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Structure and dynamics of model colloidal clusters with short-range attractions
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We examine the structure and dynamics of small isolated N -particle clusters interacting via short-ranged Morse
potentials. “Ideally prepared ensembles” obtained via exact enumeration studies of sticky hard-sphere packings
serve as reference states allowing us to identify key statistical-geometrical properties and to quantitatively
characterize how nonequilibrium ensembles prepared by thermal quenches at different rates Ṫ differ from
their equilibrium counterparts. Studies of equilibrium dynamics show nontrivial temperature dependence:
nonexponential relaxation indicates both glassy dynamics and differing stabilities of degenerate clusters with
different structures. Our results should be useful for extending recent experimental studies of small colloidal
clusters to examine both equilibrium relaxation dynamics at fixed T and a variety of nonequilibrium phenomena.
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I. INTRODUCTION

Understanding how varying the shape and strength of a pair
potential affects the energy landscape and dynamics of systems
composed of several particles interacting via that potential lies
at the heart of theoretical cluster physics [1]. Variable-shape
potentials are of particular utility in understanding common
features of apparently disparate systems. For example, varying
the dimensionless range parameter αD of the Morse potential

UMorse(α; r) = ε {exp[−2α(r − D)] − 2 exp[−α(r − D)]}
(1)

yields accurate models for clusters formed by constituents
ranging from alkali-metal atoms to buckyballs to micron-sized
colloids [2]. Studies of colloidal clusters are particularly
valuable in this context since individual particle positions can
be tracked. Most valuable are “model” systems with precisely
controllable interparticle interactions and cluster size N . These
systems are a veritable playground for studies of few-body
statistical mechanics, and can (through the universality evident
in cluster physics) provide insights into the behavior of their
more microscopic counterparts.

Manoharan and collaborators have recently attracted great
interest by characterizing the structure and dynamics [3,4] of
colloids interacting via hard-core-like repulsive and (variably)
short-ranged attractive interactions. While published exper-
imental studies and related theoretical modeling [2,3,5–13]
of these systems have focused on equilibrium phenomena,
rapid advances in experimental particle-tracking techniques
[4,14,15] suggest that much of their nonequilibrium physics
may soon become experimentally observable. For example, the
room-temperature transition rate between the two degenerate
ground-state clusters (GSCs) of N = 6 particles is of order
10−3 − 100 s−1. Since their longest relaxation times should
increase dramatically with increasing N and decreasing
temperature T , it seems plausible that these model colloidal
systems could soon be utilized for fundamental studies of
nonequilibrium few-body statistical mechanics.

In this paper, we provide theoretical guidance for such
studies by elucidating the statistical-geometrical properties
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and several key equilibrium and nonequilibrium phenomena
in small (N � 13) clusters that mimic the systems studied
in experiments [3,4,16]. First we perform exact-enumeration
studies that extend the work of Refs. [5–8] by obtaining
all minimally [17] mechanically stable packings of N � 13
sticky hard spheres. Then we use the “ideally prepared
ensembles” of ground-state clusters generated by these studies
as initial conditions for molecular dynamics (MD) simulations
of N -particle model colloidal clusters. These simulations
focus on identifying noteworthy features in their equilibrium
relaxation dynamics and their preparation-protocol-dependent
nonequilibrium structure that should be observable in particle-
tracking experiments.

Our key results are as follows.
(i) The fraction of “off-pathway nuclei” that are mechani-

cally stable yet incompatible with close-packed crystallization
grows rapidly with increasing N .

(ii) Fast temperature quenches produce ensembles retaining
memory of equilibrium ensembles at higher T , e.g., favoring
structures that are more stable against excitation because they
lie in deeper energy wells.

(iii) Systems exhibit nonexponential relaxation indicative
of both glassy dynamics and differing stabilities of degenerate
clusters with different structures.

In addition to being directly relevant for experimental
studies of small clusters, these results may also improve our
understanding of the role such clusters play in controlling
kinetic arrest in bulk systems.

