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Heat transport between two pure-dephasing reservoirs
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A pure-dephasing reservoir acting on an individual quantum system induces loss of coherence without energy
exchange. When acting on composite quantum systems, dephasing reservoirs can lead to a radically different
behavior. Transport of heat between two pure-dephasing Markovian reservoirs is predicted in this work. They are
connected through a chain of coupled sites. The baths are kept in thermal equilibrium at distinct temperatures.
Quantum coherence between sites is generated in the steady-state regime and results in the underlying mechanism
sustaining the effect. A quantum model for the reservoirs is a necessary condition for the existence of stationary
heat transport. A microscopic derivation of the non-unitary system-bath interaction is employed, valid for arbitrary
inter-site coupling regime. The model assumes that each site-reservoir coupling is local.
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I. INTRODUCTION

Quantum transport of energy and charge has been the
subject of increasingly intense research during the past few
years [1]. Advances in the fabrication of nanoscale systems
and characterization of the fast dynamics of a single or a few
quantum systems now open wide avenues for understanding
how the laws of physics developed in the macroscopic
domain are modified in the microscopic scale [2]. From the
foundational perspective, a link between quantum dynamics
and thermodynamic processes can be envisioned [3,4] and
built [5,6]. Biological transport processes can also be studied
in the light of quantum mechanics, from coherent electron
tunneling to photosynthesis [7–10]. From the perspective of
applications, quantum transport is basic to quantum informa-
tion processing. For instance, electronics can be performed
with single electrons in quantum dots [11]. This would allow
the generation of large-spin-entangled currents in a passive
device [12]. Quantum electronic transport has been recently
reported in atomic-scale junctions [13]. Along with the elec-
trons, heat flows through the junction. Unidirectional control
of heat at the single-quantum level [14] is desirable in order
to provide isolation of strategic centers in a circuit. Quantum
communication through photonic transport is promising due
to the low decoherence suffered by light. In that scenario, a
quantum optical diode [15] and the copying of a single-photon
quantum state by a quantum emitter [16] have been proposed.
Photon-mediated interaction between distant artificial atoms
are now experimentally accessible [17].

Coherence on quantum transport is intimately related to
the environment unavoidably coupled to the system of inter-
est [18]. The so-called decoherence, or dephasing, induced
by the environment is usually responsible for the loss of
the quantum features in the dynamics of a microscopic
system. Environments that suppress coherence while keeping
unaltered the populations of the quantum states are called pure-
dephasing reservoirs. Counterintuitively, recent attempts have
drawn attention to the possibility of exploiting pure-dephasing
environments as resources. Solid-state single-photon sources
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and nano-lasers have been proposed [19], for instance. Pure-
dephasing reservoirs have also been shown to boost quantum
transport of energy in quantum networks [11,20,21]. Quantum
master equations techniques are largely employed, where
unitary and non-unitary dynamics are treated separately [18].
The so-called local or phenomenological approach consists
in approximating the term describing the non-unitary dy-
namics of the ensemble by the sum of the terms describing
the individual non-unitary processes. Such an approach has
been applied to the study of quantum transport, e.g., in
Refs. [21,22]. However, the local approach can lead to
unphysical predictions, such as the violation of the second law
of thermodynamics [23]. Neglecting global non-unitary terms
may also hide novel effects on the decay and dephasing rates
of ultrastrongly coupled systems [24], entanglement genera-
tion under non-equilibrium conditions [25], and interference
between independent reservoirs [26].

In this paper, we microscopically model the effect of two
independent pure-dephasing reservoirs individually coupled
to each site of a two-site network and derive the global
non-unitary dynamics of the network. The main message we
convey is that reservoirs which induce pure dephasing in the
case of uncoupled sites can induce stationary energy exchange
for coupled sites, due to the onset of quantum coherence in
the steady-state. The physics reported herein deepen the
knowledge on unexpected effects of dephasing reservoirs over
the dynamics of quantum systems. In particular, Sec. IV
shows that heat current is given by a product of the inter-site
coherence and the quantum nature of the bath, evidencing a
genuinely quantum transport behavior.

