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In the time evolution of isolated quantum systems out of equilibrium, local observables generally relax to a
long-time asymptotic value, governed by the expectation values (diagonal matrix elements) of the corresponding
operator in the eigenstates of the system. The temporal fluctuations around this value, response to further
perturbations, and the relaxation toward this asymptotic value are all determined by the off-diagonal matrix
elements. Motivated by this nonequilibrium role, we present generic statistical properties of off-diagonal matrix
elements of local observables in two families of interacting many-body systems with local interactions. Since
integrability (or lack thereof) is an important ingredient in the relaxation process, we analyze models that can
be continuously tuned to integrability. We show that, for generic nonintegrable systems, the distribution of
off-diagonal matrix elements is a Gaussian centered at zero. As one approaches integrability, the peak around
zero becomes sharper, so the distribution is approximately a combination of two Gaussians. We characterize the
proximity to integrability through the deviation of this distribution from a Gaussian shape. We also determine
the scaling dependence on system size of the average magnitude of off-diagonal matrix elements.
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I. INTRODUCTION

The topic of nonequilibrium dynamics of thermally isolated
quantum systems has enjoyed a resurgence of interest, partly
because of experimental progress with cold atoms. An isolated
system has no relaxation mechanism toward the low-lying
parts of the many-body spectrum. As a result, the properties
of eigenstates far from the edges of the spectrum may be
more important for a nonequilibrium experiment than the low-
energy parts of the spectrum, which is the traditional focus of
interest of many-body quantum theory.

A key question in the nonequilibrium dynamics of isolated
quantum systems is the thermalization or relaxation of a
system prepared far out of equilibrium and subject to a
time-independent Hamiltonian. The value (if any) to which
local observables relax is determined by the diagonal matrix
elements Aαα = 〈ψα|Â|ψα〉 of the corresponding operator
Â in the eigenstates |ψα〉. The eigenstate thermalization
hypothesis (ETH) [1–5] proposes that the mechanism for
the thermalization of nonintegrable (“chaotic”) systems is
the smoothness of Aαα as a function of eigenenergies Eα .
Accordingly, diagonal matrix elements of local operators have
been the subject of several studies [3,6–16].

Off-diagonal matrix elements, Aαβ = 〈ψα|Â|ψβ〉, provide
further information about the time evolution 〈A〉(t) of observ-
ables. In any finite system initially prepared in a combination of
many eigenstates, there will be residual temporal fluctuations
around the long-time average. These temporal fluctuations
have been the subject of several recent studies, both numerical
[3,17–22] and analytical [23–25]. The magnitude of these
fluctuations is determined by |Aαβ |2, weighted, of course, by
the weights of the eigenstates in the nonequilibrium initial
state. Autocorrelation functions (unequal-time correlators),
interesting on their own and appearing in the formulation
of fluctuation-dissipation relations in the “relaxed” state a
long time after a quench [26], also are given in terms of
|Aαβ |2. Finally, the details of the temporal approach to the final
relaxed value are also determined by the off-diagonal matrix
elements of the corresponding operator [17,27]. The approach

toward the final value has been calculated in some model
systems [28–32], although the connection to off-diagonal
matrix elements has not been explored in detail.

The (statistical) properties of off-diagonal matrix elements
of local operators, Aαβ , are thus related to a range of temporal
properties of contemporary interest. In this work, we provide
a statistical study of these objects. We use Hamiltonians that
can be tuned between integrable limits and provide scaling
analyses as a function of system size. We thus study what
happens to the distributions of Aαβ as a function of distance
from integrability, as well as how the thermodynamic limit is
approached.

Some statistical aspects of off-diagonal matrix elements
Aαβ have appeared in Ref. [26] in the context of a nonequilib-
rium fluctuation-dissipation relation and in Ref. [12]. The aim
of the present paper is to focus directly on the Aαβ in a manner
independent of quench protocol and provide a thorough study
of their statistical properties.

In the time evolution 〈A〉(t), each matrix element Aαβ

contributes with a frequency equal to the eigenvalue difference
Eβ − Eα [26,33,34]. In many quenches of physical interest,
the initial occupancies are confined to a small energy window
(e.g., Refs. [3,35,36]), yet involve many eigenstates [37].
We therefore pay particular attention to the behavior of
the typical values of Aαβ for small Eβ − Eα . At large
frequencies, the average |Aαβ | falls off fast, exponentially, or
superexponentially with Eβ − Eα .

We pay special attention to the proximity to integrability,
since it is well appreciated that the relaxation behavior of
chaotic or generic systems differs markedly from systems
subject to integrability [6,20,31,38–49] or to (many-body)
localization [22,34,41,50–53]. We identify signatures of the
Aαβ typical to the integrable, close-to-integrable, and nonin-
tegrable cases. Close to integrability, we show that the matrix
|Aαβ | has a blocklike or banded structure as a function of the
energy difference (frequency) Eβ − Eα , which is visible as
oscillatory behavior in the frequency dependence of average
|Aαβ |2 values.
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We show that the distribution of the matrix elements in
any small frequency window is peaked around zero, having
a near-Gaussian form for generic nonintegrable systems (cf.
Ref. [12]). At or near integrability, there is a stronger peak
around zero, i.e., the probability distribution is a mixture of two
Gaussian-like curves with unequal widths. This difference ap-
pears to be a basic distinction between generic (nonintegrable)
and integrable systems. We demonstrate how the proximity to
integrability can be quantitatively characterized through the
shape of the distribution of Aαβ values, e.g., through the size
dependence of the kurtosis of this distribution.

