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Devising a statistical mechanics framework for jammed granular materials is a challenging task as those
systems do not share some important properties required to characterize them with statistical thermodynamics
tools. In a recent paper [Asenjo et al. Phys. Rev. Lett. 112, 098002 (2014)], a new definition of a granular entropy,
which puts the protocol used to generate the packings at its roots, has been proposed. Following up these results,
it is shown that the protocol used in Asenjo et al. can be recast as a canonical ensemble with a particular value
of the temperature. Signature of gaussianity for large system sizes strongly suggests an asymptotic equivalence
with a corresponding microcanonical ensemble where jammed states with certain basin volumes are sampled
uniformly. We argue that this microcanonical ensemble is not Edwards’s microcanonical ensemble and generalize
this argument to other protocols.
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I. INTRODUCTION

Granular materials are large assemblies of particles that are
athermal and dissipative and as such their statistical properties
can hardly be characterized by using the standard tool box
of statistical thermodynamics. It has then been considered
a challenge in the community to devise a novel statistical
framework for these systems that would have both explanatory
and predictive powers [1–4]. One of the most appealing routes
towards a statistical framework to characterize jammed states
is the one proposed by Sam Edwards more than 2 decades
ago that hypothesizes that if one has a protocol to generate
(granular) packings of N particles at some fixed volume V

or packing fraction φ, then each jammed packing will be as
likely as any other to appear with probability �−1

jammed(N,φ),
where �jammed(N,φ) is the total number of mechanically stable
structures that can be made from these N particles confined
in the prescribed volume V [5,6]. Although such a claim does
not bear any micromechanical justification yet, there is still
a possibility that, akin to throwing a six-facet dice (a system
for which we do not have any micromechanical justification
either), it so happens that most protocols could well be
described by a probability measure which assumes a uniform
sampling of the states in virtue, e.g., of Pascal’s principle of
indifference. Still, Edwards’s proposal contrasts deeply with
studies like that of Jiao et al. [7,8], which showed that one
could tailor many packing-generating protocols that lead to any
possible packing fraction corresponding to various degrees of
structural randomness for the obtained jammed states (hence
ruling out, e.g., packings with the same packing fraction but
with a different randomness). Also, recent advances on the
behavior of hard-sphere glasses have permitted us to probe
the glass phase close to the jamming transition. This probing
can be done in two different ways: either by focusing on the
“typical” (in a statistical thermodynamic sense) states that
can exist close to jamming [9] or by following initial states
from a dilute phase [10] up to jamming [11]. Interestingly,
these two different ways of choosing glassy states yield a
different physics which strengthen the idea of what seems to
be a protocol-dependent measure. It is therefore important
to devise tests to assess whether Edwards’s conjecture is
rather the rule or the exception to the rule. To this aim,
different strategies have been used. On the one hand, instead

of testing Edwards’s microcanonical hypothesis, it has been
more practical to test a canonical extension of it which ought
to apply to packing-generating protocols that do not fix exactly
the volume occupied by the jammed states. In this case,
however, the various theoretical [12–17], numerical [18–21],
and experimental [20,22–25] studies done on the subject
were not, overall, very conclusive. That is because different
protocols and assumptions were used to apply Edwards’s
canonical ensemble to practical cases. On another hand, it
long has been proposed to use soft materials as models for
granular materials [24,26–32]. In this case, the idea consists
in interpreting the discrete set of jammed granular states as
being minima of a potential energy surface (also referred to as
an energy landscape; term that we should use interchangeably
with potential energy surface throughout the paper) of soft
particles [33]. This allows then both experimental [30,34] and
numerical [24,26,35,36] realizations of soft material models
of granular packings that can be used in principle to test
Edwards’s original hypothesis.

Now it appears that even the first set of studies looking
at granular jammed states with a nonconstrained packing
fraction can be interpreted in terms of a landscape that would
be a volume or density landscape [37] where the minima of
this landscape would be the set of states for which, under
a prescribed dynamical model that prevents particle overlaps
(e.g., the Lubachevsky-Stillinger (LS) algorithm [38,39]), it
is impossible to reach a lower volume configuration before
first increasing the volume accessible to the particles [40].
This allows then a rather unified picture of two of the most
ubiquitous ways to generate jammed states expressed in
the vocabulary of landscape exploration. Figure 1 gives an
illustration of the idea underlying this interpretation of jammed
states as being either volume minima in a density landscape of
hard particles or energy minima of the potential energy surface
of a soft material model of granular matter.