II. MODEL AND METHODS

The interaction potential for sticky hard spheres with
diameter D is [18]

Uss(r) =
⎧⎨
⎩

∞, r < D

−ε, r = D

0, r > D

(2)

where ε is the energy at contact. A key feature of sticky-
hard-sphere clusters is that their isoenergetic isocontacting
states are in general highly degenerate. The set of all possible
arrangements of N hard spheres with Nc pair contacts consists
of M(N,Nc) nonisomorphic “macrostates.” M is an integer
for isostatic (Nc = 3N − 6 ≡ NISO) and hyperstatic (Nc >
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FIG. 1. (Color online) Standard and modified Morse potentials
for αD = 150. Differences between UMorse (lower curve) and UMM

(upper curve) are highlighted in the inset for r � rc. For r � r∗ �
1.005D, UMM and UMorse are essentially indistinguishable.

3N − 6) clusters [5,19] wherein each sphere contacts at least
three others, and different macrostates have different “shapes,”
i.e., distinct sets of interparticle distances {r2

ij } (i,j ∈ [1,N ])
that correspond to distinguishable inherent structures [20].

We determine M(N,Nc) and find the structure of each
macrostate using an updated version of the numerical proce-
dure described at great length in Ref. [8]. The main differences
are that here:

(a) We consider adjacency matrices {Ā} of arbitrary rather
than “polymeric” topology.

(b) Rather than performing a sequential [8] pass over all
distinct {Ā}, we (following Arkus et al. [5,6]) use NAUTY [21]
to generate complete sets of nonisomorphic {Ā}.

Note that (a) precludes the possibility of failing to detect
clusters that do not possess Hamiltonian paths, and that
implementing (b) yields an order-of-magnitude decrease in
the computer time (relative to that reported in [8]) required to
perform exact enumeration of M(N,Nc).

Systems interacting via sticky-hard-sphere potential
[Eq. (2)] are well known to exhibit anomalous thermodynam-
ics [22,23]. In order to simulate the T -dependent structure
and dynamics of “model” (but realistic) colloidal clusters,
a continuous and finite-ranged interaction potential must be
introduced. We perform MD simulations using a modified
Morse potential UMM(r) with shape and range (Fig. 1) similar
to the effective interactions between colloids in systems with
micellar depletants [3,4]:

UMM(α,b; r) =
{

UMorse(α;r)−c(α,b)
1+c(α,b) , r � rc(α,b)

0, r > rc(α,b)
. (3)

The structure and dynamics of Morse clusters with large
αD are contact dominated [2]. In particular, rearrangements
can be understood in terms of contact breaking and ref-
ormation. However, defining “contact” is ambiguous for
potentials that decrease smoothly to zero. One advantage
of using UMM(r) rather than UMorse(r) is that it facilitates
contact identification and concomitant analyses of transitions
between macrostates; FMM(r) = −dUMM/dr remains finite at
rc, allowing us to define contact as finite-force interaction.

The shift and stretch term c(α,b) is defined to make UMM

continuous at r = rc, i.e., c(α,b) ≡ UMorse(α; rc(α,b)). We
define b to produce a well controlled approximation in
which limb→∞c(α,b) = 0 and hence limb→∞UMM(α,b; r) =
UMorse(α; r). Choosing rc(α,b)/D = 1 + b(r∗ − 1), where the
attractive force |dUMorse/dr| is maximal at r∗/D = [α +
log(2)]/α, gives c(α,b) = −[4−b(2b+1 − 1)]ε.

Here we study systems with αD = 150 and b =
α/[30 log(2)], yielding rc(α,b)/D = 31/30. We have verified
both that this UMM is long-ranged enough to avoid the
thermodynamic and dynamic anomalies that are known to
arise in the α → ∞ “Baxter” limit [22], and that replacement
of UMorse(150; r) with this UMM has minimal effects on the
structural and dynamic properties of interest here. Our results
should thus be scalable to both larger α and smaller α using (for
example) the “geometrical” free energy landscape techniques
of Holmes-Cerfon et al. [24] or the Noro-Frenkel extended
law of corresponding states [25]. A preliminary attempt at
applying the latter method is reported in the Appendix.