The paper is organized as follows. In Sec. II, we present
the model and discuss possible physical implementations for
it. Section II A explores the dynamical origin of the energy
exchange between system and bath. Section III shows the
quantum master equation for the system dynamics, valid for
arbitrary inter-site coupling regime. Section III A discusses a
physical interpretation for the effective decay rates, making a
link to the so-called Purcell effect. In Sec. IV, the dynamics is
calculated and the heat current is shown to be proportional to
the quantum coherence between the sites. Section V provides
evidence of the limitations of the phenomenological (local)
approach and demonstrates that a classical reservoir does not
provide stationary heat current through the chain.
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FIG. 1. (Color online) (a) Two sites coupled with strength �.
The site 1(2) is locally coupled to a thermal dephasing reservoir at
temperature T1(2). (b) |±〉 = α±|1〉 + β±|2〉 are the eigenstates of HS

with eigenvalues ε±. The energy transition is given by ω = ε+ − ε−.
�

(i)
+− and �

(i)
−+ are the transition rates associated respectively with

transitions |+〉 → |−〉 and |−〉 → |+〉, driven by the bath i. The heat
current to/from bath 1 is J1 = −ω�

(1)
+−(ω)P++ + ω�

(1)
−+(−ω)P−−,

where P±± denotes the population of the eigenstate |±〉.

II. MODEL

To highlight the quantum aspect of the heat transport we
consider a system consisting of only two interacting sites, each
of them coupled to a thermal dephasing reservoir. The system
is illustrated in Fig. 1(a). The two-site Hamiltonian is

HS = h1|1〉〈1| + h2|2〉〈2| + �(|1〉〈2| + |2〉〈1|), (1)

where h1(2) describes the energy of site 1(2) and � the coupling
between the sites. State |i〉 denotes the presence of an excitation
at the ith site. As |1〉〈1| + |2〉〈2| = 1, the above Hamiltonian
can be rewritten as follows:

HS = h|2〉〈2| + �(|1〉〈2| + |2〉〈1|), (2)

where h = h2 − h1. The term proportional to the identity was
disregarded, given that it is irrelevant for the system dynamics.
The eigenvalues of HS are ε± = 1

2 (h ±
√

h2 + 4�2) and the
respective eigenstates are |±〉 = α±|1〉 + β±|2〉, with α± =
�/

√
�2 + ε2

± and β± = ε±/
√

�2 + ε2
± . Straightforward al-

gebra shows that α+ = −β− and α− = β+. The motivation for
choosing this model is the great variety of physical systems
it describes. For Hubbard-type models of coupled quantum
dots [11,12], h is the on-site energy difference and � is the tun-
neling amplitude. For models of photosynthetic molecules [8],
h is the energy difference between two chromophores and �

is the excitonic coupling between them. The model can also
describe the single-excitation subspace of a chain of coupled
spins [9].

The effects of the environment are taken into account by
coupling each site to a bath of harmonic oscillators. The site-
reservoir interaction is described by the Hamiltonian

H
(i)
site-res = |i〉〈i|

∑
k

gk

(
a

(i)
k + a

(i)†
k

)
, i = 1,2, (3)

with identical coupling strengths gk . Note that it has the form of
the so-called independent boson model [27], which describes,
for instance, the interaction between a localized crystal defect
and the lattice phonons field. The Hamiltonians of the two free
reservoirs are Hres,i = ∑

k ωka
(i)†
k a

(i)
k . For noninteracting sites,

� = 0, the dynamics induced by the reservoirs do not change
the initial populations of the states |1〉 and |2〉, given that
[HS,H

i
site-res] = 0. The bath induces only decoherence, at a rate

γφ = limν0→0
∑

ν,i g
2
ν n(i)

ν δ(ν − ν0) = limν→0
J (ν)

ν
kBT̄ , where

n(i)
ν is the Bose-Einstein distribution [see Eq. (7)], T̄ is the

average temperature of the reservoirs and J (ν) is the spectral
density of the bath (see Sec. V A for details). In this sense, we
have a typical pure-dephasing reservoir. On the other hand, for
a finite coupling �, the baths modeled by Eq. (3) induce not
only decoherence, but also relaxation, as discussed below.