We find that the scaling behavior of the average value of
|Aαβ |2 is D−1 in terms of the Hilbert-space dimension D. The
values of |Aαβ |2 at low frequencies tend to be larger than for the
generic matrix elements, but the scaling follows D−1 as well.
The scaling analysis is analogous to studies of the diagonal
matrix elements Aαα and related quantities as a function of
system size, performed, e.g., in Refs. [10,12,14,54–56]. As for
the diagonal fluctuations [13,14], we can construct plausibility
arguments based on an assumption of quasirandomness of
the vector coefficients of the energy eigenstates. As such
assumptions are difficult to prove rigorously, we emphasize, as
in Ref. [14], that such arguments are inherently heuristic and
that extensive, multisystem, numerical analysis is required to
establish scaling laws; this paper provides such data.

The size dependence of Aαβ’s is related to the size
dependence of the magnitude of the temporal fluctuations
around the long-time average [19–21]. The D−1 scaling is
consistent with the exponential dependence of the long-time
fluctuations on the system size [21].

This paper is structured as follows. In Sec. II, we introduce
our models: the XXZ ladder and the Bose-Hubbard chain.
In Sec. III, we introduce the frequency-resolved average of
the off-diagonal matrix elements. In Sec. IV, we analyze the
distribution of values of Aαβ , characterizing how a mixed
distribution (with two components having different widths)
emerges close to integrability. Sec. V provides a scaling
analysis of the size dependence of the average values of |Aαβ |2,
focusing on the low-frequency matrix elements. Sections III–V
show results for the XXZ ladder. We support the generality
of these results by presenting corresponding data for the
Bose-Hubbard chain in Sec. VI. In the Appendices, we provide
details of the relationship between time evolution 〈A〉(t) and
the matrix elements Aαβ and about our quantification of the
non-Gaussian distributions.

II. MODELS AND OBSERVABLES

We use two families of Hamiltonians, each of which can
be tuned to integrable points. Both have been used in our
previous work on diagonal matrix elements [14]. Because we
are interested in generic properties of matrix elements, we take
care to avoid spurious symmetries in our model systems.

In the spirit of many thermalization studies using spin
models [12,31,34,35,46,55,57,58], our first tunable model will
be the spin- 1

2 Heisenberg XXZ ladder with the geometry
introduced in Ref. [14]. One ladder leg has an extra site
compared to the other. There are thus L = 2p + 1 sites, with
p rungs between the legs. This geometry avoids reflection

symmetries. We have nearest-neighbor Heisenberg couplings,

hi,j = 1
2 (S+

i S−
j + S−

i S+
j ) + �Sz

i S
z
j , (1)

with S±
i = Sx

i ± iS
y

i , where S
μ

i (μ = x,y,z) are the spin
operators and i,j denote the nearest-neighbor site pairs. The
anisotropy parameter � is kept away from special values like 0
and ±1 in order to avoid SU(2) symmetry or special solvable
points; we use � = 0.8. The Hamiltonian of the system is
H = H0 + λH1, where

H0 =
p−1∑
i=1

hi,i+1 +
2p∑
i=p

hi,i+1 and H1 =
p∑

i=1

hi,i+p (2)

are the intrachain (leg) and the interchain (rung) coupling,
respectively. The rung coupling is multiplied by λ, which acts
as a tuning parameter. The xy coupling along the ladder legs
sets the units of energy and frequency. For λ = 0, the chains
are uncoupled and the model is integrable. For finite values of
λ, the system is nonintegrable. In the limit of large λ, where
the rung couplings dominate, there is another integrable limit.
The effect of varying λ on the fluctuations of diagonal matrix
elements has been studied in detail in Ref. [14].

The number N↑ of up spins is a conserved quantity. The
analysis can therefore be constrained to a fixed-N↑ sector.
The dimension of the Hilbert space of the (L,N↑) sector is
equal to the binomial coefficient D = ( L

N↑). In order to study
scaling, we use a sequence of system sizes with almost constant
filling fraction. We present data for a sequence of systems
with near-zero magnetization (near half filling) by choosing
L = 2p + 1 and N↑ = p for integer p.

Discussion of thermalization generally concerns local
observables. We present data for Sz

2 and Sz
2S

z
p+2, which serve as

representative examples of single-site and two-site operators.
The second tunable Hamiltonian is the Bose-Hubbard

model, widely used in studies of thermalization [8,59–66].
We use the Bose-Hubbard Hamiltonian on an L-site chain,
with an extra term at an edge site killing reflection symmetry,
as in Ref. [14]:

HBH =
L−1∑
i=1

(b†i bi+1 + b
†
i+1bi) + λ

(
L∑

i=1

b
†
i b

†
i bibi + H�

)
,

(3)
where bi is the creation operator at site i and H� = �b

†
1b

†
1b1b1

with � = 0.1 is a small perturbation to the interaction term
at the first site. The system is integrable in the λ → 0 and
λ → ∞ limits, and nonintegrable for intermediate values. We
show results for the sector of unit filling fraction, i.e., the
number of bosons Nb = L. This choice provides the same
sequence of Hilbert-space sizes [for bosons, D = (L + Nb − 1

Nb
)]

as the one given by L = 2N↑ + 1 for the XXZ ladder. Typical
local observables in the study of this model include ni = b

†
i bi ,

b
†
i bi+1 + b

†
i+1bi , and nini+1.

