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Universality and criticality of a second-order granular solid-liquid-like phase transition
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We experimentally study the critical properties of the nonequilibrium solid-liquid–like transition that takes
place in vibrated granular matter. The critical dynamics is characterized by the coupling of the density field
with the bond-orientational order parameter Q4, which measures the degree of local crystallization. Two setups
are compared, which present the transition at different critical accelerations as a result of modifying the energy
dissipation parameters. In both setups five independent critical exponents are measured, associated to different
properties of Q4: the correlation length, relaxation time, vanishing wavenumber limit (static susceptibility), the
hydrodynamic regime of the pair correlation function, and the amplitude of the order parameter. The respective
critical exponents agree in both setups and are given by ν⊥ = 1, ν‖ = 2, γ = 1, η ≈ 0.6 − 0.67, and β = 1/2,
whereas the dynamical critical exponent is z = ν‖/ν⊥ = 2. The agreement on five exponents is an exigent test
for the universality of the transition. Thus, while dissipation is strictly necessary to form the crystal, the path the
system undergoes toward the phase separation is part of a well-defined universality class. In fact, the local order
shows critical properties while density does not. Being the later conserved, the appropriate model that couples
both is model C in the Hohenberg and Halperin classification. The measured exponents are in accord with the
nonequilibrium extension to model C if we assume that α, the exponent associated in equilibrium to the specific
heat divergence but with no counterpart in this nonequilibrium experiment, vanishes.
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I. INTRODUCTION

Thermodynamics and equilibrium statistical mechanics
have shown an extraordinary success in describing phase
transitions. It has been possible to classify them, predict
their properties, and understand the critical phenomena. Also,
they provide a framework that can be used to build efficient
numerical tools as the Monte Carlo simulations or to design
and analyze experiments, for example, exploiting the concept
of universality classes. From a theoretical viewpoint the critical
phase transitions were classified in universality classes in terms
of symmetry and conservation properties [1,2].

In several order-disorder phase transitions the dynamics of
the transition needs the interplay of two or more order param-
eters [3–9]. One particularly interesting case is the so-called
model C in the Hohenberg and Halperin classification, where a
nonconserved critical order parameter couples to the conserved
noncritical density [1,9,10]. Examples where this model can be
applied are varied, comprising liquid-liquid phase transitions
[5,7,8,11], binary alloys [6], and anisotropic magnets [12].

In out-of-equilibrium conditions there is no such systematic
framework that can be used to analyze or classify phase
transitions. There are, nevertheless, some notorious examples
of prototype models that have been shown to be quite general,
allowing other systems to be compared with them. Some
of these are, for example, the directed percolation process,
the Kardar-Parisi-Zhang model for surface growth, and the
Swift-Hohenberg model [13–17]. The critical phenomena
methodology in equilibrium has been extended to these cases,
where again we find critical exponents, universality classes,
and scaling functions, with the dynamic renormalization group
as a useful approach. But, still much understanding is needed
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to reach a state of knowledge comparable to the equilibrium
case.

Granular matter, due to the strong dissipation present at the
particle interactions and the corresponding need for continuous
energy injection to sustain dynamic states, is an excellent
candidate for studying out-of-equilibrium phase transitions.
Important progress has been made along this direction [18–27],
but a wider view in the context of dynamical phase transitions is
still lacking. Recently, we presented an experimental study of a
granular liquid-solid–like phase transition in a vibrated quasi-
two-dimensional granular system [28]. There, we showed that
the transition is characterized not only by the density field
but also by a bond-orientational order parameter, which is
described by the model C. To our understanding, this is the first
nonequilibrium realization of this class of phase transition.

In this manuscript we extend the results found previously by
focusing now on the universality of the transition. That is, we
aim to verify if by varying some experimental parameters, the
same critical exponents are found. We remark that in Ref. [28]
five independent critical exponents were found, which, there-
fore, put an exigent test to the universality condition.

The article is organized as follows. Section II describes
the liquid-solid-like transition that takes place in confined
quasi-two-dimensional granular systems. In Sec. III the ex-
perimental setup and procedures are explained, describing
the two configurations that are used to test the universality
of the critical exponents. The experimental results and the
determination of the critical accelerations and exponents are
presented in Sec. IV. Finally, conclusions are given in Sec. V.

II. THE LIQUID-SOLID-LIKE TRANSITION IN
QUASI-TWO-DIMENSIONAL GRANULAR SYSTEMS

Granular matter is ubiquitous in our daily life; still, a full
understanding of its dynamical behavior has remained rather
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elusive for several years [29,30]. Dry granular matter is a col-
lection of athermal macroscopic particles that interact mainly
through hard-core-like dissipative collisions, and depending
on external conditions such as pressure or packing fraction it
may behave as a solid, a liquid, or even a gas.

Energy injection is needed to compensate the energy
dissipated in grain-grain and grain-wall collisions. Vibrations
are an efficient method to perform this task in a distributed
and controlled way, being possible to reach stable states.
Among the different possibilities to perform the vibrations, the
quasi-two-dimensional (Q2D) geometry has gained attention
because it allows the granular system to be followed in
detail at the individual grain scale together with the collective
dynamics. In Q2D systems, grains are placed in a shallow
box, with a height that is between one and two particle
diameters, while it is large in the horizontal directions.
The box is vertically vibrated with maximal accelerations
larger than gravity such that grains acquire vertical energy
that is transferred via collisions to the horizontal degrees
of freedom. In the reduced two-dimensional dynamics, the
system resembles a liquid but with the important difference
that the collisions are not conservative.