In this article, we will mostly focus on the energy landscape
(potential energy surface) exploration as we seek physical
consequences—regarding, e.g., Edwards’s conjecture—of nu-
merical results obtained in Ref. [35]. To this end, we first recall
very standard results on the equivalence between the canonical
and the microcanonical ensembles in the thermodynamic limit.
We then move to jammed systems as studied in Ref. [35]. After
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FIG. 1. (Color online) Schematic representation (dotted line) of
an energy or volume landscape that can be used to generate four
mechanically stable packings (A, B, C, D). For each minimum, it
is not possible to decrease further the cost function without first
increasing the volume available (volume landscape interpretation like
the LS algorithm) or the energy of the system (energy landscape
interpretation). The solid blue line represents the basin of attraction
of the minimum C while the length of the red segment B ′C ′ represents
its size. In a multidimensional space, this size becomes a hypervolume
in the space of coordinates.

having recalled the protocol they used and the results they
obtained, we will show that there is a strong analogy between
an infinite number of energy landscape-based protocols and
a granular canonical ensemble. We will, moreover, show
that, akin to what happens in statistical thermodynamics, this
canonical ensemble tends toward a microcanonical measure.
We discuss the implications of this equivalence and claim that
this microcanonical measure, in general, does not coincide
with the Edwards’s measure.

II. EQUIVALENCE BETWEEN THE MICROCANONICAL
AND CANONICAL ENSEMBLES

This section is dedicated to recalling how the canonical
ensemble becomes equivalent to a microcanonical ensemble in
the thermodynamic limit. Although the derivation that follows
can be found in most textbooks on statistical thermodynamics
(e.g., in Ref. [41]), we briefly rederive it here to introduce
notations and concepts that will be useful in the remaining of
the paper. We start off by writing the partition function in the
canonical ensemble for N particles in a volume V with inverse
temperature β = 1/kBT via a sum over energies E, i.e.,

Q(N,V,β) = 1

N !

∫ +∞

0
dE ω(E,V,N )e−βE, (1)

where ω(E,V,N )dE is the total number of states in the energy
range [E,E + dE]. The idea consists then in defining the
microcanonical entropy S(E,N,V ) via ω(E) ≡ eS(E,N,V )/kB

and it comes that the partition function reads:

Q(N,V,β) =
∫ +∞

0
dE e−βA(E,N,V ), (2)

where A(E) = E − T S(E) + kBT ln N ! is the Helmholtz free
energy of the system at energy E and where the + ln N ! term

ensures extensivity of A. To formally address the extensivity
property, we introduce the notion that two functions f (N,V,β)
and g(N,V,β) are equivalent in the thermodynamic limit (and
noted f ∼ g) if and only if limN,V →+∞ f

g
= 1 at fixed packing

fraction φ ≡ Nv0/V ∼ O(1) (v1/d

0 being a length scale related
to the size of the particles; where d stands for the spatial
dimension). A being extensive, then, by definition, there exists
a function a(e,φ) ∼ O(1) such that A(E) ∼ Na(e,φ) and
where e and a are the energy and free energy per particle.
In the thermodynamic limit, Eq. (2) can then be recast as

Q(N,V,β) ∼ N

∫ +∞

0
de e−Nβa(e,φ). (3)

Now, if a has a minimum at say e∗, then this integral can be
evaluated by using a saddle point approximation. Assuming
this extremum lies on the real line, the idea is to expand
a(e) = a(e∗) + 1

2a′′(e∗)(e − e∗)2 + O((e − e∗)3). Replacing it
in Eq. (3) up to the second order gives:

Q(N,V,β) ∼ Ne−Nβa(e∗)
∫ +∞

0
de e−βN

a′′(e∗ )(e−e∗ )2

2 . (4)