III. FREQUENCY-RESOLVED AVERAGE MATRIX
ELEMENTS

In Fig. 1, we visualize through a density plot the structure
of the matrix |Aαβ | as a function of energies Eα and Eβ ,
using the rung correlator Â = Sz

2S
z
p+2 of the XXZ ladder as
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FIG. 1. (Color online) Matrix structure of |Aαβ | as function of Eα and Eβ for the observable Â = Sz
2S

z
p+2. The diagonal matrix elements

are ignored. The white bands near the edges are regions without eigenvalues. The dashed square indicates the central half of the energy range,
i.e., [ 3

4 Emin + 1
4 Emax,

1
4 Emin + 3

4 Emax] in each direction: This is the “bulk” of the spectrum on which we focus our analysis. The system size is
(L,N↑) = (13,6); the Hilbert space dimension is D = 1716. The unit of energy is set by the xy coupling along the ladder legs.

observable. The diagonal matrix elements are not considered.
The structure of darker bands parallel to the main diagonal
suggests that the magnitude of the |Aαβ | depends roughly on
the difference Eα − Eβ . Thus the energies (Eα,Eβ) rather
than the indices (α,β) are natural coordinates for this plot
(cf. Refs. [17,29]).

To consider the |Aαβ | from finite-size data as a continuous
function of frequency, we “smooth out” |Aαβ |2δ[ω − (Eβ −
Eα)] as a function of ω, by averaging the values of |Aαβ |2 with
Eα − Eβ in the frequency window [ω − �ω,ω + �ω],

S2
A(ω,�ω) ≡ 1

Ñω,�ω

∑
α,β

α �= β

Eα − Eβ ∈ [ω − �ω,ω + �ω]

|Aαβ |2, (4)

where Ñω,�ω is the number of state pairs satisfying Eα − Eβ ∈
[ω − �ω,ω + �ω]. The frequency-window width 2�ω is
chosen such that the interval contains sufficiently many pairs of
states. We restrict ourselves to positive ω, since Aαβ = Aβα for
Hermitian observables. The quantity S2

A(ω) is closely related
to fluctuations around the asymptotic value to which 〈A(t)〉
relaxes a long time after a quantum quench (Appendix A). The
quantity SA(ω,�ω) is the standard deviation of the distribution
formed by the Aαβ in the frequency window.

In the large-system limit, the number of states Ñω,�ω in the
window can be approximated as Ñω,�ω ≈ 2�ωρ̃(E), where
ρ̃(ω) is the density of pairs, i.e., the density of values Eα − Eβ .
The density of pairs is defined as the autocorrelation integral

ρ̃(ω) =
∫

ρ(E)ρ(E − ω)dE (5)

of the density of states ρ(E) with itself. We note that the
density of pairs does not show signatures of the level-spacing
statistics, because the density of states is considered on a
coarser resolution than that of individual eigenvalues. The
behavior of ρ̃(ω) is shown in the bottom row of Fig. 2 for
the spin ladder system for different values of the λ parameter.

To distinguish frequency regimes, we define a “typical”
frequency scale ω0 as the root-mean-square of all possible

frequencies:

ω2
0 = var(Eα − Eβ) = 1

D2

∑
α,β

(Eα − Eβ)2 = 2 var(Eα).

(6)

In Fig. 2, the values ω0 are indicated by markers on the
horizontal (frequency) axes.

The frequency dependence of SA(ω) is shown in Fig. 2 for
the observables Â = Sz

2 and Â = Sz
2S

z
p+2 in the XXZ ladder
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FIG. 2. (Color online) Frequency-resolved analysis of off-
diagonal elements for the (L,N↑) = (13,6) ladder. The shadings
show the distribution of the values of |Aαβ | for each frequency
window; darker shading indicates more occurrences of respective
|Aαβ | values. The curves show SA as a function of the frequency ω. In
the bottom panel, we indicate the density of pairs ρ̃ for the central part
of the spectrum (solid) and for the full spectrum (dashed), in arbitrary
units. The marker on the horizontal axis points to the typical frequency
ω0. The shading and solid curves are all results using the central part
of the spectrum. The units of frequency are the same as the units used
for energy in Fig. 1.
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model. In addition, through the shading in the top two panels,
we indicate the distribution of the values of |Aαβ | in each
frequency window. The value of �ω = 0.05 used in this figure
is a compromise between being sufficiently small to resolve
the details and having sufficiently many state pairs for good
statistics. In the cases of Fig. 2, the number of state pairs in
the window [ω − �ω,ω + �ω] is ∼104 for ω � ω0.

At high frequencies (ω � ω0), SA(ω) decreases as a
function of ω. The decrease is rapid; we have found this
to be generally exponential or superexponential (∼Gaussian)
with ω; the details vary with the observable and appear to be
nonuniversal.