For fixed density and vibration frequency, by increasing the
maximum acceleration the system presents a phase transition
where grains cluster in solid-like regions with crystalline order
[18,25]. The instability is originated in the development of an
effective negative compressibility [26,31] and the transient
dynamics is governed by waves [26]. Once the system is
segregated, the solid-like cluster shows fluctuations in the
interface that are well described by the capillary theory,
allowing us to extract an effective surface tension that has
nonequilibrium origin [32].

In our previous work we studied experimentally the solid-
liquid-like phase transition in the vibrated Q2D geometry.
Depending on the filling fraction and height of the cell, the
transition was either discontinuous or continuous. In the later
case, critical phenomena develop, with static and dynamical
properties that show power law behavior in terms of the
distance to the critical acceleration [28].

III. EXPERIMENTAL SETUP AND PROCEDURES

In this paper we extend the analysis of the previously
published study [28]. Two sets of experiments are used to
test the universality hypothesis. They differ in the dissipation
coefficients, which will be labeled experiments A and B, with
larger and lower dissipation, respectively.

The granular system is composed of N ∼ 104 stainless steel
spherical particles of mass m = 4.45 × 10−3 g, and d = 1-mm
diameter. The Q2D box has lateral dimensions Lx = Ly ≡
L = 100d. The box consists of two 10-mm-thick glass plates
separated by a square metallic frame. Each inner glass surface
has an indium tin oxide (ITO) coating, which dissipates
electrostatic charges generated by collisions of particles with
the walls. The box is fixed to a base by four posts placed at each
corner of the cell. The base supports an array of high-intensity
light-emitting diodes. A piezoelectric accelerometer is fixed
to the base, allowing the measurement of the imposed forcing
acceleration with a resolution of 0.01g. The main advantage
of this setup is that particles are illuminated from below. They

(b)

(4)

(2)

FIG. 1. (Color online) Schematic of the experimental setup. (a)
Top view of the quasi-2D cell, with Lx = Ly = 100d. (b) Side view
of the setup. The vertical height in the cell is Lz = 1.94d ± 0.02d .
The cell is illuminated from below with a 2D array of light emitting
diodes, which light is diffused with a white acrylic sheet placed
between the array and the cell. (1) Camera, (2) quasi-2D cell, (3)
electromechanical shaker, (4) accelerometer.

are then visualized as dark disks on a white background. This
allows us to detect particles in dense clusters, even when
particles are partially mounted on top of each other. A scheme
of the setup is shown in Fig. 1. A typical image of the system
is shown in Fig. 2.

The whole setup is forced sinusoidally with an electrome-
chanical shaker, with vertical displacement z(t) = A sin(ωt).
Top-view images are obtained with a camera at 10 fps. The

FIG. 2. A typical raw image of the complete system, for type B
experiment and � = 4.05 ± 0.01. Particles are visualized as black
disks on a white background.
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images acquired have a typical resolution of 1020 × 1020 pix2,
thus we obtain particles of approximately 10 pix diameter.
Particle positions are determined at subpixel accuracy. Results
have been obtained by fixing the particle number N , cell height
Lz, and driving frequency f = ω/2π = 1/T = 80 Hz. The
dimensionless acceleration � = Aω2/g is varied in the range
1–6. In this present work we focus on the configuration C2
of Ref. [28], namely, Lz = 1.94d ± 0.02d and N = 11504,
which implies the filling fraction to be φ = Nπd2/4L2 =
0.904. This filling fraction value is possible because the system
is Q2D, which allows us to accommodate more particles than
for a pure 2D system.

As was demonstrated in Ref. [28], under this particular
configuration the system undergoes a second-order-type phase
transition. The aim of this paper is to present a more detailed
study of the transition itself. Additionally, we are particularly
interested if there is universality in this granular out-of-
equilibrium phase transition. In order to study the universal
behavior of the critical exponents, we change the dissipation
parameters of the system by changing both the bottom and top
lids. We use two pairs of indium tin oxide (ITO)-coated glass
plates. In the experiments of type A the coating is 25 nm thick,
whereas for type B experiments it is 750 nm thick. It has been
shown that ITO films mechanical, fracture, morphological,
and electric properties depend on fabrication details such as
thickness, annealing, substrate, feed gas, among others [33].
So, it is expected that the dissipation parameters, namely
inelastic and friction coefficients, should be different for the
two sets of ITO-coated glass plates. As will be shown below,
our results indeed demonstrate that the dissipation is stronger
for the thinner ITO-coated glass plates (type A experiments).

The ITO coating works very well for many hours of
experimental runs. Eventually, it does, however, get damaged
by particle collisions. The precise time of reproducible runs
is probably a function of the ITO coating thickness. This is

supported by the thickness dependence of the crack onset strain
in ITO thin films, which is lower for thicker coatings [33].
All data presented in this paper correspond to reproducible
runs for which no important damage was noticeable. In fact,
a surface damaged ITO coating is manifested in important
changes of the measured quantities—such as the density and
order structure factors—with respect to those obtained for a
new pair of ITO-coated glass plates. We conjecture that the
damage occurs because of erosion of the ITO coating, which in
turn affects particle interactions by an increase of electrostatic
forces and contamination of the system by dust formed from
the ITO coating. In order to ensure reproducibility, glass plates
were changed periodically during the time duration of all the
experimental runs, and all parts of the experiments are cleaned
in an ultrasonic bath before mounting the experimental cell
again, including the particles.