Another advantage of using this UMM(r) is that it allows
us to use well-defined “ideally prepared ensembles” (IPEs)
as initial conditions for our MD simulations. We define IPE
as follows: Suppose a given potential has M(N ) strain-
free, energetically degenerate N -particle ground state clusters
(GSCs) with permutational entropies ωk . Statistical mechanics
predicts that the equilibrium population fraction of each GSC
at T = 0 is ωk/�, where

� = �(N ) ≡
M(N)∑
i=1

ωk(N ). (4)

An IPE is an ensemble of molecules containing all of the
(and only the) M(N ) GSCs, such that the population fraction
of every GSC is equal to ωk/�. Our exact-enumeration
studies yield the structures of these GSCs [26]; values of ωk

are obtained by evaluating the symmetry of their associated
adjacency matrices [6]. We use IPE of Nm = f (N )�(N )
N -particle molecules as initial (T = 0) conditions for MD.
Here f (N ) is chosen to be sufficiently large to give good
statistics yet sufficiently small for computational tractability;
for the N = 13 systems studied below we employ f (13) =
1/12 972 960, yielding Nm(13) = �(13)/12 972 960 = 1290.
Using f (N ) �= 1 simply corresponds to multiplying a system’s
partition functions by a constant; its value should not (apart
from statistical error) alter any results.

MD simulations are performed using an in-house code that
employs per-cluster parallelization. All particles have mass m

and diameter D. Each cluster is confined to a cubic cell
with hard reflecting walls and side length L(N ) chosen to
give a particle number density ρ in the dilute limit [27]:
here ρ = N/L3(N ) = .01D−3. Thus while all particles in a
given molecule interact via UMM(r) different clusters do not
interact with each other. This choice of simulation protocol and
boundary conditions is motivated by the experiments [3,4],
which also examined ensembles of isolated N -colloid sys-
tems in dilute solution. MD integration is performed using
the velocity-Verlet algorithm with a time step δt = .03τ/α,
where the unit of time is τ =

√
mD2/ε [28]. Temperature is

controlled using a strong Langevin thermostat (with damping
time τLang = τ ) that mimics the strong damping experienced
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by colloids in a solvent. Comparing to experimental values
ε � 0.1 eV, D = 1 μm, and m � 10−15 kg [4] gives τ �
10−4 s. Our simulations extend as long as 2.5 × 105τ ; this
maps to 25 s, which is comparable to the duration of a
typical experiment [4]. In Sec. III, all energies, times, and
temperatures are, respectively, expressed in units of ε, τ , and
ε/kB .

To set up our studies, IPEs are heated from T = 0 to 2.5
(i.e., well above the melting point) at a rate Ṫ

eq
h = 10−5/τ .

“Snapshots” from this heating run are taken at various T =
Ti and are further equilibrated at these Ti ; these equilibrated
samples are used as initial conditions for our studies of fixed-T
dynamics. We characterize dynamical relaxation phenomena
at these T by examining the traversal of clusters through their
various GSCs using the function

fmad(t) = 1

Nm

Nm∑
j=1

〈R(Fj (t ′),Fj (t ′′ − t ′); t ′,t ′′)〉 (5)

Here fmad(t) is the probability that a randomly chosen cluster
will not execute a transition to a different macrostate within
a time interval t . It is calculated by tracking the structure of
each cluster over an “experimental” time interval t = t ′′ −
t ′, and then averaging results over all clusters and all “start
times” t ′. In Eq. (5), Fj (t ′′′) is the index of the macrostate in
which the jth cluster resides at time t ′′′. The self-correlation
function R(A,B; t ′,t ′′) = 1 if A = B for all intermediate times
t ′′′ between t ′ and t ′′, and zero otherwise. Thus fmad(t) decays
monotonically from one to zero as the ensemble of clusters
transitions out of its initial state.