At medium frequencies, SA(ω) typically shows several
peaks. The oscillatory behavior is more pronounced near
integrability, i.e., for small and large λ. We observe typical
small-λ behavior in Fig. 2(a): The quantity SA shows short-
scale oscillations, while the density of pairs ρ̃(ω) is smooth.
We conjecture that the oscillatory behavior in near-integrable
systems is due to the Hilbert space being decomposable
into many subspaces weakly coupled by the Hamiltonian.
Whenever α and β are in different subspaces, Aαβ ≈ 0.

At large λ, the system splits into weakly coupled subspaces
which are, in addition, separated in energy, as evidenced by
the blocklike structure in Fig. 1(c). Thus, the peaks of SA are
accompanied by those in the density of pairs ρ̃(ω). The blocks
are separated by energy ∼λ, which can be understood from
treating the system as uncoupled dimers in the λ → ∞ limit.
These are also the approximate frequencies at which peaks can
be seen in Fig. 2(c).

IV. DISTRIBUTION OF OFF-DIAGONAL MATRIX
ELEMENTS

Having described the variance S2
A(ω) of the distribution of

the values of Aαβ , we now look at the full distribution.

A. Shapes of the distributions of Aαβ

In Fig. 2, we have shown using shading densities the
frequency-resolved distributions of values of |Aαβ |2. A feature
visible already in the density plots is that the distributions are
more strongly weighted near zero (near the horizontal axis)
near integrability. This feature will be explored and described
in more detail below.

In Fig. 3, we show the distributions of Aαβ values in
two different frequency windows. The top panels show the
low-frequency regime (cutoff frequency ωmax = 0.05ω0). The
bottom panels focus on a frequency window around 0.25ω0.
Only the states in the central part of the spectrum (within the
dashed square region in Fig. 1) are considered.

The distributions are seen to be very nearly symmetric
around zero. Of course, the signs of individual Aαβ values
are not meaningful since every eigenstate carries an arbitrary
phase. However, from N � 1 eigenstates, one obtains 1

2N2 �
N matrix elements; so the overall shape of the distribution
(roughly equal number of positive and negative values) cannot
be altered by the choice of phases for the eigenstates.

The solid curves are Gaussian fits determined by the
variance of the Aαβ , centered at 0. Far from integrability, this is
seen to be a very good description. However, near integrability
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FIG. 3. (Color online) Histograms (shaded area) of the off-
diagonal elements Aαβ with [(a)–(c)] Eβ − Eα ∈ (0,0.05ω0) and
[(d)–(f)] Eβ − Eα ∈ [0.25ω0,0.25ω0 + δω), where δω = 0.05. The
solid curve is a Gaussian fit and the dashed curve is a fit of a
mixture of two Gaussians, Eq. (8). The observable is Â = Sz

2S
z
p+2

and the system size is (L,N↑) = (13,6). The number of state pairs in
these histogram computations ranges from 4000 to 50 000.

the distribution has a sharper peak than a Gaussian and
appears to be a mixture of two near-Gaussian distributions with
different widths. This appears to be a fundamental distinction
between (near-)integrable and generic systems.

We do not currently have a complete explanation for the
extra peak in near-integrable systems, but we conjecture
the following mechanism which provides some intuition. In
the integrable case, there are many conserved quantities.
The energy eigenstates can be grouped into subspaces or
symmetry sectors by the eigenvalues (“quantum numbers”)
of the operators corresponding to these conserved quantities.
An approximate version of this statement is true close to, but
not at, integrability. An operator Â corresponding to a local
observable, when acting on an eigenstate |ψα〉, changes the
eigenstate only locally, i.e., slightly. The resulting wave vector
Â|ψα〉 will thus be likely to have larger overlap with eigenstates
having the same quantum numbers as |ψα〉, and much smaller
overlaps with eigenstates having different quantum numbers
from those of |ψα〉. In other words, Aαβ is close to zero
whenever α and β belong to different subspaces. Of course,
|ψα〉 and |ψβ〉 are orthogonal even if they belong to the
same subspace, so the off-diagonal matrix element of a local
operator is small anyway for large system sizes. The argument
is that when they belong to different sectors, the states differ
additionally by having different quantum numbers, not only
by being orthogonal, and this should make the intersubspace
matrix elements statistically much smaller than intrasubspace
matrix elements.

This line of reasoning intuitively connects to the idea that
integrability makes a system “nonergodic.” However, the argu-
ment is difficult to make rigorous. It is easy to construct special
operators that connect different subspaces, e.g., if

∑
j Sz

j is a
conserved quantity in a spin Hamiltonian, the local operator
S+

j will connect different subspaces. However, a generic
operator is expected not to have such special relationships
with many of the conserved quantities, since most conserved
quantities in integrable lattice models have rather complicated
form when expressed in terms of spatially local operators.
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Although the explanation provided by this “intersubspace
versus intrasubspace” perspective remains only heuristic at
this stage, our data for multiple system demonstrates that
near-integrable systems indeed have a substantial number of
extremely small matrix elements.