Two important issues are the top and bottom plates flatness
and homogeneity of Lz through the experimental cell. With
the cell empty of particles the height is measured at nine
different positions on a regular spaced grid with an optical
microscope (see Supplemental Material of Ref. [28]). Within
experimental errors the vertical height is homogeneous, Lz =
1.94d ± 0.02d. However, the homogeneity of Lz does not
ensure that the glass plates are both flat. Because of the
mechanical constraints and stresses exerted on the plates, some
small residual curvature could exist.

In Fig. 3(a) we show an average of 3 270 images for
� = 2.05, well below the solid-liquid transition (for type B
experiments, �c ≈ 4.5). Only a small part of the setup is
shown, of size 15d × 15d. Viewed from above it corresponds
to the left side wall at almost half of the cell. It is clear that
near the side wall particles tend to form layers of thickness
∼ d, within which particles barely move compared with the
rest of the system. This layering, observed at all side walls,
is induced by the extra dissipation given by the side-wall
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FIG. 3. (a) Average image obtained from 3 270 raw images. Only a section of the setup near a wall is shown (of size 15d × 15d). Regions
in dark gray (low-intensity) result from more particles in these zones. The vertical stripes at the left account for layers of particles that move less
and spend more time near the wall because of the extra dissipation at the side wall. The inset shows the intensity of this image as a function of
position, showing that for x � 5d the system is almost homogeneous. (b) Time-averaged coarse-grained particle density obtained directly from
particle detection as a function of x, with d/4 as bin width. It also shows oscillations due to side-wall layering and confirms the homogeneity
for x � 5d at this scale. (c) The same coarse-grained density at a different scale, showing that the density at the center is about 2% higher than
close to the edges. Here the bin width is d/2. For both (b) and (c) Ni is the average number of particles detected in a vertical bin spanning
y = [0,100d] and xi = [(i − 1)wb,iwb), where wb = d/4 or d/2 is the bin width. N0 is defined as the number of particles that would fit into a
bin with an homogeneous density ρo = N/L2.
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collisions, similar to what has been shown in sheared granular
matter [23]. However, for a distance � 5d from a side wall,
the system is nearly homogeneous. The inset of Fig. 3(a)
shows an average intensity plot as a function of the position
(time- and y-averaged), showing the layers close to the edge
and then saturating at a constant value. Also, by means of a
time-averaged coarse-graining procedure we can compute the
density of particles as a function of distance from a wall. This
is shown in Figs. 3(b) and 3(c). Close to the wall we notice
the same particle layering and an apparent homogenization
for x � 5d [Fig. 3(b)]. The asymptotic limit is slightly less
than expected to compensate for the particle excess at the
side walls. At a larger scale, as shown in Fig. 3(c), we
observe that there is a small density gradient that leads to
an excess of particles at the cell’s center compared to the
edges: density is about 2% higher at the center than near
the side walls. This can be the result of three effects, which
are probably all present. First, even though the cell’s height
is homogeneous within experimental errors, there might be
a small residual concavity, which causes the particles to
accumulate near the center. A second factor could be that
the vertical acceleration may not be constant throughout
the cell. In other words, there could be some “flapping”
of the system. Indeed, we have measured the acceleration
of the cell at different positions and we find that it is about
0.2% higher near the borders than at the center. Finally, the
presence of dissipative side walls could induce such large-scale
inhomogeneity.

Another important issue is the mechanical leveling of the
whole setup (for details, see the Supplemental Material of
Ref. [28]). The cell’s horizontality, and thus the system’s
isotropy, can be checked by two ways: First, it is verified
through the static structure factor S(�k) (defined below) and the
average density Fourier components 〈ρ(�k,t)〉 (for now we can
say that S(�k) is a measure of density fluctuations in Fourier
space). When these quantities are plotted versus kx and ky there
is no preferential direction. For example, S(kx,ky) shows the
characteristic symmetric circular annular shape at kd = 2π ,
where k = |�k|. A second verification is given by the even
symmetry of the coarse-grained density with respect to the
cell center line, as can be observed from the data presented in
Fig. 3(c), which is indeed symmetric with respect to x/d = 50.

The particle detection is done by using a modified open
source Matlab code, which uses a least-square algorithm
[34]. Our modified version in C++ and CUDA allows faster
computation for a large number of particles [35,36]. The
algorithm allows us to detect both layers of particles in a
dense solid cluster, where the top-layer particles are placed in
the valleys that the bottom particles form. Typical experimental
runs consist of at least 30 video acquisitions, one for each A,
of about 3 300 images each. Therefore, the complete number
of images to analyze for a single experimental run is about
105.

Finally, for fixed geometry, particle density, and vibration
frequency, we perform vibration amplitude ramps, from
� � 1 in the liquid phase, increasing A going through
the solid-liquid transition that is reached at � = �c. In
order to check that the transition is continuous, for some
runs we also perform decreasing amplitude ramps starting
above �c.