A. Effective energy-site exchange

The counterintuitive effect of energy exchange between
a site and a pure-dephasing bath becomes evident when the
system operator coupled to the bath is written in the HS

eigenstate basis, namely,

|1〉〈1| = α2
+|+〉〈+| + α2

−|−〉〈−| + α+α−(|+〉〈−| + |−〉〈+|)
and

|2〉〈2| = α2
−|+〉〈+| + α2

+|−〉〈−| − α+α−(|+〉〈−| + |−〉〈+|).
In each equation, the first two operators describe authentic
pure-dephasing, whereas the third term gives rise to energy
exchange between system and bath, HSB-Exch, with an effective
coupling proportional to the product α+α−, i.e.,

H
(i)
SB-Exch = α+α−(|+〉〈−| + |−〉〈+|)

∑
k

gk

(
a

(i)
k + a

(i)†
k

)
.

(4)

Note that in the usual weak-coupling limit, � � h, the
effective energy-exchange coupling vanishes linearly, α+ ≈
�/h +O(�/h)3 and α− ≈ 1 +O(�/h)2, hence α+α− ≈
�/h.

III. MASTER EQUATION WITHIN
THE GLOBAL APPROACH

To determine the dynamics of the two interacting sites we
assume that the coupling between the sites and the reservoirs
is weak. However, it is important to mention that there is no
restriction with respect to the coupling between sites. Thus, our
results can be used even in the strong coupling regime (� �
h) [28]. The dynamics of the system of interest can be deduced
from the complete system-plus-bath Hamiltonian, leading to
the following quantum Markovian master equation [18]:

dρ

dt
= −i[HS,ρ] + L1[ρ] + L2[ρ], (5)
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in � = 1 units, where the Lindblad superoperators Li[ρ] (i =
1,2) are given by

Li[ρ] =
∑

ν

γi(ν)

[
Ai(ν)ρA

†
i (ν) − 1

2
{ρ,A

†
i (ν)Ai(ν)}

]
, (6)

where ν = ε − ε′. Here ε and ε′ are two arbitrary eigenvalues
of HS . All the properties of the reservoir are contained in
γi(ν). For a quantum heat bath of harmonic oscillators at a
temperature Ti , we have that γi(ν) = Ji(ν)(1 + n(i)

ν ) for ν >

0 and γi(ν) = Ji(ν)n(i)
|ν| for ν < 0, where Ji(ν) is the bath

spectral density. The average number of excitations n(i)
ν at

temperature Ti in the ith reservoir is given by the Bose-Einstein
distribution

n(i)
ν =

[
exp

ν

kBTi

− 1

]−1

. (7)

The Lindblad operator associated with the ith reservoir is

Ai(ν) =
∑

ν=ε−ε′
ε′ |i〉〈i|ε,

where ε the projection onto the eigenspace belonging to
the eigenvalue ε. The operator Ai(0) describes the dephasing
effects due to the interaction with the ith reservoir, while
Ai(ν) is related to the transition between the eigenstates
with energy gap equal to ν 	= 0. In our case, the sum is
made over ν = 0,±ω, where ω = ε+ − ε− = √

h2 + 4�2, and
ε± = |±〉〈±|. Therefore,

A1(0) = α2
−|−〉〈−| + α2

+|+〉〈+|,
A2(0) = β2

−|−〉〈−| + β2
+|+〉〈+|,

A1(ω) = α+α−|−〉〈+|,
A2(ω) = β+β−|−〉〈+|

with A
†
i (ω) = Ai(−ω). As already stated, α∓ = ±β±. Using

these results, Eq. (6) takes the form

Li[ρ] = γi(0)
[
Ai(0)ρAi(0) − 1

2 {ρ,Ai(0)Ai(0)}]
+�

(i)
+−

[|−〉〈+|ρ|+〉〈−| − 1
2 {ρ,|+〉〈+|}]

+�
(i)
−+

[|+〉〈−|ρ|−〉〈+| − 1
2 {ρ,|−〉〈−|}], (8)

where γi(0) = limν→0 γi(ν) = limν→0
J (ν)

ν
kBTi is the dephas-

ing rate due to the ith reservoir. The transition rates of transi-
tions |+〉 → |−〉 and |−〉 → |+〉 are �

(i)
+−(ω) = γi(ω)(α+α−)2

and �
(i)
−+(ω) = γi(−ω)(α+α−)2, respectively, where γi(±ω)

has been written above.