From Eq. (4), we see that all the statistics is now essentially in
a Gaussian form. From very standard statistical mechanics, we
know that Var(E) ∝ Cv , where Cv is the specific heat capacity
at fixed volume. Now the heat capacity is also an extensive
quantity and therefore Var(E) ∼ N . In the case of Eq. (4), the
statistics is that of e and not E. This is no issue as we can use
the fact that Var(e) = Var(E)/N2 ∼ 1/N . It then implies, in
case we had any doubts, that a′′(e∗) ∼ O(1). Evaluating the
Gaussian integral then yields:

Q(N,V,β) ∼ e−Nβa(e∗)

√
2πN

K
, (5)

where K ∼ O(1) is a constant. Hence, in the thermodynamic
limit, one finds that A(N,V,β) ∼ Na(e∗) ≡ N (e∗ − T s(e∗))
[where s contains here part of the N ! introduced in the
definition of A in Eq. (2)]. Everything is thus as if the
energy was fixed at the value Ne∗, from which we subtract
the corresponding (extensive) microcanonical entropy. The
role of the thermal bath is encapsulated in the possibly
complicated relationship between e∗ and β. Since the partition
function is the generating functional of all the moments of the
canonical distribution, we have therefore retrieved that there is
a statistical equivalence between the canonical ensemble and
a microcanonical one in the thermodynamic limit, i.e., there
exists a one-to-one correspondence between the physics going
on at some β value in the canonical ensemble and the physics
characterized by the corresponding microcanonical ensemble
at E = Ne∗(β).

Another way to see this equivalence is to look at the
integrand in Eq. (4) and see that we can build a probability
distribution for e from it by simply dividing the Gaussian
weight by the partition function itself. Since we have calculated
it in Eq. (5), we see that at least up to order 2 we have that

pN (e) ≈
√

KN

2π
exp

[
−KN (e − e∗)2

2

]
. (6)
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One can easily check that pN is essentially a sequence of
functions whose limit is the Dirac delta distribution such
that:

lim
N→+∞

pN (e) = δ(e − e∗), (7)

which is essentially a microcanonical measure at fixed energy
Ne∗.

III. GENERATING JAMMED STATES AND THE
LANDSCAPE AMBIGUITY

The problem of generating model granular jammed states
from an energy landscape can be divided into two parts. The
first one consists in identifying a model whose energy minima
mostly correspond to granular jammed states. The second one
consists in providing a procedure for the landscape exploration
that ultimately decides the frequency with which each jammed
state is visited. For soft-matter models, the potential energy
surface is that of a system of hard-core particles (whose radii
can go to zero in some models) covered by a soft shell using
Hertzian [26,27,42,43], elastic [24], or WCA [35] potentials.
For our purposes, we require that the packing fraction of
the whole system, when defined with respect to the total
particle sizes (i.e., hard core + soft shell), is way above
jamming. The “above-jamming” condition ensures that all
minima correspond to jammed states and not to a part of
the configuration space that would be fluidlike. That way,
the jammed basins tile certainly the underlying fluid space;
which is a central feature of the method as we shall see
below. The price to pay is then that the present analysis
cannot straightforwardly be used to probe the whole energy
landscape at the jamming transition. Study of this particular
point below which most disordered hard particle assemblies
are fluid [44] goes beyond the scope of the present paper and is
still the object of intensive studies [9,24,26,31,32,42,45–48].
Regarding the exploration procedure, it is very common to
choose a packing fraction for the hard core part of the
system that is sufficiently low to avoid any glassy behavior.
In that case, if one picks, at random, configuration states
from an equilibrated hard core fluid, then this is equivalent
to exploring uniformly the potential energy surface associated
to the soft-shell interactions. This protocol is illustrated with
typical simulation steps in Fig. 2.

A consequence of this exploration protocol is that, upon
a quench to the “nearest” minimum, a fluid state picked
in this way is more likely to be captured by a minimum
with a big basin of attraction rather than by a small one.
In fact, the probability to end up in a particular basin of
hypervolume V is exactly V/Vfluid with this aforementioned
protocol; where Vfluid is the volume tiled by all the basins.
Thus, in addition to being simple, this widely used protocol is
also very convenient because we can infer straightforwardly
what the jammed states statistics has to be (and it is not
uniform).