IV. EXPERIMENTAL RESULTS

A. Static structure function

Particle positions �rj (t) in the plane (x,y) are determined
for each time t . Experimentally, there is no access to the z

coordinate. Thus, the 2D microscopic density field Fourier
components are

ρ(�k,t) =
∫

d2�r ei�r·�kρ(�r,t) =
N∑

j=1

ei�k·�rj (t). (1)

The static structure factor S(�k) measures the intensity of
density fluctuations in Fourier space:

S(�k) = 〈|ρ(�k,t) − 〈ρ(�k,t)〉|2〉
N

, (2)

S(�k) = 〈ρ(�k,t)ρ(�k,t)∗〉 − 〈ρ(�k,t)〉〈ρ(�k,t)∗〉
N

, (3)

where 〈 〉 denotes time averaging. In general 〈ρ(�k,t)〉 �= 0,
due to inhomogeneities induced by boundary conditions, as
those shown in Fig. 3. The wave vectors are computed from
�k = π (nx ı̂ + ny ĵ)/L, where nx,ny ∈ N, and k = |�k|.

In Figs. 4(a) and 4(b) we present color plots of the two
terms that are used for the computation of S(kx,ky), namely
〈ρ(�k,t)ρ(�k,t)∗〉/N and 〈ρ(�k,t)〉〈ρ(�k,t)∗〉/N as functions of kx

and ky (both in log10 scale). It turns out that both quantities
are strongly nonmonotonic and are different by several orders
of magnitude. In the lower wavenumber range that is plotted
these quantities show a set of peaks placed on a regular grid
on top of a smooth background, taking large values when both
nx and ny are odd, whereas the other modes are much lower.
This is understood by the even symmetry that the density field
has with respect to the cell’s center, as shown in Fig. 3(c).
Thus, its Fourier decomposition yields that the not pure odd
harmonics should vanish, having very low values in practice. In
Fig. 4(c), the subtraction of these two terms is shown, which
defines S(kx,ky). The smoothness of the resulting function,
with no discrimination between even or odd modes, indicates
that the density fluctuations are governed by long wavelength
dynamics and not by the static density profile.

The structure factor presents a notorious prepeak centered at
kd ∼ 0.2, which corresponds to a large wavelength structure
of size ∼15d (the prepeak term refers to the peak being at
lower wavenumber than the one corresponding to the first
coordination shell at kd = 2π , see below). The associated
density fluctuations are indeed visible by simple visual
inspection (see Fig. 2). Figure 4(d) shows S(k) for a wider
range of kd, up to kd ∼ 40. It has the usual form expected
for liquids with short-range order, presenting a maximum at
kd = 2π related to the first coordination shell as well as the
prepeak discussed before. This prepeak can be located in the
range kd = 0.1 − 0.3, depending on the exact value of �.
Similar density fluctuations have been observed in amorphous
materials [37,38], which have been consistently related to the
existence of medium-range crystalline order. These density
fluctuations have also been related to the presence of a prepeak
in the structure factor. In fact, in the amorphous literature the
prepeak is known as the first sharp diffraction peak (FSDP)
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FIG. 4. (Color online) Color plots of log10 (〈ρ(�k,t)ρ(�k,t)∗〉/N ) (a), log10 (〈ρ(�k,t)〉〈ρ(�k,t)∗〉/N ) (b), and the structure factor function S(�k)
(c) as functions of kx and ky . From S(�k) the isotropy of the fluctuations is clear from the circular halo shape of the prepeak. (d) S(k) for a

wide range of kd , obtained from S(kx,ky) by simply plotting as a function of k =
√

k2
x + k2

y . For all these figures � = 3.75 < �c, and data was

obtained from type B experiment.

because it appears at low k and is obtained from x-ray
diffraction measurements.

Figure 5(a) presents S(k) for small wavenumbers at dif-
ferent accelerations � below �c. From this figure it is clear
how the prepeak evolves as the system is driven toward the
transition by increasing its acceleration toward �c: its height
increases and its position shifts to lower k. This implies that
density fluctuations become larger in size and stronger as �

increases. We characterize the prepeak by its maximum value
Smax ≡ S(k∗), and the associated characteristic length scale
ξ = π/k∗, where k∗ is the position of the prepeak. These
quantities are plotted in Figs. 5(b) and 5(c) as functions of �

for increasing amplitude ramps and for both experiment types
A and B. Although the data points are scattered and that they do
not really overlap, especially at higher �, both quantities show
similar trends for each experimental type. Both Smax and ξ/d

increase as the transition is approached, although the former
seems to saturate at larger �. We observe no great differences
between the two ITO coatings, being that their final values
(near the transition) are very similar, Smax ≈ 0.6 − 0.1 and
ξ/d ≈ 20 − 35. We also present in Fig. 5(d) the width of the
prepeak, λ, defined as its width at half Smax. This quantity is
a measure of the dispersion around the characteristic length ξ .
The collapse and scatter of the data are improved with respect
to the other quantities, with no dependence on the different
dissipation parameters.

By observing visually the persistence of the solid clusters
we conclude that for the type A experiment, the transition
is located at �c ∼ 5.1, whereas for type B it is found to be
�c ∼ 4.5. Given that we are dealing with a continuous phase
transition these are just approximated values. However, neither
Smax nor ξ show evident changes at these values.
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FIG. 5. (Color online) (a) S(k) in the large wavelength limit for different accelerations �. The prepeak grows and shifts toward lower k for
increasing �. We define the prepeak’s maximum Smax that is obtained at k = k∗. The width λ of the prepeak is defined as the width at half
height. (b, c) Smax and ξ/d = π/k∗ as functions of � for both types of experiments. (d) λd versus d/ξ . A linear dependence is observed for
ξ � 15d (d/ξ � 0.07).