A. Effective decay rate within the global approach

The effective decay rate �
(i)
+−(ω), derived microscopically

from Hsite-res in Eq. (3), deserves further analysis. The original
expression for the decay rate,

�
(i)
+−(ω) =

∑
k

(α+α−)2 g2
k

(
n(i)

νk
+ 1

)
δ(νk − ω), (9)

provides evidence of the influence of the coupling � between
the ith site and its neighbor, as written in (α+α−)2, on the
damping that emerges from the coupling gk between the ith

reservoir and the ith site itself. Note that it is a consequence of
the effective site-bath energy exchange Hamiltonian, HSB-Exch,
in Eq. (4). Here, we call attention to the fact that dissipative
dynamics in open quantum systems are essentially encoded in
the bath spectral densityJi(ν), with which the continuum limit
is computed,

∑
k → ∫

dνJi(ν). Equation (9) suggests that the
neighboring site is effectively altering the spectral density from
the ith bath, Ji(ν) → J̃i(ν). We define the effective spec-
tral density such that �

(i)
+−(ω) = (α+α−)2Ji(ω)(n(i)

ω + 1) ≡
J̃i(ω)(n(i)

ω + 1), where ω = ε+ − ε− is the gap. The explicit
dependence of (α+α−)2 on the gap is found, α+α− = �/ω,
hence the effective spectral function reads

J̃i(ω) = Ji(ω)
�2

ω2
. (10)

The coupling to the neighboring site introduces, thus, a
sub-ohmic correction on the free bath spectral function.
Modification of the decay rate due to an alteration of the
spectral function of the reservoir happens in the well-known
Purcell effect [29]. For instance, spontaneous emission of an
atom in free space can be accelerated if the emitter is put
between two mirrors [30]. In that case, the alteration of the
spectral function comes from the structured environment itself,
as the mirrors change the density of electromagnetic modes
available to the emitter. Equation (10) reveals an analogous
effect, of a rather different origin, though. Here, the decay of
energy from one site to the reservoir with which it is coupled
is being affected by the coupling of such site to a neighboring
one. This result suggests that the emission rate of an atom
coupled to a heat bath can be modified due to the coupling not
only with a cavity, but also with another atom. By an abuse
of terminology, this could be said to be a kind of fermionic
Purcell effect, in contrast to the standard bosonic one. This is
a possible research perspective opened by the present study.

IV. HEAT CURRENT IN THE STEADY-STATE REGIME

The central point to derive an expression for the heat current
Jheat in a quantum system is to relate the average energy going
through the system 〈HS〉 with the continuity equation [4],

∂

∂t
〈HS〉 = −∇ · Jheat = −(J2 − J1). (11)

Using Eq. (5) and noting that ∂
∂t

〈HS〉 = ∂
∂t

Tr{ρHS} =
Tr{ρ̇HS}, the left-hand side of Eq. (11) can be rewritten as

∂

∂t
〈HS〉 = Tr{LL[ρ]HS} + Tr{LR[ρ]HS}. (12)

Comparing the right-hand sides of Eqs. (11) and (12) we can
write the input energy rate J in

1(2) from the reservoir 1(2) as

J in
1(2) ≡ Tr{L1(2)[ρ]HS} = ±J1(2). (13)

For the system under study, this gives J1 = −�
(1)
+−(ω)(ε+ −

ε−)P++ + �
(1)
−+(−ω)(ε+ − ε−)P−−, where P++ and P−− are,

respectively, the excited and ground state populations, as com-
puted in the following. It is worth pointing out that heat current
is defined here in agreement to the 1st Law of Thermodynam-
ics, in its generalized version to open quantum systems [31,32].
In Ref. [32], a phenomenological modeling of the reservoirs
precludes one from defining temperature and, therefore, heat
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flow. In contrast, our microscopic modeling of thermal equi-
librium reservoirs allows us to treat energy flow as heat flow.
Besides, it assigns physical meaning to the derived rates γi(ν).

