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Fluctuation relations for driven coupled classical two-level systems with incomplete measurements
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We theoretically investigate fluctuation relations in a classical incomplete measurement process where only
partial information is available. The scenario we consider consists of two coupled single-electron boxes where
one or both devices can undergo a nonequilibrium transformation according to a chosen protocol. The entropy
production of only one of the two boxes is recorded and fluctuation relations for this quantity are put to a test,
showing strong modifications whose nature depends upon the specific case study.
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I. INTRODUCTION

Fluctuation theorems link the thermodynamic behavior of
a system undergoing a nonequilibrium transformation to its
equilibrium properties [ 1-3]. The most prominent examples of
such laws are the Jarzynski equality [4,5] and Crooks relation
[6]. These relations have been experimentally confirmed in
several setups such as colloidal particles [7,10], biological
molecules [8], defects in diamonds [9], and electronic nanos-
tructures [11,12]. Moreover, these experimental achievements
have stimulated a great deal of further theoretical studies
[13-17]. The typical scenario is the following. The system
under scrutiny is embedded in a thermal environment and
driven between two different Hamiltonians over a time that
is short enough not to allow instantaneous equilibration. The
exponentiated work is then averaged over many repetitions of
the same protocol and equilibrium free-energy differences can
be extracted. In all of these cases a complete identification
of the relevant dynamical quantities is required. Thus, it is
only natural to wonder what kind of nonequilibrium statistics
we would observe if such an assumption no longer held true.
This problem has been experimentally addressed [18] in order
to understand how the role of slow degrees of freedom in
a nonequilibrium system affects fluctuation relations. Two
colloidal particles were forced to interact by switching on
and off a static magnetic field and the dynamics of only one
particle was tracked. For most of the experimental parameters,
as well as for small and large values of the entropy production,
a Crooks-type relation [1] was observed,

P(AS) ]
IOg [m] —OlAS, (1)

in which, however, the slope « deviated from unity. In
Ref. [19] a similar analysis was carried out for a molecular
motor coupled to a bead with stochastic dynamics. Using
large deviation theory modifications to the fluctuation theorem
symmetry were predicted. Similar results were reported in
an experiment with optical tweezers in connection to partial
measurements and correct definition of work [20].

Here, we take a different but complementary approach.
First of all, unlike most of the existing literature so far, we
do not focus on a time-scale separation or, equivalently, a
coarse-graining of certain variables with respect to others.
Here, we take a more direct approach in which we simply
ignore some relevant degrees of freedom, regardless of their
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typical time-scale. The physical setup we consider is a pair
of coupled single-electron boxes (SEB) [21-23]. These are
electronic nanocircuits where single-electron currents can
be generated and controlled. Although the basic mechanism
inducing such currents is quantum tunneling of single electrons
across a junction, we assume our stochastic system to operate
in the classical domain. In other words, no quantum coherences
between different electronic states are present at any time.
This regime has been experimentally implemented in a series
of recent works [11,12,24,25]. Here nonequilibrium dynamics
has been observed by implementing suitable time-dependent
protocols changing some relevant energy parameters, such as
voltage. We investigate two possible scenarios. While the two
SEBs interact through a time-independent force we drive the
single-box energy of either one or both the boxes according
to a fixed time-dependent protocol. We discard completely
the dynamics of the other box, say 2, and calculate the
entropy production in box 1. The main question we address
is the following: how does such an interaction between the
two SEBs affect the driven dynamics and consequently the
nonequilibrium statistics of the single box? Deviations from
the standard behavior are found and, although their extent as
well as their nature depend upon the specific details of the
driving protocol, a general trend arises. In all of the situations
considered such deviations are nonlinear both in the coupling
strength and in the entropy production. Thus, they are not
explainable with an effective-thermal-environment description
for the reduced dynamics and statistics of box 1. Again, this
is a complementary viewpoint to the approach adopted in
Ref. [18] as we imagine to drive the free Hamiltonian(s) of
one or both the SEBs while the interaction is always present
although static. Hence, the work we perform on the system
does not induce the box-box interaction but it instead affects
the noninteracting part of the total Hamiltonian only. One
can look at this model as the prototype of an incomplete
experimental setup where information regarding some degrees
of freedom is missing. In this respect, this study aims at a
better understanding of which degrees of freedom and time
scales are truly relevant when it comes to nonequilibrium
physics, with particular emphasis on fluctuation relations. This
article is organized as follows: in Sec. I we will introduce and
describe our model; in Sec. III we will review some basic
facts regarding fluctuation relations; in Secs. IV and V we will
present our findings, and the final section will be devoted to
conclusions.
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FIG. 1. (Color online) (a) Circuital implementation of coupled
single-electron boxes satisfying Eq. (2); the divided box represents
the tunnel junction through which electrons tunnel by rates [Eq. (6)].
(b) First protocol implemented where the first box is linearly driven
from n,, =0 to n, =1 (black) while the second box is kept at
ng, = 1/2 (red). (c) Second protocol implemented where the two
boxes are driven between opposite ground states, n,, : 0 — 1 (black)
and ng, : 1 — 0 (red).