As a conclusion to this first part we can say that density
fluctuations do not show critical behavior, but they are needed
to create regions of high order. This is also evident from visual
inspection; higher density patches are indeed more ordered,
as can be verified in Fig. 2. Density is a conserved field.
Its fluctuations are, however, limited by the system’s vertical
geometrical constraint and the fact that the particles are in
practice hard spheres. In what follows, medium-range order
will be analyzed with an appropriate bond-orientational order
parameter, which does indeed present critical behavior.

B. Bond-orientational order parameter

In the vicinity of the transition, fluctuations of high
density present the same square symmetry as the solid phase.
In the quasi-2D geometry the solid phase consists of two

square interlaced layers instead of the hexagonal layer that
is characteristic of 2D systems [25]. The local order can
be characterized through a fourfold bond-orientational order
parameter. This is still valid in quasi-2D geometry because
the interlaced two-layer square lattices (with unit cell length
d in each plane) result also in a square lattice when projected
in 2D, with unit cell length d/

√
2 when the grains are close

packed, as shown in Fig. 6. The fourfold bond-orientational
order parameter per particle is defined

Q
j

4 = 1

Nj

Nj∑
s=1

e4iα
j
s , (4)

where Nj is the number of nearest neighbors of particle j

and α
j
s is the angle between the neighbor s of particle j and
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FIG. 6. Schematic representation of two square interlaced layers
for which particles are close packed. The center of particles in the
bottom (top) layer are shown with solid (open) black circles. The 2D
projected square lattice has a unit cell length d/

√
2.

the x axis. For a particle in a square lattice, |Qj

4| = 1 and the
complex phase measures the square lattice orientation respect
to the x axis. For details on the computation of Q

j

4 we refer
the reader to the Supplemental Material of Ref. [28].

Representative maps of |Qj

4| are shown in Fig. 7 for
three accelerations, � < �c, � ≈ �c and � > �c. In this
case the maps are obtained from images for experiment
type A (�c ∼ 5.1). Below the transition the ordered patches,
or crystallites, are first small, more or less homogeneously
distributed in space and are of short lifetime. They increase
in size and live for longer time as � approaches �c. Also,
they tend to appear more near the center than at the sidewalls,
which we relate to the large-scale small-density inhomogeneity
discussed before. The quantitative study of crystallites size and
lifetime is presented below.

As discussed before, the local density cannot change
strongly at the transition because of the system’s vertical
geometrical confinement. Thus, the correct order parameter
must be the local fourfold symmetry order, measured through
the orientational parameter Q

j

4. With this in mind, we define
its global average, in space first and then in time,

〈|Q4|〉 =
〈

1

N

N∑
j=1

∣∣Qj

4

∣∣〉 , (5)

which measures the fraction of particles in the ordered phase.
In order to show that the transition is indeed of second order

for both experiment types, we present in Fig. 8(a) the global
average 〈|Q4|〉 versus � for the thin and thicker ITO-coated
plates (type A and B, respectively). For the latter, both
increasing and decreasing � ramps are presented, showing
good reproducibility. This figure indeed demonstrates that
both configurations present a second-order-type transition,
continuous and with no hysteresis.

The qualitative behavior is the same for both experiment
types. First, 〈|Q4|〉 has a linear dependence on � below
the transition. This reflects the fact that the fraction of
particles that form crystallites with square-fold symmetry,

(a)

(b)

(c)

FIG. 7. (Color online) Color maps of the absolute value of the
fourfold bond-orientational order parameter in real space (for each
particle we plot |Qj

4|) for � = 4.18 (a), 5.10 (b), and 5.42 (c)
(experiment type A, �c ≈ 5.1). In each figure only a part of the
system is shown, from 0.2L to 0.8L in each horizontal dimension.
The coloring is detailed in the legend, with the most ordered particles
in red (|Q4| = 0.9 − 1). Solid (open) circles correspond to particles
classified as particles in the solid (liquid) phase. This classification is
performed by measuring the area of the Voronoi area of each particle
(see Supplemental Material of Ref. [28]).
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FIG. 8. (Color online) (a) Global average of fourfold orientational order parameter 〈|Q4|〉 versus � for the two ITO coatings: experiment type
A (thin ITO) with increasing � ramps (�) and experiment type B (thick ITO) with increasing (◦) and decreasing (•) � ramps. Continuous lines
show the linear trend fit for 2.5 < � < �c and the supercritical deviation for � ≥ �c. The adjusted critical accelerations are �c = 5.12 ± 0.01
(type A) and �c = 4.48 ± 0.03 (type B). (b) �Q4 = 〈|Q4|〉 − QL

4 versus ε = (� − �c)/�c in log-log scale for each ITO coating thickness
(type A, �; type B, ◦, for both increasing and decreasing � ramps), where QL

4 = a� + b is obtained from the linear trend below �c. For the thin
ITO coating, a = 0.011 ± 0.001 and b = 0.380 ± 0.002. For the thick ITO coating, a = 0.016 ± 0.001 and b = 0.359 ± 0.002. For the sake
of clarity, just one representative error bar is shown for each case. The straight lines are power laws with exponents equal to 0.4 (dash-dotted),
1/2 (continuous), and 0.6 (dashed), shown as guides to the eye.

even if it is transiently, increases when the transition is
approached. For both experiments A and B there is a clear
deviation from this linear trend above a given threshold. The
critical acceleration—defined for now as the value where
the qualitative change occurs—for the thicker ITO coating
is lower (�c ∼ 4.5) than the one for the thin ITO coating
(�c ∼ 5.1). Also, the initial linear slope below the transition
is larger for the thick ITO coating case. Both facts, the lower
critical value and larger slope for the thicker ITO coating,
are consistent with a lower effective dissipation at the top
and bottom walls. Indeed, in this case the transition occurs at a
lower amplitude, thus at lower energy injection and dissipation
rates, and transient crystals form and grow more easily as �

increases. In this figure, the continuous lines correspond to fits
of a linear dependence for � < �c and a supercritical deviation
for � > �c (details in the figure caption).