Heat current in the steady-state regime is obtained by
Eq. (13), using the stationary solution of Eq. (5), that is,
ρ̇ss = 0. In this case, J1 = −J2 because ∂

∂t
〈HS〉 = 0. The

time-dependent solution of Eq. (5) in the eigenstate basis |±〉
is given by

P++(t) = �tot
−+

�tot+− + �tot−+
+

(
�tot

+−
�tot+− + �tot−+

− P−−(0)

)

× e−(�tot
+−+�tot

−+)t ,

P−−(t) = �tot
+−

�tot+− + �tot−+
−

(
�tot

+−
�tot+− + �tot−+

− P−−(0)

)

× e−(�tot
+−+�tot

−+)t ,

P+−(t) = P+−(0)e−i�t e− 1
2 (�tot

+−+�tot
−++γφ )t ,

where P±± = 〈±|ρ|±〉 and

�tot
+− = �

(1)
+− + �

(2)
+−

�tot
−+ = �

(1)
−+ + �

(2)
−+ (14)

γφ = γ1(0)(α2
+ − α2

−)2 + γ2(0)(β2
+ − β2

−)2.

Therefore, in the steady-state regime, (�tot
+− + �tot

+−) t  1, the
density matrix is

ρss = �tot
−+

�tot+− + �tot−+
|+〉〈+| + �tot

+−
�tot+− + �tot−+

|−〉〈−|, (15)

that can be computed in terms of n̄ = (n(1)
ω + n(2)

ω )/2, and δn =
n(2)

ω − n(1)
ω , as

ρss = n̄

2n̄ + 1
|+〉〈+| + n̄ + 1

2n̄ + 1
|−〉〈−|. (16)

Note that Eq. (16) is also valid in the weak coupling regime,
� � h. In that case, ρss is expected to be diagonal also in the
site basis. Indeed, the results of Sec. II show that |+〉〈+|��h ≈
|2〉〈2| and |−〉〈−|��h ≈ |1〉〈1|. Hence, off-diagonal terms in
the site basis are negligibly small for weak couplings.

By applying the steady state found above, the current
becomes

J1 = −J̃1(ω)(ε+ − ε−)(P−− − P++)
δn

2
, (17)

which evidences the linear dependence on the gradient of the
baths average excitations, δn. By noting that

P−− − P++ = − ρ12

α+α−
, (18)

the genuine quantum features of J1 become clear. Firstly,
the quantum signature of the bath is on the spontaneous
emission of energy from the system to the bath, with rate
J̃1(ω). Additionally, the nonlinearity of δn with respect to the
temperature gradient indicates the threshold between quantum
and classical regimes for the reservoirs, as discussed below,
in Eq. (19). Finally, the dependence on ρ12 indicates that
the excitation must be delocalized between the two sites,
which is a signature of quantum coherence. Such coherence
is maintained in the steady-state regime even in the presence
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100
(a) Saturation with temperature gradient 

(b)  Trade-off between coupling energy and energy gradient

FIG. 2. (Color online) (a) The heat current J1 in the steady-state
regime as a function of the temperature kBT1 for kBT2 = 0.01h and
� = 0.01h (blue solid line), � = 0.1h (red dashed line), and � =
0.5h (black dotted line). The heat current saturates at the value J1 =
κ�2/4 as the temperature kBT1 increases. We adopt an ohmic spectral
density J (ω) = κω with κ = 1. (b) The heat current J1 as a function
of the energy coupling � for kBT2 = 0.1h and kBT1 = 0.2h (blue
solid line), kBT1 = 0.25h (red dashed line), and kBT1 = 0.3h (black
dotted line). The heat current J1 tends to zero in the low temperature
limit, that is, ω = √

h2 + 4�2 ≫ kBT1,kBT2. For a fixed temperature
gradient, this limit can always be achieved by increasing the energy
coupling �.

of pure-dephasing reservoirs. Heat current is proportional to
the product of these three quantities. Therefore, both system
and baths must be in a quantum regime in order to trigger heat
transport between reservoirs.

