
PHYSICAL REVIEW E 91, 012138 (2015)

Predicting and identifying finite-size effects in current spectra of one-dimensional oscillator chains

G. R. Lee-Dadswell*

Math, Physics and Geology Department, Cape Breton University, Sydney, Nova Scotia, Canada
(Received 30 September 2014; published 23 January 2015)

The existence of a finite-size effect in one-dimensional oscillator systems causing the energy current power
spectrum to saturate to a constant value at low frequencies is discussed. It is shown that a mode-coupling theory
presented in earlier papers can be used to predict the frequency of onset of this finite-size effect. This can be used
by researchers to plan simulations with large enough numbers of particles to avoid the presence of this finite-size
effect.
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I. INTRODUCTION

Transport in one-dimensional (1D) systems has been
intensely studied for decades [1,2]. One topic of interest has
been the asymptotic exponent with which the heat current
power spectrum diverges at low frequencies. That is, the
heat current power spectrum, C̃κ (ω), is thought to diverge
as some ω−α with α becoming constant at some sufficiently
low frequency. Various theoretical proposals have been put
forward to explain the variety of results seen [2–7]. However,
current laboratory experiments are unable to measure current
power spectra to the precision needed to test these theories.
Thus, for the time being, we are forced to rely on simulations
to test theories on the mechanisms of heat conduction in 1D
systems. To date the results of these simulations has often been
quite contradictory [1,2].

Critically in these studies it is necessary to try to determine
the low-frequency asymptotic transport behavior in 1D sys-
tems. So, it is the limit as the system length L → ∞ and ω → 0
that is of most interest. Thus, where simulations are being used
in an attempt to approach this limit it becomes crucial to be able
to discern whether results of the simulation display finite-size
effects. In many papers reporting simulation results of this
sort the authors tentatively identify finite-size effects in the
low-frequency parts of the simulation data (e.g., Ref. [8]). In
some papers authors carry out simulations for several chain
lengths in order to identify whether observed low-frequency
behavior is a finite-size effect (e.g., Ref. [9]). In other cases
arguments have been carried on within the literature about
whether an observed low-frequency behavior is the desired
asymptotic behavior or just a finite-size effect (see Ref. [10]
and follow-up comments in Refs. [11,12]).

The identification of finite-size effects is crucial to the dis-
cussion of what constitute asymptotic behavior in necessarily
finite systems, which are simulated. Despite this, relatively
little has been written explicitly on the nature of the finite-size
effects seen in transport in 1D chains. To the extent that
finite-size effects appear in the literature, it is pointed to in
the low-frequency behavior of simulation results being used
to examine something else. An exception to this is a recent
paper [13] that paid much-needed attention to this topic. In
that paper the authors examine the effect of periodic recurrence
in the state correlation function R(t) = 〈r(0)r(t)〉, where r(t)
is simply the phase space state vector of the system at time
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t . R(t) is observed to exhibit a recurrence with period L/vs ,
where L is the system length and vs is the thermodynamic
speed of sound in the system. They show that in a diatomic
hard-point gas model the recurrences in R(t) give rise to a
periodic oscillation in the energy current correlation function.
On the other hand, in the FPU-β system, while the recurrence
in R(t) is present it does not give rise to any oscillations in the
current correlation function.

In the present paper we intend to demonstrate the source of
another finite-size effect. It is quite well known that in the heat
current power spectra of 1D chains a saturation is often seen at
the lowest frequencies. Running simulations at several system
lengths generally reveals this to be a finite-size effect [9].
This is a particularly troubling finite-size effect since it could
easily lead to misidentification of the asymptotic exponent α.
The saturation is presumably due to the absence of modes
below a cutoff frequency, which could contribute to transport
at those frequencies. However, as we will demonstrate in this
paper, it is possible to use mode-coupling theory to predict
the frequency at which this finite-size saturation will occur
for any given chain length. This is extremely useful since it
allows simulations to be planned in which the investigator can
be confident that this finite-size saturation will not occur.

II. THEORY

The finite-size effect that will be discussed in the present
paper turns out to be predicted by mode-coupling theory.
Furthermore, the frequency at which it manifests can be
predicted from mode-coupling theory. We will, thus, briefly
review a few key aspects of mode-coupling theory focusing
on the specific version of the theory that we will use to predict
onset of the effect that is of current interest. Many varieties of
mode-coupling theory can be constructed. A good early review
is found in Ref. [14]. A particularly influential construction
of mode-coupling theory can be found in Ref. [15]. Mode-
coupling theories of various types have been used by various
researchers to try to explain what the limiting value of the
exponent, α, should be and these have resulted in a variety
of often contradictory predictions. Early examples are well
summarized in Refs. [1,2]. A good example of the approach,
and its difficulties, is presented in Refs. [8,16], where a very
conventional mode-coupling theory approach is employed to
predict that modes damp on time scales that scale as k−5/6

rather than the k−2 behavior of classical hydrodynamics. This
is then used to predict α = 2/5, except that in Ref. [8] a
midfrequency regime with C̃κ (ω) ≈ ω−1/2 is predicted in some
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cases. However, this approach was criticized as internally
inconsistent in Ref. [17], where it is pointed out that ω ∼ k