In summary, numerical observations on the families of
systems (XXZ ladder, Bose-Hubbard chain) investigated
in this work indicate that, in quasi-integrable cases, the
studied local observables tend to respect the symmetries that
are dynamically conserved at exact integrability. We expect
this behavior to be generic at (near-) integrability for local
observables in these types of models. Moreover, we conjecture
that this behavior may also be generic in the class of integrable
many-body systems at large and for a wide class of local
observables.

The Gaussian shape of the distributions for generic non-
integrable points can be explained heuristically by invoking
the central limit theorem. Writing c(α)

γ ≡ 〈φγ |ψα〉 in terms of
the eigenstates |ψα〉 of the Hamiltonian and |φγ 〉 of A (with
eigenvalues aγ ), we can write the matrix elements as

Aαβ =
∑

γ

c(α)∗
γ c(β)

γ aγ . (7)

For nonintegrable systems, the summands c(α)∗
γ c(β)

γ aγ may be
expected to behave like quasi-independent random variables.
The central limit theorem then implies the Gaussian distribu-
tion of Aαβ . As in Ref. [14], we stress that the randomness
and independence of coefficients is a hypothesis and difficult
to prove rigorously. This is in the same spirit as arguments for
scaling behaviors of diagonal matrix elements or of inverse
participation ratios based on similar randomness assumptions
[13,14]. The physical intuition for such randomness assump-
tions is that an eigenstate in the middle of the spectrum of a
generic system is so complex that the coefficients behave as
random and independent variables for many purposes.

B. Quantifying the distribution shapes

In order to characterize the nature of the distributions at
small and large λ, we fit the numerically obtained histograms
to the sum of two Gaussian distributions, defined as

g(A) = anσ1 (A) + (1 − a)nσ2 (A), (8)

where nσi
(A) is the Gaussian distribution with variance σ 2

i

and zero mean, and 0 � a � 1. There are three fit parameters,
a, σ1, and σ2 (with σ1 < σ2). Two parameters are determined
by equating the variance σ 2 = aσ 2

1 + (1 − a)σ 2
2 and excess

kurtosis k = κ − 3 = 3a(1 − a)(σ 2
1 − σ 2

2 )2/σ 4 of g(A) to that
of the data. We then perform a least-squares fit of the
cumulative density function of the data to solve for the
remaining degree of freedom a. (See Appendix B for details.)

The resulting distributions g(A) are plotted in Fig. 3 as
dashed curves. The two-Gaussian form works very well for
small λ and reasonably well for large λ. The discrepancy in
Fig. 3(f) may be simply due to the lack of sufficient data points
to provide good statistics for these particular parameters.

In Fig. 4, we show data related to this two-component
description (σ1,2, σ , κ) for the observables Sz

2 and Sz
2S

z
p+2

in the ladder system. The two standard deviations generally
become equal at intermediate λ (the ratio σ2/σ1 drops to near
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FIG. 4. (Color online) Characteristics of the distribution of Aαβ .
[(a) and (b)] Standard deviations σ1, σ , and σ2 of the “inner” Gaussian
of Eq. (8), the full distribution, and the “outer” Gaussian, in increasing
order. The thicker curve is σ . System size is (L,N↑) = (15,7). [(c)
and (d)] Ratio σ1/σ2 and kurtosis κ . The dashed horizontal lines
are the values for the Gaussian distribution (σ2/σ1 = 1, κ = 3). We
show results for Â = Sz

2 in red (squares) and for Â = Sz
2S

z
p+2 in blue

(circles). [(e) and (f)] σ2/σ1 and κ as a function of the Hilbert-space
dimension D for several values of λ. In (e), data for the smallest
system size for λ = 5 is absent—the procedure does not yield a
solution for σi due to the low density of states.

unity), indicating that a single-Gaussian description works
well away from integrability. In (d), we show the kurtosis
κ of the distribution, used as an input for the fit. The kurtosis
is close to 3 (the kurtosis value of the Gaussian distribution) in
the intermediate regime, again showing that a single Gaussian
is a good description for the distribution of Aαβ values in
generic systems. The kurtosis is significantly larger than 3
as one approaches the integrable points, signifying a stronger
central peak than that of a single Gaussian.

In Figs. 4(e) and 4(f), we provide a scaling analysis by
plotting σ2/σ1 and κ as a function of the Hilbert-space dimen-
sion D for the observable Â = Sz

2S
z
p+2. In the nonintegrable

regime, the values remain near σ2/σ1 ≈ 1 and κ ≈ 3 as
the sizes are increased. For λ = 0, the kurtosis κ increases
away from 3 with larger D, indicating that the central peak
gets stronger relative to the larger Gaussian as the system
size increases. This is consistent with our explanation of the
two-component structure in terms of symmetry sectors: The
number of eigenstate pairs belonging to different subspace
increases faster with D compared to the number of eigenstate
pairs within the same symmetry subspace.

Also noteworthy is the behavior at the near-integrable
point λ = 0.05: The data show convergence with increasing
D toward the nonintegrable values σ2/σ1 = 1 and κ = 3. In
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particular, κ shows nonmonotonic behavior: It first increases
like in the integrable case and only beyond a certain size starts
decreasing back toward the single-Gaussian value κ = 3. This
is a manifestation of the phenomenon that, near but not exactly
at integrability, the system size needs to be large to show
generic nonintegrable behavior [14].