Preparation-protocol-dependence studies are performed by
taking the T = 2.5 end state of the heating run, running at
T = 2.5 for a period of 104τ in order to obtain a thoroughly
equilibrated high-T fluid state, and cooling systems back to
T = 0 at three rates: |Ṫ | = 10−3/τ, 10−3/τ , and 10−5/τ .
During these cooling runs we monitor such quantities as the
potential energy of clusters

U =
N−1∑
i=1

N∑
j=i+1

UMM(rij ) (6)

and the population fractions of clusters Fk/Nm that correspond
to each GSC. The latter are identified by comparing their
adjacency matrices (assuming particles i,j contact if rij < rc)
to those of the Nc = Nmax

c packings. In all cases, finite-T
structures correspond either to exactly one zero-temperature
GSC or to an excited state with Nc < Nmax

c .

III. RESULTS

The bulk ground states of the sticky-hard-sphere potential
[Eq. (2)] are the (infinitely degenerate) set S formed by all
possible stackings of perfect hexagonal planes into a close-
packed crystal. Local ordering within these states may be fcc,
hcp, or mixed fcc and hcp. Barlow packings [29] are finite-N
“grains” (subsets) of any member of S. Since they correspond
to “on-pathway” nuclei that can grow into defect-free members
of S, they are expected [8] to be critical to understanding
crystal nucleation and growth in systems with hard-core-like
repulsions and short-range attractions. It is important to find

TABLE I. Numbers of macrostates M, macrostates with Barlow
order MBarlow, stack faults Mstack-fault, and fivefold-symmetric sub-
structures Mfivefold. Results include both mechanically stable and
floppy packings. Stable packings correspond to zero-dimensional
points in configuration space. Floppy packings occupy finite “vol-
umes” in configuration space [24], but we have verified that all
reported here are disconnected from one another, and thus are
“macrostates” as defined above. Results for for N � 11 were reported
in Ref. [8], and values of M agree with those reported in Ref. [13].

N Nc M MBarlow Mstack-fault Mfivefold

12 30 11638 339 8420 6657
12 31 174 77 88 16
12 32 8 4 4 0
12 33 1 1 0 0
13 33 95799 1070 69897 53265
13 34 1318 363 859 248
13 35 96 42 46 8
13 36 8 5 3 0

all such nuclei that can form (as opposed to those that do form
under specific conditions); this is most conveniently achieved
via exact enumeration of sticky-hard-sphere packings.

In Table I, we report the total number of macrostates M,
as well as the the numbers of macrostates MX possessing
structural features X such as Barlow order, stacking faults, and
fivefold symmetric defects. The latter three structural motifs
are shown in Figs. 2(a)–2(c), preclude Barlow order, and thus
correspond to “off-pathway” nuclei incompatible with close-
packed crystallization. Here

MX(N,Nc) =
M(N,Nc)∑

k=1

Gk(X), (7)

where Gk(X) is 1 if the structure of the kth macrostate matches
the pattern X and zero otherwise.

We find that the fraction of macrostates possessing Barlow
order increases rapidly with increasing hyperstaticity H =
Nc − NISO, where isostatic packings have NISO = 3N − 6
contacts. However, for the range of N considered here, many
packings retain non-Barlow order for H as large as 3. Many
of these possess stacking faults; Mstack-fault decreases with
increasing H but remains nonzero for H up to 3. Fivefold-
symmetric motifs are highly prevalent in isostatic packings,
and while their prevalence decreases rapidly with increasing H

they are still relevant motifs in these more-stable, lower-energy
nuclei.