II. THE MODEL

We consider two single-electron boxes capacitively inter-
acting with each other; see Fig. 1(a). The nonequilibrium
thermodynamics of these nanodevices has recently been the
subject of intense theoretical and experimental investigations
[26-28]. Each box consists of two conducting electrodes
coupled through a junction with capacitance C,,i = 1,2 and
biased by a gate voltage V,, applied through a capacitor
C,,. The total system is at thermal equilibrium with the
surroundings at temperature S~' = kz7T. The Hamiltonian
governing the dynamics reads

H = Ec,(n] — ng)* + Ec,(ny — ng, )
+ J(}’ll — Ng, )(”2 - ngz)a (2)

in which E¢, = ¢e?/(2Cs,) is the ith single-box charging
energy, with Cy, = Cj, + C,, being the total capacitance, n; is
the number of excess electrons, ng, = —Cy, V,, /e is the charge
of the gate voltage, and J = ¢2C/[Cx,Csx, + C(Cx, + Csx,)]
is the intrabox coupling constant. Changing the gate voltage
of a box causes excess electrons to tunnel across the junction.
The variables n; are therefore stochastic, integer valued, and
unbounded. For most of the applications the surrounding
temperature can be made small enough to guarantee that
BEc¢ > 1. Furthermore, if the resistance of each junction
Rr is tuned such that R <« e? /h, only the two lowest
electron states n = 0,1 can be effectively populated. With this
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simplification only four two-box states need to be accounted
for, i.e., (ny,n2) = (0,0),(1,0),(0,1),(1,1). Depending on the
value of the SEB resistance, both single and many-electron
cotunneling processes can take place. From now on we
will assume only single-electron processes to be relevant.
This means that only the following transitions are to be
considered:

(0,0) < (1,0
(0,0) < (0,1)
(1,0) < (1,1)
0,1) « (1,1, 3

and the energy differences for the corresponding transitions
are, respectively,

AE00o0,0 = £(Ec, —2Ec,ng, — Jng,)
AEQ0o01) = £(Ec, = 2Ec,ng, — Jny,)

AEq 0o, = £[Ec, + J(1 —ng,) — 2Ec,ny, |

AEo o0 = £[Ec, + J(1 —ng) —2Ecng |. (4

The time-evolution of the occupation probabilities p,,,,(¢) is
governed by a system of rate equations with a time-dependent
transition-rate matrix A(t),

p(t) = AW P@), (5)

in which p(¢) is the occupation probability vector and the
elements of A(t) are the transition rates. For a transition
corresponding to an energy difference AE the corresponding
rate reads as

F(AE) = 1 AFE
T Rre?ePAE — 17

(6

These rates will be also used to generate the stochastic
trajectories.

III. NONEQUILIBRIUM FLUCTUATION RELATIONS

We focus on two well-known fluctuation relations. The
first one is the Jarzynski equality [4,5]. This links the work
W performed in a general thermodynamic transformation to
equilibrium free-energy difference A F for a system in a single
bath. Shortly, the Hamiltonian H; of a system initially at
thermal equilibrium is changed in time to a final Hy, for
instance, by driving one of its parameters according to some
protocol. No assumption regarding the duration of such a
protocol is made. The work performed W is recorded. If
AF = —log(Zy/Z;)is the equilibrium free-energy difference
between the initial and final Boltzmann distributions, the
following relation holds:

(e PVy = e PAF, (7

in which (---) denotes a statistical average over many
repetitions of the same protocol. In the model utilized here and
for all the protocols we consider, the equilibrium free-energy
difference A F vanishes exactly. Hence, by using the first law
of thermodynamics, the Jarzynski relation can be recast in the
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following form:
(e—AS+/3AU> — 1, (8)

in which A S is the total entropy production and AU the change
in the internal energy. In all the protocols we study, AU =0
whenever the protocol is successful, that is the final target
energy is met. The heat dissipated to the bath in a single run of
the protocol can be shown to be proportional to the statistical
entropy production AS [12],

T[AE(;
Q::_ﬂAS==—ﬂ§:bg{F£Z§%%%}’ ®
J

in which a transition associated to the energy gap A E occurs
at time ¢;. We remind that the above expression refers to the
total system and to all the possible single-electron transitions
that occur in both single-electron boxes. The second relation
we focus on is the fluctuation theorem [1],