V. SCALING ANALYSIS

In this section we analyze the system-size dependence of
the average magnitudes of |Aαβ |2, which corresponds to the
widths of the distributions studied in the previous section.

The average value of |Aαβ |2 close to the diagonal in the
central part of the spectrum (omitting the lowest and highest
25% of the energy range, as indicated by the dashed squares
in Fig. 1) is given by

γ = 1

Ñ

∼∑
α,β

α �= β

|Eβ − Eα | � ωmax

|Aαβ |2 = S2
A(0,ωmax). (9)

Here
∑∼ denotes summation over the relevant state pairs: It

includes all α and β within the bulk of the spectrum with α �= β

and with |Eα − Eβ | � ωmax, where ωmax acts as the frequency
cutoff.

The quantity γ depends on the cutoff frequency ωmax. We
consider two values of ωmax. First, we define a low-frequency
measure, γ low = γ (ωmax = 0.05ω0), where ω0 is the “typical
frequency” [Eq. (6)]. Second, we define γ all = γ (ωmax → ∞),
including all state pairs within the bulk of the spectrum (dashed
square in Fig. 1).

In Fig. 5, we plot the quantities γ low, γ all, and the ratio
γ low/γ all as a function of Hilbert-space size D for several
values of λ, in the top row for the observable Â = Sz

2 and

Â = Sz
2
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FIG. 5. (Color online) System-size scaling analysis of average
|Aαβ |2 through the quantities (a) γ low, (b) γ all, and (c) γ low/γ all for
the observable Â = Sz

2 for several values of λ. The respective results
for Â = Sz

2S
z
p+2 are shown in panels (d)–(f). The dotted lines in (a),

(b), (d), and (e) are γ = 1/D.

in the lower row for Â = Sz
2S

z
p+2. Both γ low and γ all show

a power-law behavior, ∝D−1. the scaling is almost exact for
γ all. This scaling behavior is consistent with the scaling of the
temporal fluctuations being exponential in L, as observed in
Ref. [21].

The D−1 scaling for nonintegrable systems can be explained
by using the central limit theorem invoked in the previous
section to explain the Gaussian form of the distribution of
Aαβ values. From Eq. (7), we interpret Aαβ as the average of
the random variables Xγ ≡ Dc(α)∗

γ c(β)
γ aγ . Assuming c(α)

γ and
c(β)
γ to be independent random variables, each with variance

1/D due to normalization of the eigenfunctions, the random
variables Xγ can be argued to be independent and to have D-
independent variance, var(Xγ ) ∼ 1. The central limit theorem
then states that the variance of Aαβ (i.e., the average of |Aαβ |2)
scales as var(Xγ )/D ∼ 1/D. As in Ref. [14], the argument
relies or difficult-to-prove randomness assumptions.

The D−1 scaling can be more directly understood by
estimating the average value of all |Aαβ |2, including the edges
of the spectrum and the diagonal elements, which is equal to
Tr(A2)/D2. For local observables, Tr(A2) ∝ D. [In fact, for the
two observables in Fig. 5, Tr(A2) = D exactly.] The scaling of
the average as ∝D−1 immediately follows. Of course, both γ all
and γ low slightly differ from Tr(A2)/D2. For γ all, the states
outside the central part and the diagonal elements are not
included, as opposed to Tr(A2)/D2, where they are included.
Nevertheless, in Figs. 5(b) and 5(e), γ all (data points) follows
Tr(A2)/D2 = 1/D (dotted line) very closely, for all λ. This
shows that the contribution from the diagonal elements and
from the edge states are negligible.

In Figs. 5(a) and 5(d), γ low shows approximate ∝D−1

scaling. The magnitudes are generally larger than 1/D for
larger D, reflecting the fact that the low-frequency |Aαβ | are on
average larger than other off-diagonal matrix elements (as seen
previously in Figs. 1 and 2). This is also reflected, Figs. 5(c)
and 5(f), in the ratio γ low/γ all. The ratio > 1 for larger sizes.
The effect is most prominent for large λ, which reflects the
very large concentration near the diagonal seen in Figs. 1(c)
and 2(c). The ratios γ low/γ all increase with system size. It
is conceivable that these ratios will converge to a constant at
larger D, so γ low also converges to a ∝D−1 dependence. The
available data hints at such behavior, but the available systems
sizes are insufficient to make a definitive statement.

The scaling of γ low deviates from the ∝D−1 especially for
smaller systems and close to integrability. This behavior is
reminiscent of the fluctuations of Aαα close to (but not exactly
at) an integrable point, where the scaling deviates from D−1/2

for intermediate sizes but converges to D−1/2 as the system
size is increased [14].

VI. BOSE-HUBBARD CHAIN

To evaluate the generality of the results presented in
previous sections with the XXZ ladder system, we present
in this section a summary of analogous data for the Bose-
Hubbard chain, Eq. (3). We show data for the observable
Â = b

†
2b3 + b

†
3b2.