The deviation from the linear trend observed for � < �c

is defined as �Q4 = 〈|Q4|〉 − QL
4 , where QL

4 is defined as
the extrapolation of the linear trend over the complete range
of �. Figure 8(b) presents �Q4 versus ε = (� − �c)/�c in
log-log scale for each ITO coating thickness. The continuous
line shows the supercritical law �Q4 ∝ √

� − �c as a guide
to the eye.

The results of Fig. 8(a) are fitted to the supercritical law
�Q4 = c

√
� − �c. The adjusted parameters are c = 0.029 ±

0.002 (type A) and c = 0.024 ± 0.002 (type B). We conjecture
that the different adjusted c values also reflect the difference of
dissipation parameters that control the particle-wall collisions.

Next, in order to characterize quantitatively the ordered
patches shown in Fig. 7, in particular their typical length and
time scales, we analyze the orientational order parameter in

momentum space. Its Fourier components are

Q4(�k,t) =
N∑

j=1

Q
j

4e
i�k·�rj (t). (6)

Then, local order can also be analyzed through its fluctuations
in Fourier space by means of the fourfold bond-orientational
structure factor

S4(�k) = 〈|Q4(�k,t) − 〈Q4(�k,t)〉|2〉
N

. (7)

This structure factor is shown in Fig. 9 for several accel-
erations and for experiment type A. Results for experiments
type B are basically the same and are not shown. For both
experiment types and for � < �c, S4(k) shows an Ornstein-
Zernike-like behavior in the limit kd � 1,

S4(k) ≈ S4(0)

1 + (ξ4k)2
, (8)

where ξ4 and S4(0) are the fourfold bond-orientational corre-
lation length and static susceptibility, respectively.

In Fig. 10 we present both S4(0) and ξ4/d for � < �c,
obtained from the fits of the Ornstein-Zernike behavior for both
ITO coatings. Both quantities are plotted as functions of the
reduced acceleration ε = (�c − �)/�c, where �c is obtained
from a specially adapted fitting procedure [28]. The correlation
length and susceptibility vary strongly as the transition is
approached. For the two ITO coatings these quantities obey
critical power laws. In the limit ε → 0 they both saturate,
presumably due to the system’s finite size. For ε � 3 × 10−2

they saturate to S4(0) ≈ 10 − 20 and ξ4/d ≈ 10, respectively.
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FIG. 9. (Color online) Fourfold bond-orientational structure fac-
tor S4(k) for several � for experiment type A (the results for B
are basically the same). The vertical axis is in log10 scale. Curves
obtained for � < �c are in blue (dark gray) and for � > �c are
in red (light gray). For both ITO thicknesses and for � < �c, all
curves show an Ornstein-Zernike-like behavior in the limit kd � 1,
S4(k) ≈ S4(0)/[1 + (ξ4k)2]. For � > �c the curves tend to collapse
together.

The critical-like behavior is fitted with both free and fixed
exponents. As discussed in our previous work [28], the precise
measurement of �c and the critical exponents is far from trivial.
For example, for experiment type A, initial fits give �c in the
range 5.1–5.6 and exponents that can vary up to a factor of
almost 2. Additionally, the fitted �c can be quite different
depending from which quantity they are obtained. The lack of

precision is due to the arbitrariness in the choice of the range
� to be used for the fit. In Ref. [28] we present a robust method
for the determination of these quantities, readers are referred
to its Supplemental Material for details.

The results for both experiment types are given in Table I
(the columns referring to the relaxation time τ4 and S4(k) in the
hydrodynamic regime will be discussed below). We conclude
that for both ITO coatings, the exponents are the same within
experimental errors.

In what follows, the exponents are assumed to be fixed and
we define

S4(0) = ãε−γ , ξ4/d = b̃ε−ν⊥ , (9)

with the critical exponents γ = 1 and ν⊥ = 1. The critical
divergence with ε makes it necessary to fit the �c separately
for each case. For experiment type A the adjusted critical
accelerations are �c = 5.09 ± 0.07 and �c = 5.24 ± 0.08 for
S4(0) and ξ4, respectively, whereas for B they are �c =
4.43 ± 0.06 and �c = 4.58 ± 0.06, respectively. For each
ITO coating we find that within experimental errors both
critical accelerations are very consistent, as well as with the
value obtained from the supercritical behavior of �Q4 (�c =
5.12 ± 0.01 and �c = 4.48 ± 0.03 for A and B, respectively).
Notice that now the critical accelerations are obtained from fits
of measured quantities below the transition, whereas for �Q4

they were obtained with fits of the order parameter above the
transition. Finally, the critical accelerations are less consistent
between the different measured quantities when the critical
exponents are let to be free parameters. This supports the
choice of fixing the critical exponents.