I:P(AS):|—AS 10
gm = AS, (10)

in which P(AS) is the entropy production probability distri-
bution. The applicability of this relation in our model, even in
spite of a time-dependent drive, is guaranteed by the perfect
time-reversal-symmetry of the protocols we implement. The
question we address is whether ignoring some degrees of
freedom may lead to deviations from Egs. (8)—(10). We
are going to investigate the statistics of stochastic entropy
production A S in the first box,

51 Xt FSEOL |

an
T |T=AE@))

in which B, represents the subset of transitions occurring in
the first SEB only. The idea is then to investigate the following

quantities:
P(AS))
log | ——— |, 12
Og[P(—Aso} (12
(e ASITPAUL), (13)

in which AUj is the internal energy difference recorded in the
first box.

IV. SINGLE DRIVE

In this section we focus on the following scenario. We are
given a single-electron box, capacitively coupled to a second
box whose existence we are not aware of. We change the gate
voltage n,, of the first SEB in time as follows:

g, (1) = % (14)

from ¢t =0 to t = 7; see Fig. 1(b). This will force the box
to switch from the state n; = O to the state n; = 1. The gate
voltage of the second box is instead constant n,, = 1/2 at all
times.

This choice guarantees that A F = 0 exactly. Even though
the second box is not externally driven, the interaction in
Eq. (2) may cause tunneling events in the second box. Thus,
contributions from box 2 to the thermodynamics of the total
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system will arise. Our goal is to investigate whether ignoring
such contributions results in a modified version of standard
fluctuation relations, such as Egs. (12) and (13). Summarizing,
the experimental scenario considered here is the following:
(1) the initial two-box state is described by a Boltzmann
distribution exp(—fH), where H is given in Eq. (2); (2)
we change the gate voltage of the first box linearly in time
according to Eq. (14) while keeping the gate voltage of the
second box at ng, =1/2; (3) we generate a trajectory for
the joint stochastic variables [n(¢),n2(#)], using Monte-Carlo
jump method; (4) we record the entropy AS; generated in
the first box only; (5) based on the outcomes of each single
repetition we perform a statistical analysis of Egs. (8)-(10),
but for AS; instead of AS. We anticipate that deviations are
observed. However, when the statistics of AS is considered,
both Eqgs. (8) and (10) are recovered.

A. Identical SEBs

Here we assume the two single-electron boxes to
be identical (Ecl =Fc,=Ec,Rr, =Rp, = R7). We de-
fine Ec/Rre* =Ty and choose two different durations of
the driving protocol Iy = 9.4,94. The temperature will be
chosen at BEc = 10, a value used in all the numerical
examples here. In a real experimental setup, such as the one
utilized in Ref. [12], these values would roughly correspond
to Ec =1.9kz K,T = 180mK. The number of stochastic
trajectories generated for each simulated experiment is 10
millions.

Figure 2 shows the behavior of (e=2") with Aoy =
AS| 4+ BAU, as a function of the rescaled interaction strength
J/Ec for two different values of 7. The symbols are raw data
from numerical simulations while the continuous lines are
quadratic fits with a 0.95 statistical confidence level. We notice
a dramatic deviation from unity in the case of long (t['y =
94) protocol. Generally speaking, the exponentiated entropy

16

12

FIG. 2. (Color online) Average exponentiated reduced entropy
production (e~471) as a function of the relative interaction strength
J/Ec for two different values of the protocol duration: 7y = 94
(red squares) and 7'y = 9.4 (blue circles). The continuous lines are
quadratic fits.

012145-3



BORRELLI, KOSKI, MANISCALCO, AND PEKOLA

generated in the first box is an increasing function of the
coupling constant. In the case of a short protocol (z['y = 9.4),
such behavior is instead slightly harder to observe, especially
for very small values of J/E¢. This result can be understood
as follows. When the length of the driving protocol is long as
compared to the typical time-scale of the dissipative dynamics,
set by Iy, it is more likely for single-electron transitions in the
second box to take place. These can be seen as a response
of the second box to tunneling events occurring in the first
box. A slower rate of change 1/t will allow the second box
to follow the dynamics of the first one and react to it through
the interaction term. A faster rate of change will instead cause
the second box to essentially freeze since tunneling events
in the first box occur on a much shorter timescale. In other
words, only the driven box is responsible for almost all of
the entropy generated. Obviously, the more transitions in box
2 take place, the more they will contribute to the entropy
production of the total system. On the contrary, if the largest
contribution to the thermodynamics comes from box 1 only,
neglecting box 2 will not influence much and the standard
fluctuation relation is approached.