The frequency-resolved analysis of the matrix elements Aαβ

is performed for the values λ = 1, typical for the nonintegrable
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Â = b†2b3 + b†3b2
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FIG. 6. (Color online) Bose-Hubbard model; observable Â =
b
†
2b3 + b

†
3b2. [(a)–(c)] Frequency dependence shown through SA, as in

Fig. 2. Insets show fragments of the density plot of |Aαβ | as function
of Eα and Eβ , as in Fig. 1. The system size is (L,Nb) = (7,7).
[(d) and (e)] Analysis of the shape of the distribution through σ2/σ1

and kurtosis κ , as in Fig. 4. [(f)–(h)] Average matrix element γ low and
γ all for low and all frequencies, and their ratio, as in Fig. 5. In (f) and
(g), the dotted lines are γ = 4/D.

regime, and λ = 0.1 and 10 close to the two integrable limits.
The results, in Figs. 6(a)–6(c), are qualitatively similar to the
ones for the XXZ model in Fig. 2.

In Figs. 6(d) and 6(e), we analyze the distribution of the
values Aαβ for low frequencies by fitting to the two-component
distribution as described in Sec. IV. The ratio σ2/σ1 and the
kurtosis κ are high (�1 and �3, respectively) at or near
integrability. In the nonintegrable regime (represented by λ =
1), both quantities are close to the values appropriate for a
Gaussian distribution (1 and 3, respectively).

In Figs. 6(d)–6(h) we show data for λ = 10−3 as a
substitute for the exact integrable point λ = 0, because the
strong oscillations at λ = 0 make our procedure for extracting
σ1,2 (Appendix B) unreliable. At accessible sizes, the λ =
10−3 data indeed shows a size-dependence characteristic of
integrable points: increase of κ > 3 with increasing system
size. At some very large system size, κ(D) is expected to
decrease again. Such nonmonotonic behavior is a signature
of proximity to integrability. The nonmonotonic behavior is
visible at available system sizes for the λ = 0.1 data.

The root-mean-squared γ all [Fig. 6(g)] of the matrix
elements |Aαβ |2 without frequency cutoff shows a D−1 scaling,
the values being close to Tr(A2)/D2 = 4/D [67]. The scaling

of γ low is not equally clear at these sizes. The erratic behavior
close to integrability is possibly due to the presence of
many very sharp peaks in SA, especially at low frequencies
[see Fig. 6(a)].

VII. DISCUSSION

Motivated by the importance of off-diagonal matrix ele-
ments (Aαβ) of local operators in the physics of time evolution
after a quantum quench, we have provided a detailed study of
the statistical properties of such matrix elements for systems
with short-range interactions. Data on off-diagonal matrix
elements have appeared in the nonequilibrium literature (e.g.,
Refs. [3,12,26]); the present work extends such work to
provide a systematic account of these objects. We have chosen
multiple observables and families of Hamiltonians and have
thus been able to extract general features. We have also
elucidated the role of proximity to integrability as well as
the approach to the thermodynamic limit.

The distribution of values of Aαβ is Gaussian for generic
systems but deviates in a particular way (stronger peak at
zero or a mixture of two Gaussian-like distributions) as one
approaches integrability. We have used this to formulate
a quantitative characterization of proximity to integrability
through the kurtosis κ of the distribution. We find κ ∼ 3 for
nonintegrable (generic or chaotic) systems, and a larger κ

that increases with system size for integrable systems. This
distinction makes it possible to graphically represent our idea,
formulated in Ref. [14], that distance from integrability can be
characterized by a length scale: For near-integrable systems,
the size dependence κ(D) shows an initial increase followed
by a decrease beyond a certain size. This size D, where κ(D)
is maximal, characterizes the proximity to integrability and
increases as one approaches integrability. These properties
may prove to be useful signatures for proximity to integrability
in the sense that they can be determined straightforwardly from
Fourier transforms of the time evolution after a quench, which
may be feasible to observe in experiments.

The average magnitude of the matrix elements, S2(ω) or γ ,
determines the magnitude of temporal fluctuations of 〈A〉(t)
after a quantum quench. The scaling of this quantity for
nonintegrable systems, ∼1/D, is consistent with the scaling of
temporal fluctuations known from the literature [21]. We also
find that the low-frequency average is higher than the average
over all frequencies, γ low > γ all (Figs. 5 and 6), reflecting the
overall decrease of S(ω) with increasing frequency (Fig. 2).
This suggests that, for quenches in nonintegrable systems,
low-frequency contributions are likely to dominate in the time
evolution, regardless of whether the initial conditions are very
local in energy.

The ∼1/D scaling can be argued from the central limit
theorem assuming wave function coefficients of nonintegrable
Hamiltonians to be effectively random. This is a recurring
assumption in this field (e.g., Refs. [13,14,21]), usually without
rigorous proof, but with a similar status as the ETH, namely,
as a plausible hypothesis, the validity of which has to be
established by numerical results. Nevertheless, this argument
is useful because it also provides a plausible explanation for the
Gaussian distributions of the matrix elements. For the scaling,
we have provided an alternate argument based on the trace of
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local operators, which turns out to work well especially for
γ all.