The above-mentioned trends are further reinforced by
considering the fractions fX of microstates with these motifs:

fX(N,Nc) = �−1
M(N,Nc)∑

k=1

ωkGk(X), (8)

where {ω} and � are given by Eq. (4). Note that fX is the
fraction of clusters in IPEs possessing motif X. Figure 2
(bottom panel) shows fBarlow, fstack-fault, and ffivefold for 7 �
N � 13 and 0 � H � 3. Notably, fBarlow for isostatic nuclei
decreases monotonically with increasing N to only about
1% for N = 13. This means that 99% of the highest-energy
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FIG. 2. (Color online) Ordered and disordered motifs in
monodisperse SHS packings. Top: A stack-faulted structure (a) and
two fivefold-symmetric structures (b,c). Bottom: The population
fractions of packings with Barlow order (fBarlow, red or medium
gray), fivefold order (ffivefold, green or light gray), and stacking faults
(fstack-fault, blue or dark gray). Line types are solid for isostatic, dashed
for H = 1, dotted for H = 2, and dash-dotted for H = 3.

mechanically stable N = 13 nuclei are off-pathway, and
nucleation of structures with Barlow order is likely to be a
rare event. While fBarlow is far higher for hyperstatic (H > 0)
nuclei, the same trend of decrease with increasing N persists.

Most non-Barlow nuclei possess stacking faults or fivefold
defects; for isostatic nuclei with 8 � N � 13, fstack-fault and
ffivefold are in the 50–80% range. While they decrease sharply
with increasing H , they still increase in hyperstatic systems
to large values with increasing N . Both stack-faulted and
fivefold symmetric structures are known to play key roles
in inhibiting crystallization in bulk particulate systems by
promoting dynamical arrest and glass formation [30,31].
Since the energy barriers for transitions between off-pathway
and Barlow-ordered nuclei are generally large [12,24], the
very low values of fBarlow and high values of fstack-fault and
ffivefold reported here provide a potential microscopic expla-
nation for the propensity of sticky-hard-sphere-like systems
to jam and glass-form in both simulations and experiments
(e.g., [23,31,32]).

In the remainder of this paper, we focus on N = 13 clusters,
and in particular on their nucleation and growth during cooling
from high T to T = 0, as well as on their relaxation dynamics
at fixed T . The top panel of Fig. 3 shows the eight degenerate
GSCs for N = 13. Two are core-shell structures (respectively,
hcp and fcc ordered) wherein a single center sphere contacts
12 neighbors, and the rest are irregularly shaped Barlow and

stack-faulted clusters. Labels above the structures indicate
ordering (fcc, hcp, Barlow, or stack-faulted) and numbers
below them indicate their relative permutational entropies
(ratios of their ωk) in the IPE.

The left-bottom panel of Fig. 3 shows results for the
evolution of the average molecular energy 〈U (T )〉 during
cooling from T = 2.5 − 0 with quench rates |Ṫ | that vary
over a factor of 100. Results for all |Ṫ | fall on a common curve
above Tmelt � 1.5 since the high-T dynamics are very fast.
Below Tmelt, 〈U 〉 begins to drop, indicating the onset of cluster
formation. For the lower two |Ṫ |, as T continues to decrease,
〈U 〉 drops sharply as clusters grow and merge, then flattens
out as particles coalesce into single clusters. A narrow range
of small 〈∂2U/∂T 2〉 indicates a T regime where clusters have
coalesced but continue exploring their energy landscape via
inter-macro-state transitions. 〈∂U/∂T 〉 converges as cluster
rearrangement ceases and clusters proceed down the harmonic
basins of their energy landscapes. However, 〈U 〉 /ε remains
above −36 = −Nmax

c even at T = 0, indicating that many
clusters freeze into mechanically stable excited states rather
than GSCs. Results for the fastest quench rate (10−3) are
markedly different: 〈U (T )〉 decreases much more gradually
and remains well above −(NISO)ε even at T = 0, indicating
that systems often freeze into multiple clusters (that do not
merge by the end of the cooling runs) rather than single
clusters [33].