To prevent any confusion, a comment is here in order.
The energy landscape description of soft material models of a
granular medium discussed above (and in Fig. 1) looks very
similar to the free-energy landscape description of structural
glasses. In fact, many studies have looked deep into the glassy

FIG. 2. (Color online) Jammed state as generated by potential
energy minimization. One starts by picking a state (a) from an
equilibrated hard-sphere fluid. Then the soft-shell interaction is turned
on and the packing fraction is now such that there are many overlaps
(b). The system relaxes then to the corresponding potential energy
minimum, yielding the jammed state (c).

regime with the use of the replica symmetry breaking tools to
probe the jamming transition for soft and hard particles (e.g.,
Refs. [2,9,48–50]). In particular, it has been found recently that
when using the smallest resolution possible to define the basins
of this free-energy landscape for hard spheres, the actual hyper-
volume of these basins was vanishing at jamming [9]. This
contrasts with the claim of the previous paragraph where the
hypervolume of the basins of attraction of jammed states have
no reason to be zero (this is quite clear in Fig. 1, too). These two
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observations are in fact noncontradictory for they do not talk
about the same landscapes. On the one hand, the free-energy
landscape of structural glasses—which is a Gibbs entropy
landscape for hard spheres—is an emerging property of the
thermodynamic state of the system; that is, upon following a
particular branch of a metastable fluid phase, some regions of
the configuration space become more and more dynamically
disconnected from one another as we go deeper into the
glass phase. This gives rise to the successive appearance
of more and more “structural basins” which characterize
these effectively disconnected regions within which, in the
glassy regime, particles are still free to move and hence a
thermodynamic Gibbs entropy can be associated to them. It
is then no surprise that, when approaching jamming from the
glass, the “typical” entropy per basin vanishes because by
definition, no particle has any freedom to jiggle at jamming
and the Gibbs partition function has to be zero there. That is
simply because, at jamming, the dimensionality of the space to
explore decreases, essentially from continuous to discrete [34],
and, as a consequence, the Gibbs measure in the continuous
configuration space of hard spheres has to be exactly zero
for any set in this new space of jammed states. On another
hand, the potential energy surface discussed in Ref. [35] and
in the present paper is a feature of a soft material model
of a granular material and hence of the effective protocol
used to generate model granular jammed states. The definition
of basins of attraction—and their hypervolume—then differs
greatly in these two cases. The free-energy landscape of glasses
would define a basin as being the set of all fluid configurations
compatible with a particular average structure (set that ought to
be of cardinality one at jamming) whose hypervolume is then
often related to a typical cage size reminiscent of cell-model
methods used to compute the Helmholtz free energy of
crystals. Essentially, the smaller the cage, the smaller the basin
entropy and the harder it becomes to compress the system any
further. Upon following a metastable branch of the fluid phase,
this leads to a divergence of the thermodynamic pressure at a
packing fraction much lower than that of close packing which
is symptomatic of a vanishing typical cage size as discussed by
Kamien and Liu [44]. A contrario, the hypervolume of a basin
of attraction of a potential energy surface would be the set
of all initial states which lead, upon a prescribed quenching
dynamics, to the same jammed structure and has absolutely
no reason to be of zero measure. For a glass, it could be
the set of initial fluid states at an initial equilibrium packing
fraction φi which, upon quenching to a higher final packing
fraction φf beyond the glass transition, reach the same average
structure. This is very different from the number of fluid states
at φf which are compatible with some average structure. Now,
in our case, looking at Fig. 2, the basin of attraction of the
jammed structure [Fig. 2(c)] is the set of all states in Fig. 2(a)
leading to the structure in Fig. 2(c) upon following the steps
described in the above paragraph and summarized in Fig. 2.
This discussion on the difference between basin entropies in
a glassy free-energy landscape close to jamming and basin
hypervolumes of a potential energy surface echoes a more
general discussion on other (nonthermodynamic) entropies
that can be defined to characterize jammed states [51] and
had to be made clear before moving on to the main point of the
paper.