In Fig. 3(a) we plot the left-hand side of Eq. (12) as a
function of AS;, with kp being the Boltzmann constant, for
increasing values of the box-box coupling constant J and
for a slow drive with tTg = 94. The symbols represent the
raw numerical values obtained from Monte Carlo simulations
while the continuous lines are quadratic fittings with a
statistical confidence level of 0.95. While for / = 0 we recover
the standard fluctuation theorem, Eq. (10), stronger deviations
for progressively larger values of J can be seen. Interestingly,
for stronger couplings and relatively large values of ASj,
the nonlinear behavior arises. The total thermal environment
surrounding the two SEBs and the second box do not act as an
effective thermal environment for the first box. In other words,
no effective temperature for the first box exists.

Figure 3(b) shows the same quantity in the case of a
fast-driving protocol with tI"y = 9.4. Again, we show both
the raw numerical data and their quadratic fittings. Here,
deviations from the standard Eq. (10) are harder to observe.
Even for large values of box 1 entropy production and the
strongest coupling considered J/E¢ = 0.5, all the curves
appear to depart very little from a line with slope 1 and
nonlinear contributions are not prominent. These results are
in agreement with Fig. 2 and can be understood with the
same argument. Both in Figs. 3(a) and 3(b) we show the
probability distributions P(A S} ) corresponding to the different
values of J/E¢ (inset). While In the case of a slow protocol
we observe a smooth, Gaussian-type distribution for every
value of the coupling, the situation is different in the case of
a short drive. For all the values of the interaction strength,
P(AS)) displays one or more peaks. This can be understood
as follows. When ng, = 1/2 the initial energy of the states
(0,0),(0,1) is equal, leading to a 50% population probability
in the initial thermal distribution exp(—BH) for any value
of J. Since in this case the protocol is very fast, often no
transitions will occur. Formally, (0,0) — (0,0) and (0,1) —
(0,1) with H(0,0;t =t) — H(0,0;t =0) = H0,0;t = 1) —
H(0,1;t = 0) = E¢. This process generates the single peak in
the J = 0 curve. When instead J # 0 these energy differences
split with a gap J, leading to two distinct peaks. However,
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FIG. 3. (Color online) Crooks-type fluctuation relation for the
single-box entropy production AS;/kp in the case of a slow (a)
and fast (b) drive, with 7'y = 94, 9.4, respectively. Different colors
correspond to J/E¢ = 0.1 (red squares), J/Ec = 0.3 (blue circles),
and J/E¢ = 0.5 (green rhombuses). The black continuous line refers
to J/Ec = 0 and it is displayed for completeness. The symbols are
the values obtained from numerical simulations while the continuous
lines are extracted by a quadratic fitting of these values. Inset:
probability distribution of the single-box entropy production P(AS)).

as J increases the peak at AS; =1+ J/2, corresponding
to (0,0) — (0,0), becomes progressively shorter since this
no-transition realization is energetically less favorable than
(0,1) = (0,1).

B. Unequal SEBs

We now let the two boxes be unequal. More specifically,
we change the resistance Ry, of the second box relatively to
the resistance Ry, of the first box. Since the transition rates are
inversely proportional to the box resistance, by changing the
ratio Ry, / Ry, we are changing the typical dissipation timescale
of one box with respect to the other.

We first consider the situation where the resistance of the
second SEB is smaller, leading to a larger transition rate. We
might expect a behavior that deviates more strongly from
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FIG. 4. (Color online) Crooks-type fluctuation relation for the
single-box entropy production AS;/kp in the case of a slow drive
[y = 94, for Ry, /Ry, = 0.1 (a) and Ry, /Ry, = 10 (b). The values
of J/E¢ are the same as described in the legend of Fig. 3 as well as the
respective symbols and colors. Also, we show both the raw numerical
data with symbols and their quadratic fitting with continuous lines.
Inset: probability distribution of the single-box entropy production
P(AS)).

Eq. (10) than that displayed in Fig. 3(a). By comparing the
insets of Figs. 3(a) and 4(a), we notice that in the latter all the
distributions P(AS;) are slightly broader, especially on the
positive side of the A S| range. This implies that the probability
of observing certain events increases with respect to the case
of equal resistances. Since the only difference between the
two models is a lower Ry,, we are led to believe that these
contributions stem from transitions in the second box that
are more likely to happen even in the case of slow drive.
However, such a difference is not immediate when we look
at log[P(AS,)/P(—AS))], Fig. 4(a). Here, the behavior is
rather similar to the one shown in Fig. 3(a), and no appreciable
difference can really be noticed.