The present work raises a number of questions for fur-
ther study. As a new characterization of integrability, the
double-peak structure of the Aαβ distribution deserves to be
better understood. The relative weight of the inner peak is
presumably connected to the distribution of sizes of the many
subspaces that the Hilbert space is divided into, due to the many
conservation laws present at integrability. At present, we do
not have a quantitative understanding of the exact connection
between the subspace distribution and the non-Gaussian
distribution of the off-diagonal matrix elements, although the
presence of many subspaces provides a plausible explanation
for the double-peak form. A related question is the type of
deviation from the Gaussian shape of the Aαβ distribution
for systems with a few (nonzero but O(L0)) conservation
laws. It would also be interesting to find out whether the two-
component versus Gaussian (single-component) structures can
be related to differences in real-time relaxation and fluctuation
behaviors between integrable and nonintegrable systems. Also,
it is possible that our findings for near-integrable points
might have consequences for “prethermalization” behaviors
[57,68–71].
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APPENDIX A: TIME EVOLUTION AND OFF-DIAGONAL
MATRIX ELEMENTS

In this Appendix we outline some of the connections to
time evolution which motivates the study of off-diagonal
matrix elements. We consider a isolated quantum system with
Hamiltonian H , eigenvalues Eα , and eigenstates |ψα〉. Under
this Hamiltonian, the time evolution of the initial state |�(0)〉,
which may be the result of a quench at t = 0 from another
Hamiltonian, is given by |�(t)〉 = ∑

α cαe−iEαt |ψα〉, where
cα = 〈ψα|�(0)〉 are the expansion coefficients in the eigenstate
basis. Given an observable A, its expectation value evolves as

〈A〉(t) = 〈�(t)|Â|�(t)〉 =
∑
α,β

c∗
αcβAαβei(Eα−Eβ )t . (A1)

The long-time average of this quantity is

〈A〉(t) = lim
T →∞

1

T

∫ T

0
〈A〉(t)dt. (A2)

For a nondegenerate spectrum, the off-diagonal terms do not
contribute, so 〈A〉(t) = ∑

α |cα|2Aαα .
While the Aαα determine the long-time average, these diag-

onal matrix elements do not say anything about the temporal
fluctuations fA(t) ≡ 〈A〉(t) − 〈A〉(t) around the average. A
representative value for the magnitude of temporal fluctuations
is its root-mean-square,

(
σ t

A

)2 ≡ [fA(t)]2 = lim
T →∞

1

T

∫ T

0
[fA(t)]2dt. (A3)

Using Eq. (A1), one finds that(
σ t

A

)2 =
∑
α,β

α �= β

|cα|2|cβ |2|Aαβ |2, (A4)

under the assumption that the spectrum is incommensurate,
i.e., when there are no degeneracies and Eα + Eβ = Eγ + Eδ

implies that (α,β) = (γ,δ) or (α,β) = (δ,γ ).
The fluctuation amplitude (σ t

A)2 can be considered as a
correlator of fA(t) with itself. Generalizing to correlators at
different times, we get the autocorrelation function,

fA(t)fA(t + τ ) =
∑
α,β

α �= β

|cα|2|cβ |2|Aαβ |2ei(Eβ−Eα )τ , (A5)

which appears in formulations of nonequilibrium fluctuation-
dissipation relations [26,33]. The Fourier transform of this
quantity is

s2(ω) =
∑
α,β

α �= β

|cα|2|cβ |2|Aαβ |2δ[ω − (Eβ − Eα)]. (A6)

The strength of the fluctuations at frequency Eβ − Eα is equal
to |cα|2|cβ |2|Aαβ |2.

Equations (A4) and (A6) demonstrate the roles of Aαβ in
real-time considerations. The quantity γ in our work can be
regarded as a general version of the right-hand side of (A4)
which is independent of any particular quench protocol. The
quantity S2(ω) is similarly a smoothed version of the right-
hand side of (A6), again omitting reference to specific initial
states.

APPENDIX B: FIT TO THE DISTRIBUTION OF Aαβ

In Sec. IV, we have fitted the sum of two Gaussian
distributions g(A) [Eq. (8)] to the actual distribution d(A) of
the off-diagonal elements in a small frequency window. The fit
parameters in this distribution are a, the mutual weight of the
two terms, and σ1 and σ2, the standard deviations. For the fits
shown in Fig. 3 and for the data plotted in Fig. 4, we impose
that the fitted distribution g(A) has the same variance σ 2 and
kurtosis κ as the actual data. This yields the equations σ 2 =
aσ 2

1 + (1 − a)σ 2
2 and κ − 3 = 3a(1 − a)(σ 2

1 − σ 2
2 )2/σ 4. By

solving these equations for given σ 2 and k = κ − 3, we obtain
expressions for σ1 and σ2 in terms of a,

σ 2
1,2 = σ 2

[
1 ∓

√
1

3
k(1 − a)/a

]
. (B1)

We have imposed σ 2
1 � σ 2 � σ 2

2 . The remaining variable a

can be obtained in several ways. For Figs. 3 and 4, we have
obtained a by numerically minimizing the integrated square
difference between the cumulative density function of g(A)
and that of the data d(A). This method yields an “optimal”
value of a, which is substituted into Eq. (B1) in order to obtain
σ1 and σ2. However, when the cumulative density distribution
of the data behaves erratically due to very few states being
involved, this procedure might fail and give an optimal
value of a outside the range [0,1] (e.g., the λ = 5 data in
Fig. 4).
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