IV. CANONICAL ENSEMBLE FOR JAMMED STATES

Reference [35] aimed at estimating the total number of
jammed states for a given packing fraction φ and number of
particles N (for a polydisperse system). To do so, the authors
imagine an ideal (unknown) protocol which would sample all
of the jammed states uniformly and define the mean basin
hypervolume as being

〈V〉 ≡ 1

�jammed(N,φ)

∑
B∈�jammed

VB. (8)

The idea is then to infer an unbiased distribution pu(F ) for the
free energy F = − ln(VN !) [52] of a basin such that:

〈V〉 =
∫

dF pu(F )e−F . (9)

The major problem is that, as specified before, pu(F ) is un-
known since the protocol described above to actually generate
the jammed states is far from sampling them uniformly. At this
stage, it is worth pointing out that the ideal unbiased algorithm
that would sample all the jammed states uniformly has a priori
nothing to do with the basin size distribution pu(F ). Indeed,
using an energy landscape is just a particular way, among
others, to get jammed states. So while we can always imagine
jammed states as being minima of an energy landscape, we
could have used another feature of jammed states to sample
them uniformly, and that would not have changed their basin
volume distribution. Let us now denote pb(F ) the free-energy
distribution of the basins as sampled by the protocol with a
bias proportional to the hypervolume of the basins. It is clear
that:

pb(F ) ∝ pu(F )V(F ) = pu(F )e−F , (10)

and now something interesting happens. The expression in
Eq. (9) can indeed be interpreted as a partition function similar
to that of Eq. (1) associated to the biased weight in Eq. (10)
with which each basin is sampled with the protocol in use.
The interpretation goes then as follows: everything is as if we
had “microstates” which are the jammed states and for each of
them we can measure an “energy” which is nothing but the free
energy associated to their corresponding basin of attraction
[F = − ln(VN !)]. In Eq. (9), pu(F ) plays exactly the same role
as ω(E) in Eq. (1) corrected by a Boltzmann weight penalizing
high energies in the case of Eq. (1) and small volumes in
the case of Eq. (10). In addition, F is here strictly bounded
from below because of the size of the box but has no obvious
strict upper bound. A major difference with usual statistical
mechanics though, is that both the biased and the unbiased
distributions for F have to be integrable and, in general, we
assume that most of their moments—if not all—have to be
defined. A consequence of these general requirements is that
the free-energy density of state noted ωjammed(F ) ∝ pu(F ) has
to be a fast-decaying function for both small and large values
of F (almost defining a compact support).

Finally, for the analogy with a canonical ensemble to be
complete, we can wonder what the equivalent of β is in the
case of jammed states (that we denote βG). It turns out that βG

is related to how sensitive the sampling protocol is to the size
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of the basins. With the protocol described above, the sampling
selects proportionally to the hypervolume of the basin and
βG = 1, but one could imagine other types of sampling for
which the bias with respect to uniformity would be some power
of the hypervolume of those basins and this exponent would
be the corresponding βG.

V. TOWARDS A MICROCANONICAL ENSEMBLE

One of the results of Ref. [35] is that the biased distribution
pb(F ) tends towards a Gaussian distribution for large system
sizes. It is also found that 〈F 〉b ∼ Nf ∗, i.e., the biased average
of F increases linearly with the system size [35]. In addition,
it is found that Var(F ) ∼ Nc [where c ∼ O(1)] so, in the end,
if we look at the biased distribution of the free energy per
particle f ≡ F/N , it comes as (for large system sizes):

pb(f ) =
√

N

2πc
exp

[
−N (f − f ∗)2

2c

]
. (11)

As we have seen before, such a function will tend towards
a Dirac delta distribution and, in effect, will be uniformly
sampling basins with a single free energy that is Nf ∗. The
corresponding ensemble is one where the free energy is
essentially Nf ∗ for every basin sampled. It is worth stressing
that such a claim was already hypothesised by Wang et al. [24]
to justify that Edwards’s measure would be retrieved in
the thermodynamic limit even for biased sampling proto-
cols. Although we acknowledge that the shrinking of some
basin-related probability distribution was indeed inspired, we
disagree with the conclusion that the Edwards measure will
always be retrieved in the thermodynamic limit and shall
explain why below.