In the second case we instead assume the resistance of the
second box to be larger. This translates to slowing down the
second SEB with respect to the first one and it means that
even for slow drive it should be harder to induce transitions
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in box 2 through the box-box interaction. Therefore, we
might expect less participation of the second box to the
total dynamics as well as to the measurement statistics.
Figure 4(b) confirms this prediction as, even with 7"y = 94,
the logarithm of the forward to backward distribution ratio
log [P(AS))/P(—AS;)] when the box-box interaction is on,
deviates very little from the noninteracting case where we
recover Eq. (10). Thus, increasing the resistance of the second
SEB is qualitatively similar to implementing a faster protocol.
This can be further seen by direct comparison between the
insets of Figs. 3(b) and 4(b). Apart from the presence of no
transition peaks, the two sets of distributions look quite alike.
Changing the interaction strength does not modify much the
shape of the distributions and any deviations can be detected
only when taking the logarithm of the forward to backward
distribution ratio. Moreover, also in this case a nonlinear trend
appears only for higher values of J.

V. DOUBLE DRIVE

In this section, we repeat the above study but with a different
gate operation. We again assume the two SEBs to be at thermal
equilibrium with the surrounding bath. While the first box is
still subject to the same drive as in Eq. (14) the second box gate
voltage will be changed according to the following protocol:

ng,(t)=1—n,@)=1- %; 15)

see Fig. 1(c). Thus, the two protocols are antisymmetric with
respect to each other and if n,, (¢) drives the first box as n; :
0 — 1, ng,(¢) will drive the second as n, : 1 — 0. Since we
consider identical boxes, the initial and final Hamiltonian are
formally equal, leading to a vanishing free energy difference
AF = 0. In this scenario extra work on the second box is
performed and not accounted for. Therefore, we can expect
modifications of the standard fluctuation relations to be more
pronounced. Although both boxes are being simultaneously
driven, leading to what may seem more complex dynamics,
this particular choice of the total driving protocol results
in some simplifications that allow us to perform analytical
predictions. The ground state of the initial Hamiltonian is
(0,1), and therefore it is most probable in the initial Boltzmann
distribution. Since the target process we want to realize is
(0,1) — (1,0) and only single-electron processes are possible,
we assume that most of the stochastic trajectories occurring
are the following two-step trajectories:

y1: (0,1) — (1,1) — (1,0),
(16)
2. (0,1) — (0,0) — (1,0).

We call this the single-jump approximation. By analyzing
the corresponding transition rates, it is easy to see that
such trajectories are equally probable. The total probability
distribution of the entropy generated in the first SEB can be
split in the two contributions arising from these trajectories,

P(AS)) = Py, (AS)) + Py, (AS)), a7)

in which P, , (ASy) is the probability distribution associated
to the yj(z) trajectory, whose analytical expressions are given

in the Appendix. This model will be used in the following
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FIG. 5. (Color online) Crooks fluctuation relation for the single-
box entropy production A S/ kg in the case of a slow drive Ty = 94,
for the double-drive protocol. The values of J/E¢ are the same as
described in the legend of Fig. 3 as well as the respective symbols.
The continuous lines represent a fifth-order polynomial fitting of the
raw numerical data (symbol). Inset: probability distribution of the
single-box entropy production P(AS;).

for a direct comparison with the numerical results, which we
now report and discuss. In Fig. 5 we show the the right-hand
side of Eq. (12) for a slow driving protocol with 7'y = 94 for
several values of the box-box coupling parameter. Similar to
the previous cases, we display the values taken directly from
simulations as well as their polynomial fittings, this time up to a
fifth order. Again, the statistical confidence level is 0.95. A new
feature we notice is the negativity of log [P(AS;)/P(—AS))]
for large coupling strengths and small entropy productions.
What this negativity is telling us is that it is more probable
for box 1 to lower its entropy rather than increase it during
the execution of the transformation. This effect increases for
increasing values of the magnitude of the interaction strength,
as indicated by an increase in the range of values of AS
for which log [P(AS;)/ P(—AS})] is negative, up to a certain
threshold after which positivity is restored. Although at first
this result might appear bizarre and in contrast with the second
law of thermodynamics, this is not the case. In fact, if we
compute the average entropy production in box 1 we always
find a positive quantity. Given the symmetry of the model, the
same goes if we restrict our attention to the second SEB. As
a matter of fact, the negativity arises as a consequence of the
double-peak distribution shown in the inset. As mentioned
above, the two trajectories y; and y, occur with equal
probability as clearly shown by the equal heights of the peaks in
P(AS). However, as soon as we turn the box-box interaction
on, they become energetically unequal. This very asymmetry
causes the negativity of log[P(AS;)/P(—AS;)] since the
sum of the energies corresponding to single-box transitions
equals the heat dissipated by the box itself, which, in turn, is
proportional to the entropy generated. Furthermore, since by
increasing J/E¢ we increase the entropy gap between y; and
y», a stronger intrabox coupling will display a progressively
stronger negativity feature.
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FIG. 6. (Color online) log[P(AS;)/P(—AS))] as obtained via
Monte Carlo simulation (red points) and single-jump model (blue
continuous line). tTy = 94,J/E¢ = 0.5. The standard unity slope
line is displayed in black.