The behavior of the heat current J1 is illustrated in Fig. 2.
Saturation of the current with temperature gradient, Fig. 2(a),
occurs as a consequence of the product between an increasing
temperature gradient, which makes δn to increase, and a
decreasing coherence between sites, ρ12. In the limit n(1)

ω 
1  n(2)

ω , the saturating current is given by J1 → J̃ (ω) ω/4.
The choice of an ohmic spectral density, J (ω) = κω, implies
that the saturation current depends only on the coupling �, not
on the gap ω, J1 → κ�2/4. On the other hand, Fig. 2(b) shows
that for a fixed temperature gradient, the heat current J1 first
grows to a maximum value and then decreases as the energy
coupling � increases. To understand this behavior, note that for
sufficiently large values of �, that is, in the low temperature
limit ω = √

h2 + 4�2 ≫ kBT1,kBT2, we have that δn ≈ 0
and n̄ ≈ 0. Consequently, since in this limit the steady state is
close to |−〉, the heat current becomes J1 → −κ�2δn/2 ≈ 0.

In the classical Fourier law for heat conduction [33], heat
current is linearly proportional to the temperature gradient,
JFourier ∝ −∇T = −(T2 − T1). Heat current in Eq. (17) can
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be regarded as a generalization of that law, in the sense that the
current is proportional to the number gradient, J1 ∝ −δn =
−(n(2)

ω − n(1)
ω ). For high temperatures kBT1,2  ω, though,

δn ≡ n(2)
ω − n(1)

ω

= 1

e
ω

kB T2 − 1
− 1

e
ω

kB T2 − 1

≈ kBT2

ω
− kBT1

ω

= kB

ω
(T2 − T1), (19)

showing that such generalization recovers the linearity on the
temperature gradient in the high temperature (classical) limit.
Withing the same approximations, it is found that the steady-
state, Eq. (16), depends only on the average temperature, n̄ ≡
(n(2)

ω + n(1)
ω )/2 ≈ kB

ω
( T1+T2

2 ), not on the temperature gradient.

V. COMPARISON TO PHENOMENOLOGICAL (LOCAL)
AND CLASSICAL APPROACHES

In the following, we show that (A) the predictions of the
phenomenological (local) modeling are unphysical in the low-
temperature regime and (B) that heat current in the steady-state
is established only if thermal baths are modeled in a quantum
mechanical framework.

A. Local dephasing model

In the case of two weakly interacting sites (� ≪ h), it
is common to use a local approach for the heat transport in
quantum systems. Such a phenomenological approach ignores
the effects of coupling between the sites in the description
of dissipative dynamics. Thus, the system dynamics is gov-
erned by the master equation (5) with the phenomenological
Lindblad superoperators

Lph
i [ρ] = γi(0)

[|i〉〈i|ρ|i〉〈i| − 1
2 {ρ,|i〉〈i|}]. (20)

In the site basis {|1〉,|2〉},
ρ̇11 = −i�[ρ21(t) − ρ12(t)],

(21)
ρ̇22 = i�[ρ21(t) − ρ12(t)],

ρ̇12 = −i�[ρ22(t) − ρ11(t)] + ihρ12(t) − 1
2γ

ph
φ ρ12(t), (22)

where γ
ph
φ = γ1(0) + γ2(0).

The heat current in the local approach reads

J
ph
1 = −γ1(0) � Re[ρ12], (23)

also depending crucially on coherence between sites.
The steady-state within the local approach is

ρph
ss = 1

2 (|1〉〈1| + |2〉〈2|) = 1
2 (|−〉〈−| + |+〉〈+|), (24)

for which ρ12 = 0, so J
ph
1 = 0, as well. That is, the local

approach does not capture steady-state flow of heat between
pure-dephasing reservoirs.