There are, in fact, two ways to interpret Eq. (11): (a) All
possible jammed states are sampled uniformly because the
landscape becomes such that all basins have the same hyper-
volume corresponding to the free energy Nf ∗ or (b) only
a subset of all possible states is sampled uniformly in the
thermodynamic limit and that is the one comprising basins
with a free energy Nf ∗. The remaining part of the paper will
deal with this issue.

VI. FINDING THE DENSITY OF STATE
UPON UNBIASING pb

Let us first remark that if the biased distribution is genuinely
Gaussian (which is what we will assume here based on
Ref. [35]), then so is the unbiased one. To see this, one simply
needs to use Eq. (10) together with the following identity
−a(x − x)2 + x = −a(x − (x + (2a)−1))2 − x − (4a)−1. As
a matter of fact, since we multiply pb(F ) by an exponential
to retrieve pu(F ), its mean will be shifted towards higher
values of the free energy (an illustration of this is given, e.g.,
in Ref. [51]). The fact that the density of state of F [or,
equivalently, the probability distribution pu(F )] tends to be
Gaussian for large system sizes was also found in Ref. [43]
by sampling all the minima of small binary mixtures of
elastic disks. This suggests that the gaussianity of pu(F ) [or
ωjammed(F )] does not depend very much on the actual energy
landscape as long as the interactions are kept short ranged and
isotropic.

In the end, for such energy landscapes, the free energy per
particle distribution—as measured by uniform sampling—is a
delta function centered around f ∗ + �, where � accounts for
this shift and is a positive number unimportant for the present
discussion.

We already see here that if we believe in the interpretation
(a) above, that is, interpreting Eq. (11) as meaning that all
states are sampled uniformly and have free energy Nf ∗, then
there is a contradiction with the fact that when all the jammed
states are sampled uniformly and we infer the corresponding
unbiased distribution from pb, then we know that there are
overwhelmingly more states with free energy N (f ∗ + �)
than with free energy Nf ∗. Thus, interpretation (a) cannot be
right. The only remaining choice, common from a statistical
mechanics point of view, is that to a canonical sampling with
βG = 1 corresponds an equivalent uniform sampling of a
particular subset of all the jammed states that contains only
jammed states with free energy Nf ∗.

As said before, one can imagine protocols whose sensitivi-
ties to the basin size will go as VβG . In such a case, the problem
is equivalent to that of a canonical ensemble with an inverse
“temperature” βG and a general partition function:

QG(N,φ,βG) ≡
∫

dF ωjammed(F )e−βGF . (12)

The crucial point to make here is that the gaussianity of
ωjammed(F ) [or, equivalently, pu(F )] for large N is not protocol
dependent and is a feature of the soft-matter model. As a
consequence, any canonical weight with a temperature βG, in
virtue of the trivial extension of Eq. (10) to any βG value,
will tend towards a Gaussian for large system sizes and
will be statistically equivalent to a uniform measure within
a corresponding free energy slice in the thermodynamic limit.