Now, we present the characterization of the crystallite’s
relaxation time. Time correlations are computed through the
two-time bond-orientational correlation function

F4(�k,τ ) = 〈δQ4(�k,t + τ )δQ4(�k,t)∗〉
N

, (10)

10−2 10−1 100

100

101

(a)

ε

S
4(

0)

A
B

10−2 10−1 100

100

101

(b)

ε

ξ 4
/
d

A
B

FIG. 10. (Color online) S4(0) (a) and ξ4/d (b) versus ε for experiments type A (�) and type B (◦). Continuous lines are critical power laws,
with exponents γ = ν⊥ = 1 for S4(0) and ξ4, shown as guides to the eye. The fitted critical accelerations for S4(0) and ξ4/d are: �c = 5.09 ± 0.07
and �c = 5.24 ± 0.08 respectively for experiment type A; �c = 4.43 ± 0.06 and �c = 4.58 ± 0.06 respectively for experiment type B. More
details are provided in Table I.
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TABLE I. Adjusted parameters with free or fixed critical exponents for both ITO coatings. The fitted power laws are �Q4 = c(� − �c)β ,
S4 (0) = ãε−γ , ξ4/d = b̃ε−ν⊥ , τ4/T = c̃ε−ν‖ , and S4(k) = C∞/k2−η. The fit of the relaxation time τ4 corresponds to kd = 0.09. For β (η) only
the fixed (free) case was analyzed.

Experiment type A Thin ITO coating Larger wall dissipation

Free critical exponents
γ = 0.95 ± 0.15 ν⊥ = 0.97 ± 0.21 ν‖ = 1.98 ± 0.50 η = 0.69 ± 0.01 (� = 5.04)

�c = 4.94 ± 0.22 �c = 5.11 ± 0.35 �c = 5.06 ± 0.38 η = 0.67 ± 0.01 (� = 5.10)
ã = 0.47 ± 0.03 b̃ = 0.41 ± 0.04 c̃ = 1.11 ± 0.13 η = 0.59 ± 0.01 (� = 5.12)

Fixed critical exponents
β = 1/2 γ = 1 ν⊥ = 1 ν‖ = 2
�c = 5.12 ± 0.01 �c = 5.09 ± 0.07 �c = 5.24 ± 0.08 �c = 5.12 ± 0.07
c = 0.029 ± 0.002 ã = 0.47 ± 0.01 b̃ = 0.41 ± 0.01 c̃ = 1.10 ± 0.03
Experiment type B Thick ITO coating Lower wall dissipation
Free critical exponents

γ = 1.10 ± 0.16 ν⊥ = 1.10 ± 0.03 ν‖ = 1.98 ± 0.21 η = 0.87 ± 0.01 (� = 4.29)
�c = 4.54 ± 0.18 �c = 4.73 ± 0.03 �c = 4.55 ± 0.18 η = 0.67 ± 0.01 (� = 4.41)
ã = 0.39 ± 0.03 b̃ = 0.35 ± 0.03 c̃ = 1.14 ± 0.07 η = 0.63 ± 0.01 (� = 4.52)

Fixed critical exponents
β = 1/2 γ = 1 ν⊥ = 1 ν‖ = 2
�c = 4.48 ± 0.03 �c = 4.43 ± 0.06 �c = 4.58 ± 0.06 �c = 4.46 ± 0.03
c = 0.024 ± 0.002 ã = 0.41 ± 0.01 b̃ = 0.37 ± 0.01 c̃ = 1.17 ± 0.01

where ∗ stands for the complex conjugate and δQ4(�k,t) =
Q4(�k,t) − 〈Q4(�k,t)〉. Our results show that for low wavevec-
tors

F4(�k,τ ) ≈ F4(�k,0) exp[−τ/τ4(k)], (11)

from which the relaxation time τ4(k) is measured. The expo-
nential decay behavior is shown in Fig. 11. From the measured
relaxation times we also obtain a critical-like behavior, which

0 50 100 150 200 250 300 350
10−1

100

101

τ/T

F
4(

k
,τ

)

kd = 0.13
kd = 0.17
kd = 0.22
kd = 0.26

FIG. 11. (Color online) Dynamic fourfold bond-orientational
structure factor F4(k,τ ) for several kd and � = 4.36 < �c (experi-
ment type B), which shows an exponential decay. Large wavelengths
(small wavenumbers) decay slower than short wavelengths (large
wavenumbers). The behavior of F4(k,τ ) is basically the same for
both ITO coatings. Only data above de noise level is shown for
each kd .

is presented in Fig. 12 for the particular cases kd = 0.09,
0.13, and 0.17. Here, again we obtain critical power law
forms, for both ITO coatings. We have also used free and
fixed critical exponents, for which details are given in Table I.
The conclusion is the same as for the correlation length and
susceptibility, namely that within experimental errors the free
exponent adjustment is very consistent with a fixed critical
exponent ν‖ = 2. Thus, we assume this critical exponent to be
fixed and we define

τ4/T = c̃ε−ν‖ , (12)

with ν‖ = 2 and T is the vibration period. The adjusted critical
accelerations are �c = 5.12 ± 0.07 and �c = 4.46 ± 0.03, for
A and B, respectively. The relaxation time also seems to
saturate for small ε, which occurs at smaller ε for lower k,
that is for fluctuations of larger size.

From the relaxation time analysis we conclude that the
dynamical exponent is z = ν‖/ν⊥ = 2. As usual, there is
critical slowing down in the dynamics. As a consequence, close
to the critical point, stationary states are obtained after a long
relaxation has taken place. Taken that into account, all � ramps
are chosen to be slow. Also, averages are taken for long times.

