multiphase material, the dominant crack cleaves the crystallites
and cuts through the embedding amorphous phase without
changing direction. The amorphous samples require the largest
fragmentation energy.

We found that the dominant fragmentation mechanism is
related to cracks that form inside the material due to tensile
radial and circumferential stress in the ring-shaped region
above the contact plane. These cracks grow to give rise to
meridional fracture planes that result in a small number of
large fragments. Even though the stress distribution is more
inhomogeneous in the multiphase material, this dominant
fragmentation mechanism was found to be independent of
the internal structure of the material. As a result, the final
mass distribution of the fragments is independent of the
material structure. It presents a power-law regime for small
fragments and a broad exponential region for large fragments.
The fragment mass distribution can be successfully explained
in terms of the branching and merging processes of unstable
cracks and the Poissonian initiation process for the dominant
cracks.

The influence on fragmentation of the size and shape
dispersion of the crystalline particles as well as the importance
of the elastic properties of each phase, in multiphase materials
give rise to interesting questions. The ability of the model to
reproduce the complex stress state and crack planes with well
defined cleavage planes in the crystalline regions opens up
the possibility to study further crack propagation problems
in multiphase materials. Extensions to different material
properties for different phases and detailed studies on the
influence of size dispersion are in progress.
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APPENDIX: CONSTRUCTION OF MULTIPHASE SAMPLE

The grain size distribution of a crystallic phase is a prerequi-
site for every microstructural simulation. Under grain size the
max caliper diameter of a convex grain is understood. Based on
two-dimensional micrographs [38], the grain size distribution
of the two-dimensional cross sections of the grains can be
recovered by means of a boundary-tracking method [39]. After
making certain simplifying assumptions regarding the grains’
shape, stereological considerations allow one to estimate the
three-dimensional grain size distribution [40,41]. The grain
shape in our case is an irregular convex polyhedron, which
renders most of the relatively simple stereological techniques
impractical. For this reason, the assumption of a spherical
shape is adopted and the problem reduces to determining the
size distribution of a polydisperse system of spherical particles.
More details on the computation of the 3D distribution estimate
can be found in [41].

The generation of the sample starts by producing a shape
pool composed of individually evolved instances of one or
several reference grain shapes. For simplicity only one phase
is considered in the presentation, since other crystallic phases
are straightforward to incorporate. The original shape could be,
for instance, a possible equilibrium shape of a crystallic phase,
whose Miller indices are estimated based on the directional
cleavage energies [42]. Grains are picked from this pool in a
way that their sizes follow the previously estimated grain size
distribution and are placed into a confining spherical volume
at random positions but without overlap. After the desired
number of grains is in place, the size distribution constraint
is already satisfied and the shapes encode all the information
regarding the crystal structure of the phase. It then boils down
to achieving a realistic volume fraction for this phase while
distorting its original characteristics as little as possible. To
this end, a simple packing algorithm is applied, making use of
the libraries [43,44]. For a sufficiently large number of steps,
a grain is chosen at random and the following transformations
are applied to it: (i) random translation in the range [0,ds],
(ii) random rotation around each axis, within the interval
[0,dθ ], and (iii) with probability close to P =0.5, a random

0.60.4 0.8 1.0 1.2 1.4
Grain Size (normalized)

0

5

10

15

20

25

30

F
re

qu
en

cy

FIG. 9. (Color online) Initial (red dashed) and final (blue solid)
grain size distributions of the sample. The curves depict fits to the
generalized extreme value distribution. The grain sizes have been
normalized to 1. Inset: the final configuration of maximal volume
fraction obtained with scaling factor 1.9.
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translation within [0,dr] towards the center of the spherical
confining volume (radial translation). The move is only
accepted if the new position does not lead to an overlap,
otherwise it is rejected and a new random grain is chosen.

Since randomly shaped polyhedra are not expected to
efficiently fill the space, further action needs to be taken for
a high packing density to be reached. An expand-and-clip
strategy is introduced, which targets high volume fraction
at the cost of an arbitrary (but small) shape deformation.
All grains are expanded via in-place scaling, controlled by
a single scaling factor, which results in a configuration with
all grain centroids retaining their previous positions, while
arbitrary overlaps between grains occur. The nonoverlap
constraint is recovered by clipping all pairs of overlapping

grains with the plane that (i) has normal parallel to the
line connecting the centroids of the two involved grains and
(ii) the centroid of the convex polyhedron that forms their
intersection lies on it. Using the aforementioned procedure,
a system of 100 grains was initialized with the prescribed
size distribution. After packing with ds,dr ∈ [0,0.02], dθ ∈
[0,π/100] and clipping with scaling factor 1.9, a volume
fraction of approximately 78% was achieved. The quality
of the final sample was determined by (i) comparison of
its cross sections with the available micrographic data and
(ii) visual inspection of the distortion of the original grain size
distribution (see Fig. 9). The sample was deemed reliable, i.e., a
possible occurrence of a granular configuration in a multiphase
material.
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