In contrast to what was suggested in Ref. [24], we stress that,
in general, the limiting microcanonical distribution discussed
above does not coincide with Edwards’s ensemble as the latter
requires that all possible states at a given N and φ are uniformly
sampled. In fact, Edwards’s measure would correspond to the
sum of ω(F ) over all basin free-energy slices i.e., over all
the possible limiting microcanonical ensembles as derived in
the present paper. An interesting case is that of βG = 0. This
corresponds to an infinite temperature in our interpretation
of the protocol and, indeed, in this case there is no bias and
all states can be sampled uniformly; the Edwards measure is
then retrieved as a very specific case of our interpretation.
That being said, it is worth mentioning that an interesting
discussion on how fast a quench is performed in an energy
landscape and its effect on the statistical mechanics description
of granular media has been proposed in Ref. [24]. It was
indeed argued that slowly quenched protocols were compatible
with Edwards’s measure while, at least for small systems,
fast quenches were not. This claim seems quite unintuitive at
first sight since we know that, e.g., for hard spheres, a slow
quench in packing fraction simply leads to an entropy-driven
crystallization that ends up in a jammed close-packed fcc or
hcp structure; this is not quite what one would call a uniform
sampling of jammed states. This intuition is indeed confirmed
by running standard Monte Carlo and molecular dynamics
simulations but also LS simulations which, at sufficiently small
compression rates, can mimic equilibrium behavior [8,53].
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The numerical quenching protocol of Ref. [24] (and also of
Refs. [27,54] with similar findings) actually differs from a
usual LS algorithm in that it allows each particle to be subject
to a background fluidlike dissipation that forces the system to
eventually reach a mechanical equilibrium (not necessarily
jammed) after each compression step [54]. Motion of the
particles is then only triggered by particle overlaps upon further
compression. Such a protocol is very similar in spirit to the
one of Ref. [31] cautiously designed to study the jamming
of soft athermal systems. Hence, it is slightly misleading to
interpret such a protocol as being related to a single potential
energy surface—that of the final packing fraction—for the
system explores many different energy landscapes along its
compression trajectory. This phenomenology of ever-changing
landscape upon reaching jamming bears some resemblance
with what happens when trying to probe jamming from model
spin glasses [10] or, more recently, hard-sphere glasses [9],
although, because the particles remain forever soft in the
studies [24,54], a nonzero hypervolume of the basins of
attraction is expected (and indeed measured).

In the present formalism, we claim that slowly reaching a
minimum of an energy landscape (in the sense discussed in the
previous paragraph) from an initial fluid configuration may in
fact well be an artificial way of decreasing the value of βG

towards zero but it is, however, a bit too hasty to conclude
that the corresponding statistical measure is that of Edwards’s.
Instead, we propose that, as the protocol used is more and
more able to effectively decrease βG, one should observe more
and more compatibility with Edwards’s proposal and reach
equality only in the limiting case βG = 0.

Finally, in case one were to be surprised that we can find an
equivalent microcanonical measure [centered at N (f ∗ + �)]
even when the sampling is unbiased and probing basins of
all sizes, i.e., when βG = 0, it is worth recalling that the
same goes for any thermodynamical system with a bounded
energy spectrum in usual statistical thermodynamics. As a
prototypical example, in a paramagnetic spin system coupled
to an external magnetic field at inverse thermodynamic
temperature β, one easily finds that the canonical ensemble
at β = 0 is equivalent to a microcanonical ensemble where
the energy E = 〈E〉β=0 = 0. In this spin example, and in our
granular case, too, the unbiased sampling over all possible
states is overwhelmingly dominated by the states with the
most probable energy (or by basins with the most probable
free energy in our granular case).

VII. CONCLUSION

In this article, we have shown that it was possible to interpret
the role of a widely used numerical protocol to generate
jammed states as a particular “granular” temperature value
(βG = 1) of a much richer canonical ensemble. We have also
shown that, assuming results from Ref. [35] can be extended to
more general cases of energy-landscape-based protocols (cf.
those used in Ref. [24]), this canonical ensemble is equivalent
to a microcanonical ensemble in the thermodynamic limit
where some jammed states are then sampled uniformly.
We argued that Edwards’s microcanonical ensemble was a
very specific case of this richer picture where the protocol
inverse temperature is βG = 0; otherwise, the other granu-
lar microcanonical measures βG > 0 do not coincide with
Edwards’s.

These results shed light on how to take the role of the
protocol seriously and yet be able to formulate the problem
in a formalism identical to that of statistical thermodynamics.
We hypothesize that the results discussed in this paper for
energy-landscape-based protocols could extend to volume
landscapes [37] and would give a new intuition about the
statistical mechanics of tapping protocols, for instance. It is
worth noting that, even in the case of a volume landscape, the
probability assigned to each jammed state would be directly
linked to the hypervolume of the corresponding basin of
attraction. Only if it is possible to have a mapping from these
hypervolumes of basins of attraction to the corresponding
packing fractions of the jammed states can we try to infer from
it some statistical predictions about the probability distribution
of volume or packing fraction for a given protocol. Finally,
the interpretation here introduced opens the window for novel
granular simulations in which an energy landscape exploration
could be coupled to a Metropolis criterion enforcing the
value of βG. This could give much more freedom in terms
of protocols used to generate jammed states and interpret their
physical properties.
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