was incorrectly used in obtaining the damping time scales.
In that paper it is argued using renormalization group theory
that α ∼ 1/3. A somewhat different mode-coupling approach,
using an Ansatz for the time scaling of damping, was employed
more recently in Ref. [18], where it was found that α = 2/5
in purely longitudinal systems (what is usually meant by 1D
heat transport) but that α = 1/3 in systems with transverse
motions (which some authors call “quasi-1D”). However, this
was criticized in Ref. [6], where still another mode-coupling
approach (separation of phase and amplitude dynamics) yields
a prediction of α = 1/3. In that same paper, however, the
numerical results show different behavior for the FPU-β
system, which the authors speculate is indicative that it belongs
to a different universality class.

The foregoing paragraph simply shows that there is cur-
rently considerable controversy over the form of the mode-
coupling theory that should be used, or, indeed, whether
mode-coupling theory can even reliably predict α. It is also
clear that the simulation results in the literature have been
limited in their ability to distinguish conclusively between
various proposed values of α. For the present paper we are
not concerned with the value of α. Nor are we directly
concerned with the distinctions among the various mode-
coupling theories referenced above. We will instead use a
simpler (even crude) form of mode-coupling theory, which was
previously introduced in Refs. [7,19]. This theory is somewhat
less ambitious than the ones presented in Refs. [6,8,16,18] in
that it requires input of high-frequency behavior of the various
current power spectra. However, given this input—which could
come from theory, experiment, or simulation—it predicts
the low-frequency behavior of the power spectra with no
adjustable parameters. Further, it is able not only to predict
the power α but actually predicts the absolute size of the
heat current power spectrum. This theory is fully presented in
Refs. [7,19], so all that will be presented here is a condensed
description of the theory focusing on those aspects that are
particularly relevant to prediction of the finite-size effect that
is the topic of this paper.

We start from the assumption that energy is carried in the
system by sound modes and that the contribution due to each
sound mode is simply cδε(k′,t), where c is the thermodynamic
speed of sound and δε(k′,t) is the k′th mode of the spatial
Fourier transform of the deviation from equilibrium of the
energy density at time t . Each mode of the energy-density
deviation is assumed to damp exponentially as

δε(k′,t) = δε(k′,0)e−�k′2|t |, (1)

where � is a sound damping coefficient. However, unlike in
classical hydrodynamics, � is assumed to be a microscopic
variable with dependence on k′ so that each mode has its
own sound-damping coefficient, �k′ . In the harmonic limit
we expect that 〈[δε(k′,t)]2〉 = 1/β2, where β = 1/kBT . Thus,
we can obtain the energy-current power spectrum by Fourier-
transforming these mode contributions with respect to time
and then summing over all modes. This gives

C̃κ (ω) = 2c2

Lβ2

∑

k′

�k′k′2

ω2 + (�k′k′2)2
, (2)

where L is the system length, and the sum is over the whole
reciprocal lattice restricted to the number of particles, N , in
the system.

We now speculate that the microscopic sound-damping
coefficient can be obtained by direct analogy with the
macroscopic sound damping coefficient via

�k′ = �ω′/c ≡ �(ω′) = γ − 1

ρcP

κ(ω′) + 1

ρ
ζ (ω′), (3)

where cP is the constant pressure specific heat capacity, ρ is the
mass density, γ ≡ cP /cV is the ratio of specific heat capacities,
and κ(ω′) and ζ (ω′) are the microscopic heat capacity and
microscopic bulk viscosity, respectively, as defined from the
appropriate Kubo relations

κ(ω) = β2kB

2
C̃κ (ω), (4)

ζ (ω) = β

2
C̃ζ (ω). (5)

At first sight this looks nonsensical since C̃κ (ω) depends
on itself through the dependence of �k′ on κ(ω′). However,
the sum in Eq. (2) can be shown to be dominated by terms
corresponding to modes with �k′k′2 
 ω. This relieves the
circularity so that C̃κ (ω) at any ω is determined by the much-
higher-frequency parts of κ(ω) and ζ (ω). This is an example
of a “mode cascade.”

The terms in the reciprocal lattice sum are Lorentzians.
The way certain terms dominate below the frequency cutoffs
described above is simply that this is the frequency scale of
the turnover of the Lorentzian curve. Thus, for any term due
to k′ where �k′k′2 � ω, the term gives a “flat” contribution,
essentially independent of ω. If the minimum wave vector in
the reciprocal lattice is k′

min, then at all frequencies lower than
�k′

min
k′

min
2 the predicted energy current power spectrum is flat.

Thus, assuming we have a target minimum frequency, ωmin,
the above provides a prescription for finding the minimum
number of particles that must be simulated in order to avoid
seeing finite-size effects. The main difficulty is that we do
not, a priori, know �k′

min
. In some systems (such as the pure

quartic chain studied in Ref. [7]) it is possible to get at
least a rough analytical prediction of this quantity, which
could be fed into the mode-mode coupling theory. In most
systems this is not possible. However, in these systems short
simulations can be carried out to obtain �k′ at high frequencies.
These short simulations are usually orders of magnitude less
numerically intensive than the simulations that will actually
probe the behavior down to ωmin. Having completed these
short simulations the current power spectra can be fed into the
mode-mode coupling theory to generate a prediction of the
lower-frequency behavior of the heat-current power spectrum.