The middle-bottom panel shows the population fractions
of the GSCs and of excited states as a function of T during
the |Ṫ | = 10−5/τ quench. Even at this low cooling rate, about
2% of clusters remain in (mechanically stable) excited states
at T = 0. The left edge of this panel compares the values
of Fi/Nm at the end of the quench to their equilibrium
T = 0 counterparts (ωi/� from the IPE). The fcc and hcp
clusters populate the quenched ensemble in excess at low T

because they form at slightly higher T and, as described
below, rearrange more slowly. Conversely, the other clusters’
populations are somewhat lower than equilibrium predictions,
showing that for this slow quench rate clusters inhabiting deep,
narrow wells on the potential energy landscape are favored;
that is, on-pathway crystal growth is favored.

Higher quench rates (not shown) reverse these trends.
Clusters are more likely to freeze into less-ordered states
that are favored at high T because of their larger vibrational
entropy [3], and deviations of the final population fractions
from equilibrium T = 0 values are much larger.

To understand these results, it is useful to recall that the key
parameter controlling the growth of ordered crystalline nuclei
is the ratio of the particle attachment rate ra to the cluster
reorganization rate rr [34]. When ra/rr is large, the larger
entropy [3,8] of disordered (yet mechanically stable) nuclei
lacking close-packed order should promote growth of amor-
phous clusters. Conversely, when ra/rr is small, enthalpy
should rule, and close-packed nuclei should experience stable
growth.

Our results are consistent with and reinforce these
ideas. For our fastest quenches, systems often freeze
into multiple clusters because |Ṫ | > ra even at high T .
In contrast, for |Ṫ | = 10−5/τ , the sharp, first-order-like drop in
〈U (T )〉 is characteristic of the |Ṫ | � ra regime where single
clusters form within a narrow range of T � Tmelt, and the
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FIG. 3. (Color online) Top: The eight N = 13, Nc = 36 ground states. States 1–8 are depicted from left to right. Labels above the structures
indicate ordering (fcc, hcp, Barlow, or stack-faulted) and numbers below them indicate their relative permutational entropies (ratios of their ωk).
Bottom: Results from MD simulations for N = 13 Morse clusters: (Left) Mean cluster energy vs reduced temperature for fast, medium, and
slow quench rates from top to bottom. (Middle) The population fractions (Fi/Nm) of ground states (1–8) and excited states [(1 − ∑8

i=1 Fi)/Nm]
over the course of a slow quench (here Fi is the number of clusters in macrostate i.). Line colors match those of the circles on the left edge,
which indicate these states’ equilibrium population fractions (ωi/�) at T = 0. (Right) Temperature dependence of cluster relaxation dynamics
in thermodynamic equilibrium, as measured by the macrostate decorrelation fmad(t) [Eq. (5)].

rest of this curve is consistent with |Ṫ | remaining above rr

down to the T at which 〈∂U/∂T 〉 converges. Results in the
middle-bottom panel illustrate how rr grows with decreasing
T and increases well beyond |Ṫ | at T � 0.6.

Understanding how rr varies with T and macrostate is one
key to developing principles for controlled nonequilibrium
self-assembly of these systems. Toward this end, we now
turn to examining their equilibrium relaxation dynamics. The
right-bottom panel of Fig. 3 shows results for the decorrelation
fmad(t) of macrostates via state-to-state transitions [Eq. (5)].
Results are shown for a range of temperatures over which
characteristic rr vary by several orders of magnitude. At high
T , excitations from GSCs are very common, energy barriers
are easily overcome, and relaxation is nearly exponential. As
T decreases, clear shoulders develop in fmad(t), and relaxation
becomes very clearly nonexponential. One reason for this
is that different GSCs possess different stability (i.e., lie in
potential energy wells of different depths), and so decay
at different rates, i.e., possess different rr . Highly ordered
N = 13 clusters such as hcp and fcc nuclei (states 1 and
2) are most stable, and have the lowest rr , because every
atom in these clusters is bonded to at least five others. In
contrast, states 7 and 8 have a “loose” atom possessing
only three bonds, and rearrange much faster. Another po-
tential reason for the complex shapes of fmad observed at
lower T is that short-ranged Morse clusters possess glassy
dynamics [2]; this will be further examined in forthcoming
work.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we characterized the equilibrium and
preparation-protocol-dependent structure and dynamics of
small clusters interacting via hard-core-like repulsions and
short-range attractions. Our results provide a theoretical frame-
work for extending recent experimental studies [3,4,16] of
small colloidal clusters to examine both equilibrium relaxation
dynamics at fixed T and a variety of nonequilibrium phenom-
ena. In particular, they should be relevant to understanding
the factors controlling nonequilibrium self-assembly of such
clusters, and should be testable using plausible extensions of
currently available experimental techniques [4,14,15].