These results are obtained by statistically averaging over
10 million repetitions. From these data one can also reconstruct
the joint occupation probabilities p,,n,(¢) and check that they
converge to the solutions of Eq. (5). Each repetition in the
sample represents a single experiment and it is simulated
via the Monte Carlo method with time-dependent transition
rates where multiple back-and-forth transition trajectories are
possible. One might then wonder the limits of applicability of
the single-jump-trajectory approximation [Eq. (16)]. In Fig. 6
we compare log [ P(AS;)/P(—AS))] as obtained numerically
(red points) and analytically (blue continuous). For the sake
of completeness the standard line on the right-hand side of
Eq. (10) is displayed as well. The match between the two
curves is good up to AS; &~ 0.5. From this point on, the two
curves no longer agree. While the single-jump model predicts
a constant linear increase, with the Monte Carlo method we
observe a smooth decrease that appears almost sinusoidal.
This feature is a consequence of multijump trajectories. Since
the single-jump model only allows for just two electronic
transitions during the execution of the whole protocol, it
becomes less reliable at higher energies where electrons can
tunnel many times back and forth in a single realization. This
feature is imprinted in the local minima of the numerically
obtained curve. For instance, let us focus on the second
minimum on the positive AS; semi-axis, roughly at AS; =
0.9. For this value of the entropy production the relevant
trajectories have four electron jumps overall, three in one box
and one in the other. The next local minima will be generated by
further combinations of odd numbers of single-box electronic
transitions summing up to an even number. This trend is
observed for smaller values of J/E¢. Again, as soon as the
second box is accounted for, no deviation from the standard
behavior of Egs. (8) and (10) is observed.

VI. CONCLUSIONS

Partial observation of a system undergoing a nonequilib-
rium transformation can result in deviations from standard
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fluctuations relations. In the scenario considered in this
manuscript partial observation translates to pure ignorance
rather than poor resolution of the measurement apparatus.
We have focused our attention on a common and easily
implementable physical setup: a system of coupled single-
electron boxes. We have simulated two cases of experiment
where one of the two SEBs is driven while the other one
is either at rest (nondriven) or also subjected to work.
The results indicate that log[P(AS;)/P(—AS))] exhibits
nonlinear behavior. This is observed for a wide range of the two
relevant parameters, duration of the protocol and strength of
the box-box interaction. Furthermore, under some conditions,
negativity can be observed in log[P(AS;)/P(—AS))] as
a consequence of a double-hump probability distribution
of AS;. The intra-SEB interaction as well as both the
driving protocols can be implemented with current technol-
ogy, allowing for an experimental verification of the these
results.
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APPENDIX: SINGLE-JUMP APPROXIMATION

In this Appendix we develop some tools to provide
an analytical expression of the single-box entropy pro-
duction probability distribution under the assumption of
single-jump trajectories. The relevant tunneling processes
are

1y = (0,1) — (1,1)
2, = (0,1) — (0,0)
3, = (1,1) - (1,0)
4, = (0,0) — (1,0), (A1)

and we label by i_ the reverse processes. The energy
releases AE;1+ in each tunneling process, normalized by

PHYSICAL REVIEW E 91, 012145 (2015)

Ec (A€jx = AE;1L/E¢), read
A€y = —Aei- =2ng — 1 —J(1 —ny)
Aery = —Aey_ =1—2ngy — Jng
Aezy = —Aes_ =1—-2ng + J(1 —ngp)
Aegy = —Aey_ =2ng — 14 Jng. (A2)

For the chosen gate protocol A€ = Aéry, Aezy = Aéay,
and Aezy = Aejy + J. We consider the single-jump (in
each box) trajectories of either (0,1) — (1,1) — (1,0) or
(0,1) — (0,0) — (1,0) with equal probabilities, and with the
total probability denoted Pg, which can be written in standard
manner

T T .
Py :/ dr2/ drje o D@2 @)l
0 0

_ (2 NAT_(r)]dT’
x [Ty (z)e o D+ EHT=CMT by 4Ty (1))

x ¢ Jot Mo @M by~ [T (T @l

(A3)