As a final evidence of the observed criticality we now turn
to the characterization of the anomalous exponent η. In the
hydrodynamic regime, d/ξ4 � kd � 1, S4(k) is expected to
present a power law decay,

S4(k) ≈ C∞
k2−η

, (13)

where η is the critical exponent related to the decay of
the pair correlation function g(r) ∼ rD−2+η, with D the
dimensionality.

Figure 13 presents S4(k) in log-log scale for various
�. Indeed, as the transition is approached, curves tend to
collapse for shorter wavelengths. They are clearly different
for larger wavelengths as they converge to different static
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FIG. 12. (Color online) τ4/T versus ε for experiment type A (left) and B (right) for three wavenumbers. The continuous lines are critical
power laws with exponents equal to −2, shown as guides to the eye. The fitted critical accelerations are �c = 5.12 ± 0.07 and �c = 4.46 ± 0.03
for A and B, respectively.

susceptibilities S4(0). In principle, η must be obtained in
the limit � → �c. As the critical acceleration is not known
with sufficient precision, in Fig. 13 we present S4(k) for three
accelerations in the vicinity of �c for both ITO coatings. For
the highest �, it is not even certain that the system is below the
transition or not. Performing power law fits constraining k to
the range d/ξ4 ≤ kd ≤ 1, for configuration A, the measured
critical exponents are η = 0.69 ± 0.01, η = 0.67 ± 0.01, and
η = 0.59 ± 0.01 for � = 5.04, 5.10, and 5.12, respectively.
Similarly, for experiment type B they are η = 0.87 ± 0.01,
η = 0.67 ± 0.01, and η = 0.63 ± 0.01 for � = 4.29, 4.41, and
4.52, respectively. Thus, although the anomalous exponent
η varies rather strongly depending on �c − �, we can state
that close enough to �c it can be bounded in the range

0.6–0.67 for both ITO coatings. In conclusion, there is clearly
a hydrodynamic regime for which the power behavior is
valid, even for a wider range than predicted. However, the
measurement of η needs to be done extremely close to �c.
With the present data, we can state that η ≈ 0.6−0.67 is a
good estimation.

V. DISCUSSION AND CONCLUSIONS

We studied the liquid-solid-like transition that takes place
in confined quasi-two-dimensional granular systems. Two
configurations that differ in the dissipation were analyzed,
presenting the transition at different critical accelerations.

10−1 100
10−1

100

101

102

kd

S
4(

k
)

Γ = 4.29
Γ = 4.41
Γ = 4.52
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101

102
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S
4(

k
)

Γ = 4.84
Γ = 5.04
Γ = 5.12

FIG. 13. (Color online) S4(k) in log-log scale for several � for experiments type A (left) and type B (right). The continuous line corresponds
to η = 0.63. We recall that �c ≈ 5.1 and �c ≈ 4.5, respectively. As expected, the hydrodynamic regime becomes wider as the transition is
approached and S4(k) obeys a power law.
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We have demonstrated that the nonequilibrium transition is
a second-order type for both configurations studied.

Besides, we showed that in our experiments, for both cases,
density fluctuations do not present strong variations at the
transition. In fact, the static structure factor S(k) actually
presents a peak at low wavenumbers, which is related to the
existence of medium-range crystalline order [37]. In our case,
the characteristic length ξ of the these structures in the system
does not show critical behavior.

On the contrary, local order presents critical behavior. It is
characterized through the bond-orientational order parameter
Q4, which in Fourier space shows an Ornstein-Zernike-like
behavior. The associated correlation length ξ4, the relaxation
time τ4, the zero k limit of Q4 fluctuations (static susceptibil-
ity), the pair correlation function of Q4, and the amplitude of
the order parameter obey critical power laws, with saturations
due to finite-size effects. Their respective critical exponents are
ν⊥ = 1, ν‖ = 2, γ = 1, η ≈ 0.6 − 0.67 and β = 1/2, whereas
the dynamical critical exponent z = ν‖/ν⊥ = 2. Although the
critical accelerations and the prefactors of the power laws differ
between the two setups, the reported critical exponents are the
same. Hence, while dissipation is strictly necessary to form
the crystal, the path the system undergoes toward the phase
separation is part of a well-defined universality class.

In equilibrium, the scaling hypothesis predicts relations
among the critical exponents. It is worth mentioning that the

relation γ = (2 − η)ν⊥ is not satisfied, while α + 2β + γ = 2
and ν⊥D = 2 − α (D = 2 is the spatial dimension) can be
satisfied simultaneously if α = 0. This exponent, associated
in equilibrium to the specific heat divergence, has no interpre-
tation out of equilibrium.

The critical order parameter in the present case is a
nonconserved complex scalar field. Its dynamics, however,
is not expected to be autonomous even close to the critical
point as density fluctuations are needed to create the ordered
phase. Although it has been shown that the transition dynamics
is mediated by waves [26], momentum density decays fast
due to friction. Therefore, the most appropriate description
in the theory of dynamical critical phenomena is model C,
in which a nonconserved order parameter is coupled to a
conserved noncritical density [1]. In this case [1,10], and in
extensions to nonequilibrium dynamics [39], the dynamical
exponent is predicted to be z = 2 + α/ν⊥, consistent with the
measurements if α = 0.
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