Note, however, that the steady-state resulting from the
local approach contains unphysical predictions in the low
temperature regime. Take, for instance, kBT ,� ≪ h, with
ρ(0) = |1〉〈1| as the initial state. Because � ≪ h, the ground

state of the system is arbitrarily close to |1〉. The arbitrarily low
temperature kBT ≪ h guarantees that thermal jumps from
the ground to the excited state, |1〉 → |2〉, occur with vanish-
ing probability, p1→2/p2→1 ∼ exp −h/kBT ≪ 1. Vanishing
temperatures also imply vanishingly small dephasing rate,
γ

ph
φ ∝ kBT ≪ h, hence the dynamics is arbitrarily close to

unitary. Were the dynamics unitary, the population of state |1〉
would evolve as ρ11(t) = 1 − 2�2

ω2 (1 − cos(ωt)), which devi-
ates from ρ11(t) ≈ 1 by a factor of ∼4�2/h2 ≪ 1. Therefore,
neither unitary nor non-unitary dynamics are expected to void
the system from state |1〉〈1| with finite probability. In clear
contrast to the intuitively expected state, the locally derived
steady-state of Eq. (24) is a mixture of |1〉〈1| and |2〉〈2| with
precisely the same weights.

The microscopic derivation does not suffer from this
pathology. For two reservoirs at the same temperature T (i.e.,
δn = 0), the steady-state consists in thermal equilibrium, or
the Gibbs state, of the global system, ρss → ρT ,

ρT = e−βH

Tr[e−βH ]

= n

2n + 1
|+〉〈+| + n + 1

2n + 1
|−〉〈−| = ρss, (25)

where Eq. (16) has been applied, along with n = [exp (βω) −
1]−1 = n̄, and β = 1/(kBT ). In the vanishing temperature
limit, it then simplifies to ρT → |−〉〈−|. � ≪ h implies that
|−〉 → |1〉, so

ρT →0|�≪h ≈ |1〉〈1|,

as intuitively expected.
It is important to underline that ρph

ss coincides with ρT in the
high-temperature limit, kBT  ω = √

h2 + 4�2, for which
the Gibbs state is a complete mixture of the ground and the
excited states, ρT →∞ ≈ 1

2 |+〉〈+| + 1
2 |−〉〈−|, for arbitrary �

and h.
Energy flow between a two-level system and a pure-

dephasing bath led by coherence has been recently reported in
Ref. [32]. However, in that case the local approach has been
applied without any microscopic derivation and a heat current
similar to Eq. (23) has been derived. As it has just been shown
above, such modeling predicts energy flow in the transient
regime, but not in steady-state, for which coherence vanishes.

Using many-body Green’s functions techniques, the authors
of Ref. [34] have recently studied heat flow in a spin-boson
nano-junction. Their approach is valid for arbitrary system
parameters and spin-bath couplings. Whereas in their model
the two reservoirs are coupled to a single spin, we study a
local site-bath coupling. It is also worth emphasizing that
our Quantum Master Equation approach is particularly useful
to identify the steady-state dynamics of the two-site chain
towards non-equilibrium steady state given by Eq. (16),
which only coincides with the Gibbs states in the case of
two reservoirs at the same temperatures T1 = T2 = T [see
Eq. (25)]. Moreover, it highlights the effective decay rate,
due to the inter-site coupling, that provides the timescale for
attaining equilibrium.
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B. Classical dephasing model

Equation (17) indicates that the quantum nature of the
reservoir is crucial to the emergence of the heat current
between pure-dephasing baths. To investigate this point more
carefully, each site is now coupled to a classical dephasing
reservoir. For this purpose, instead of a set of harmonic
oscillators, the reservoir is modeled by a stochastic function
of time, which describes general energy fluctuations [24]. The
site-reservoir Hamiltonian is

H
(i)
site-res = |i〉〈i|fi(t), i = 1,2, (26)

where fi(t) = ∫ ∞
−∞ f̃i(ν)eiνtdν is a stochastic function of time,

with 〈f̃i(ν)〉c = 0 and 〈f̃i(ν)f̃i(−ν ′)〉c = Si(ν)δ(ν − ν ′) [24].
Here 〈·〉c denotes the classical average and Si(ν) the spectral
density of fi(t).