The corresponding distribution of ¢ = Q/E¢ can be written
as

P(g) = Pi(q) + P:(g),

in which (in a form suitable for numerical implementation)
we may write

(A4)

Pi(q) = rle ¥ [ir@dy, ()

1-J
“ / dgye™ @Dy @ g
q

1-J ’ ’
Xy gy + e ¥ V- (AS5)

and

q

Paq) = rPe >l -y, (g) / dqre=2 I o=y

1+J

xyy(qr — J)eir qul v+ (@) +y-(q'—D)dq’ . A6)

Here, r = Ect/[(2—J)e*Rr], and y4(q) = +q/(1—eFPE),

[1] D.J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev. Lett.
71, 2401 (1993).

[2] G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74, 2694
(1995).

[3] U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).

[4] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).

[5] C. Jarzynski, J. Stat. Phys. 98, 77 (2000).

[6] G. E. Crooks, Phys. Rev. E 60, 2721 (1999).

[7]1 G. M. Wang, E. M. Sevick, E. Mittag, D. J. Searles, and D. J.
Evans, Phys. Rev. Lett. 89, 050601 (2002).

[8] D. Collin et al., Nature 437, 231 (2005).

[9] S. Schuler, T. Speck, C. Tietz, J. Wrachtrup, and U. Seifert,
Phys. Rev. Lett. 94, 180602 (2005).

[10] V. Blickle, T. Speck, L. Helden, U. Seifert, and C. Bechinger,

Phys. Rev. Lett. 96, 070603 (2006).

[11] O.-P. Saira, Y. Yoon, T. Tanttu, M. Mottonen, D. V. Averin, and
J. P. Pekola, Phys. Rev. Lett. 109, 180601 (2012).

[12] J. V. Koski et al., Nat. Phys. 9, 644 (2013).

[13] U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).

[14] T. Sagawa and M. Ueda, Phys. Rev. Lett. 104, 090602
(2010).

[15] M. Esposito, Phys. Rev. E 85, 041125 (2012).

[16] S. A. Kutvonen et al., arXiv:1408.3020.

[17] N. Shiraishi and T. Sagawa, Phys. Rev. E 91, 012130 (2015).

[18] J. Mehl, B. Lander, C. Bechinger, V. Blickle, and U. Seifert,
Phys. Rev. Lett. 108, 220601 (2012).

[19] P. Pietzonka, E. Zimmermann, and U. Seifert, Europhys. Lett.
107, 20002 (2014)

[20] M. Ribezzi-Crivellari and F. Ritort, Proc. Natl. Acad. Sci. USA
111, E3386 (2014)

012145-7


http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1023/A:1018670721277
http://dx.doi.org/10.1023/A:1018670721277
http://dx.doi.org/10.1023/A:1018670721277
http://dx.doi.org/10.1023/A:1018670721277
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1103/PhysRevLett.89.050601
http://dx.doi.org/10.1103/PhysRevLett.89.050601
http://dx.doi.org/10.1103/PhysRevLett.89.050601
http://dx.doi.org/10.1103/PhysRevLett.89.050601
http://dx.doi.org/10.1038/nature04061
http://dx.doi.org/10.1038/nature04061
http://dx.doi.org/10.1038/nature04061
http://dx.doi.org/10.1038/nature04061
http://dx.doi.org/10.1103/PhysRevLett.94.180602
http://dx.doi.org/10.1103/PhysRevLett.94.180602
http://dx.doi.org/10.1103/PhysRevLett.94.180602
http://dx.doi.org/10.1103/PhysRevLett.94.180602
http://dx.doi.org/10.1103/PhysRevLett.96.070603
http://dx.doi.org/10.1103/PhysRevLett.96.070603
http://dx.doi.org/10.1103/PhysRevLett.96.070603
http://dx.doi.org/10.1103/PhysRevLett.96.070603
http://dx.doi.org/10.1103/PhysRevLett.109.180601
http://dx.doi.org/10.1103/PhysRevLett.109.180601
http://dx.doi.org/10.1103/PhysRevLett.109.180601
http://dx.doi.org/10.1103/PhysRevLett.109.180601
http://dx.doi.org/10.1038/nphys2711
http://dx.doi.org/10.1038/nphys2711
http://dx.doi.org/10.1038/nphys2711
http://dx.doi.org/10.1038/nphys2711
http://dx.doi.org/10.1103/PhysRevLett.95.040602
http://dx.doi.org/10.1103/PhysRevLett.95.040602
http://dx.doi.org/10.1103/PhysRevLett.95.040602
http://dx.doi.org/10.1103/PhysRevLett.95.040602
http://dx.doi.org/10.1103/PhysRevLett.104.090602
http://dx.doi.org/10.1103/PhysRevLett.104.090602
http://dx.doi.org/10.1103/PhysRevLett.104.090602
http://dx.doi.org/10.1103/PhysRevLett.104.090602
http://dx.doi.org/10.1103/PhysRevE.85.041125
http://dx.doi.org/10.1103/PhysRevE.85.041125
http://dx.doi.org/10.1103/PhysRevE.85.041125
http://dx.doi.org/10.1103/PhysRevE.85.041125
http://arxiv.org/abs/arXiv:1408.3020
http://dx.doi.org/10.1103/PhysRevE.91.012130
http://dx.doi.org/10.1103/PhysRevE.91.012130
http://dx.doi.org/10.1103/PhysRevE.91.012130
http://dx.doi.org/10.1103/PhysRevE.91.012130
http://dx.doi.org/10.1103/PhysRevLett.108.220601
http://dx.doi.org/10.1103/PhysRevLett.108.220601
http://dx.doi.org/10.1103/PhysRevLett.108.220601
http://dx.doi.org/10.1103/PhysRevLett.108.220601
http://dx.doi.org/10.1209/0295-5075/107/20002
http://dx.doi.org/10.1209/0295-5075/107/20002
http://dx.doi.org/10.1209/0295-5075/107/20002
http://dx.doi.org/10.1209/0295-5075/107/20002
http://dx.doi.org/10.1073/pnas.1320006111
http://dx.doi.org/10.1073/pnas.1320006111
http://dx.doi.org/10.1073/pnas.1320006111
http://dx.doi.org/10.1073/pnas.1320006111