We extended recent exact enumeration studies of sticky
hard-sphere packings [5–8] to N = 13. This is an important
advance because N = 13 clusters can form complete core-
shell structures (i.e., hcp and fcc crystallites); our work
will aid experimental studies of core-shell structures where
observation of the inner-core particles is difficult. We then em-
ployed these complete sets of packings as “ideally-prepared-
ensemble” (IPE) initial conditions for MD simulations of col-
loids interacting via a short-ranged modified Morse potential,
focusing on N = 13 clusters.

It is important to note that the results presented here
are strictly valid only for systems interacting via “steep”
(short-ranged) pair potentials. Softer, longer-ranged interac-
tions dramatically alter the lower regions of small clusters’
energy landscapes [12,35]. However, the short-ranged limit
considered here is experimentally accessible, e.g., in systems
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TABLE II. Values of σeff(T ) and B∗
2 (T ) [Eqs. (A1) and (A2)] for

the temperatures examined in the lower-right panel of Fig. 3.

T σeff B∗
2

0.6 0.9824 0.9046
0.7 0.9853 0.9267
0.8 0.9871 0.9407
1.0 0.9891 0.9572
1.2 0.9901 0.9666
1.3 0.9905 0.9699

of micron-sized colloids and micellar depletants [4]. To aid
experimental tests of our results, we include an Appendix
containing a Noro-Frenkel analysis [25] that can be used for
mapping them to systems interacting via other pair potentials.
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APPENDIX: NORO-FRENKEL ANALYSIS

Our results can be used to make predictions for systems
interacting via other short-ranged pair potentials—including
experimental systems (see, e.g., Ref. [32])—using Noro

and Frenkel’s extension [25] of the law of corresponding
states. Both thermodynamical and dynamical results can be
effectively compared by “temperature-matching” different
systems at the same value of “free volume concentration”
cp = πρσ 3

eff/6 and the reduced second virial coefficient:

B∗
2 (T ) = 3

2σ 3
eff(T )

∫ rc(α,b)

0
{1 − exp [−UMM(r)/kBT ]} r2dr.

(A1)
Here the temperature-dependent effective hard-sphere diame-
ter [37] is

σeff(T ) =
∫ 1

0
{1 − exp [−UMM(r)/kBT ]} dr. (A2)

Values of σeff(T ) and B∗
2 (T ) for the temperatures examined

in the lower-right panel of Fig. 3 are given in Table II.
The variation of B∗

2 with T is small because for the steep,
short-ranged interaction potential UMM used in this study
the integrand in Eq. (A1) is close to unity except in a very
narrow range δr ∼ (rc − 1) about r = 1. However, our study
of dynamical relaxation in equilibrium systems suggests that
the time scales as well as the character of relaxation in real
systems with similarly short-ranged interactions can vary very
sharply over a narrow range of B∗

2 . Future work will consider
wider ranges of N , cp, and B∗

2 in order to allow comparison
to published results for phenomena such as dynamical arrest
in individual clusters [16,38] and bulk systems [32], as well as
guiding future experiments.
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