A key point is that the sum in the theory can be carried out
for any system size. That is, it is not restricted to being carried
out using the system size of the simulation runs that is being
used to feed the high-frequency behaviors into the theory.
Thus, because of the mode cascade, we can obtain predictions
of low-frequency behavior, including finite-size saturation, by
feeding relatively short-run data into the theory, as long as the
sum in the theory is carried out using the reciprocal lattice of a
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larger system. From this point on we will distinguish between
N , which is the number particles actually used in a simulation,
from n, which will be taken as the system size used for a
reciprocal lattice sum within the mode-coupling theory.

III. NUMERICAL RESULTS

We work with a cubic-plus-quartic chain (an FPU-αβ chain
with the harmonic coefficient set to zero). For all runs in this
paper we use the parameters α = 2, B = 1, P = 0, T = 1,
which were well studied in Ref. [19].

Figure 1 shows how a short set of simulation runs can be
used as input to the mode-mode coupling theory to predict
how many particles are needed in the chain to ensure that no
finite-size effects are seen at the lowest frequencies of a longer
set of runs. A set of runs with number of particles, N = 210,
and final time, tf = 218, were used to generate theoretical
predictions out to frequencies below 2−22 for several target
values of n. These show that to see no finite-size effects at
these frequencies, a minimum of 214 particles are needed. A set
of runs with N = 214, tf = 222 follow the N = 214 prediction
quite well at low frequencies where the theory is valid. A
theoretical curve generated from the N = 214 simulations
demonstrates that the theoretical prediction is not appreciably
influenced by the value of N used in the simulation data that
is used as input to the theory.

Figure 2 shows simulation runs for two values of N and
corresponding theoretical predictions. The finite-size effects
predicted in the N = 210 curve are clear in the data from the
simulation that used N = 210. This clearly demonstrates that

FIG. 1. (Color online) Energy current power spectrum for a set
of short runs (N = 212,tf = 218) and long runs (N = 212,tf = 218).
Also shown are theoretical curves generated by the mode-mode
coupling theory from Ref. [7]. These were generated from the
short-run data using n = 210, 212, and 214. For comparison, the
theoretical curve generated from the long runs is also shown.

FIG. 2. (Color online) Energy-current power spectrum for a set
of long runs (N = 214,tf = 222) and a set of shorter runs (N =
210,tf = 222). Also shown are theoretical curves generated from the
shorter runs using n = 210 and 212.

the finite-size saturation predicted by the mode-mode coupling
is observed in the simulations.

IV. DISCUSSION AND CONCLUSIONS

Our aim in the present paper is very practical. We aim
to provide a prescription that any researcher can apply when
they wish to simulate a 1D system to determine how large
their system needs to be to probe the behavior of the thermal
conductivity down to a target frequency. We have shown that
this prescription works well for a restricted version of the FPU-
αβ system. It can be expected to work for any system for which
the mode-mode coupling theory introduced in Ref. [7] applies.
It is not currently known what the range of applicability of this
theory is. However, on the strength of its success with FPU
systems it is probably applicable to any 1D chain with polyno-
mial interparticle potentials and no onsite potentials. We also
have evidence, which will be presented in a forthcoming paper,
that the theory applies to at least some systems with hard-core
and step-function potentials. It is known not to apply to the
momentum-conserving-ding-a-ling system [20], which has a
mix of hard-core and harmonic potentials.

Beyond providing a practical tool, this paper also further
demonstrates the ability of the mode-mode coupling theory
of Ref. [7] to predict a number of features of transport in 1D
chains. It is now known, for FPU-like systems, that provided
high-frequency data for the current power spectra this theory
can

(i) predict the low-frequency heat current power spec-
trum, where if its asymptotic behavior is assumed to
be 〈|jκ (ω)|2〉 ∼ Cω−α , then the theory predicts both
C and α with no adjustable parameters [7];
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(ii) predict that the heat-current power spectrum and
momentum-current power spectrum go with the same
power of ω at low frequencies if the ratio of specific
heat capacities γ ≡ cP /cV �= 1 [7,19];

(iii) explain that the criterion for determining which uni-
versality class (α = 1/2 or α < 1/2) a system belongs
to is determined by whether or not γ = 1 [21];

(iv) predict the frequency of onset of finite-size saturation.
It remains to explore what other systems this theory

applies to. Additionally, it is still unclear exactly what the
asymptotic behavior of the heat-current power spectrum in
the γ �= 1 universality class. Some authors propose that it

is 1/3 [2], while others propose that it is 2/5 [3–5]. The
mode-mode coupling theory of Ref. [7] predicts a somewhat
more complicated asymptotic behavior, but this can only be
seen at frequencies that remain inaccessibly low in all known
systems.
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