BORRELLI, KOSKI, MANISCALCO, AND PEKOLA

[21] D. V. Averin and K. K. Likharev, J. Low Temp. Phys. 62, 345
(1986).

[22] M. Buttiker, Phys. Rev. B 36, 3548 (1987).

[23] P. Lafarge et al., Z. Phys. B 85, 327 (1991).

[24] J. V. Koski, V. F. Maisi, T. Sagawa, and J. P. Pekola,Phys. Rev.
Lett. 113, 030601 (2014).

PHYSICAL REVIEW E 91, 012145 (2015)

[25] Jonne V. Koski et al., Proc. Natl. Acad. Sci. USA 111, 13786
(2014).

[26] D. V. Averin and J. P. Pekola, Europhys. Lett. 96, 67004 (2011).

[27] J. P. Pekola, and O.-P. Saira, J. Low Temp. Phys. 169, 70 (2012).

[28] J. P. Pekola, A. Kutvonen, and T. Ala-Nissila, J. Stat. Mech.
(2013) P02033.

012145-8


http://dx.doi.org/10.1007/BF00683469
http://dx.doi.org/10.1007/BF00683469
http://dx.doi.org/10.1007/BF00683469
http://dx.doi.org/10.1007/BF00683469
http://dx.doi.org/10.1103/PhysRevB.36.3548
http://dx.doi.org/10.1103/PhysRevB.36.3548
http://dx.doi.org/10.1103/PhysRevB.36.3548
http://dx.doi.org/10.1103/PhysRevB.36.3548
http://dx.doi.org/10.1007/BF01307627
http://dx.doi.org/10.1007/BF01307627
http://dx.doi.org/10.1007/BF01307627
http://dx.doi.org/10.1007/BF01307627
http://dx.doi.org/10.1103/PhysRevLett.113.030601
http://dx.doi.org/10.1103/PhysRevLett.113.030601
http://dx.doi.org/10.1103/PhysRevLett.113.030601
http://dx.doi.org/10.1103/PhysRevLett.113.030601
http://dx.doi.org/10.1073/pnas.1406966111
http://dx.doi.org/10.1073/pnas.1406966111
http://dx.doi.org/10.1073/pnas.1406966111
http://dx.doi.org/10.1073/pnas.1406966111
http://dx.doi.org/10.1209/0295-5075/96/67004
http://dx.doi.org/10.1209/0295-5075/96/67004
http://dx.doi.org/10.1209/0295-5075/96/67004
http://dx.doi.org/10.1209/0295-5075/96/67004
http://dx.doi.org/10.1007/s10909-012-0659-7
http://dx.doi.org/10.1007/s10909-012-0659-7
http://dx.doi.org/10.1007/s10909-012-0659-7
http://dx.doi.org/10.1007/s10909-012-0659-7
http://dx.doi.org/10.1088/1742-5468/2013/02/P02033
http://dx.doi.org/10.1088/1742-5468/2013/02/P02033
http://dx.doi.org/10.1088/1742-5468/2013/02/P02033