The same microscopic approach used in the quantum case
can be applied to derive a Markovian master equation in the
classical case [24]. The dynamics of the system is obtained
again using Eqs. (5)–(6), with γ c

i (ν) instead of γi(ν). The
difference between the quantum and the classical baths appears
only in the function γ c

i (ν), which describes the characteristics
of a classical dephasing reservoir. In this case,

γ c
i (ν) ≡

∫ ∞

−∞
dτeiντ 〈fi(τ )fi(0)〉c

=
∫ ∞

−∞
dτ

∫ ∞

−∞
dν ′

∫ ∞

−∞
dν ′′ei(ν+ν ′)τ 〈f̃i(ν

′)f̃i(ν
′′)〉c

= 2π

∫ ∞

−∞
dν ′′〈f̃i(−ν)f̃i(ν

′′)〉c
= 2πSi(−ν).

Furthermore, as Si(ν) = Si(−ν) [35], we have that γ c
i (−ν) =

γ c
i (ν). This result shows that the classical version of

the transition rates �
(i)
+−(ω) and �

(i)
−+(ω) are equal, be-

cause �
(i)
+−(ω) − �

(i)
+−(−ω) = (α+α−)2[γi(ω) − γi(−ω)] = 0

for γi(ω) → γ c
i (ω). In this sense, the quantum bath recovers

the classical description in the high temperatures limit, when
the spontaneous decay becomes negligible as compared to
thermal effects, n(i)

ω + 1 ≈ n(i)
ω .

The steady state driven by the classical reservoirs, which
can be calculated by Eq. (15) using the classical transition
rates, is ρc

ss = 1
2 (|1〉〈1| + |2〉〈2|). Since ρ12 = 0, the energy

current associated with the classical dephasing,

J c
1 = −γ c

1 (ω)α+α−(ε+ − ε−)ρ12, (27)

vanishes in the stationary regime. In other words, the quantum
nature of the reservoir is essential to the existence of stationary
energy current. It is important to mention that as the classical
reservoir is not necessarily a thermal reservoir, the energy
current J c

1 does not necessarily describe a heat current.

VI. CONCLUSIONS

In summary, we have shown the existence of quantum
transport of heat in the steady-state regime, between two
pure-dephasing reservoirs, each coupled locally to a single site.
An effective system-bath energy-exchange Hamiltonian has
been derived. A microscopic modeling of a quantum master
equation, valid for arbitrary inter-site coupling regime, has
been applied, yielding an effective decay rate for the chain. An
effective spectral density has been identified, in analogy to the
so-called Purcell effect. The transient regime has evidenced
the dynamical onset of quantum coherence induced by the
baths. Steady-state heat current has been obtained as a product
between the inter-site quantum coherence and the gradient of
quantum average bath excitations. The plots evidence that heat
current saturates for arbitrarily high temperature gradient and
has a maximum value with increasing inter-site coupling. In
the case of equal temperatures, heat current vanishes and the
chain gets in a thermal equilibrium state. Finally, it has been
shown that the local approach is only valid at high temperatures
and that a classical bath does not provide coherence, so heat
current vanishes for classical pure-dephasing reservoirs.

An interesting perspective offered by this work is to
investigate how the different types of inter-site connection in a
bigger chain affect heat transport. Further consequences of the
analogy to the Purcell effect could also be explored, by mod-
eling other types of system-reservoir coupling, for instance.
In this context, one can study the role of incoherent coupling
between sites induced by the reservoir, as described by the
interaction Hamiltonian Hsite−res = ∑

i,j

∑
k gij (k)|i〉〈j |(ak +

a
†
k), with gi 	=j (k) 	= 0 [1], unlike in our case.
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