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Asymptotic analysis of narrow escape problems in nonspherical three-dimensional domains
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Narrow escape problems consider the calculation of the mean first passage time (MFPT) for a particle
undergoing Brownian motion in a domain with a boundary that is everywhere reflecting except for at finitely
many small holes. Asymptotic methods for solving these problems involve finding approximations for the MFPT
and average MFPT that increase in accuracy with decreasing hole sizes. While relatively much is known for
the two-dimensional case, the results available for general three-dimensional domains are rather limited. This
paper addresses the problem of finding the average MFPT for a class of three-dimensional domains bounded
by the level surface of an orthogonal coordinate system. In particular, this class includes spheroids and other
solids of revolution. The primary result presented is a two-term asymptotic expansion for the average MFPT of
such domains containing an arbitrary number of holes. Steps are taken towards finding higher-order asymptotic
expansions for both the average MFPT and the MFPT in these domains. The results for the average MFPT are
compared to full numerical calculations performed with the COMSOL Multiphysics finite element solver for three
distinct domains: prolate and oblate spheroids and biconcave disks. This comparison shows good agreement with
the proposed two-term expansion of the average MFPT in the three domains.
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I. INTRODUCTION

Consider a bounded domain � ∈ Rd (d = 2,3) whose
boundary ∂� is everywhere reflecting except at finitely many
small absorbing windows, the collection of which is denoted
by ∂�a = ⋃N

j=1∂�εj
(see Fig. 1). Narrow escape problems

are concerned with determining the behavior of a particle
undergoing Brownian motion which is enclosed within such a
domain. In particular, the quantity of interest is the mean first
passage time (MFPT) v(x), which denotes the expectation
value of the time it takes for such a particle starting at
x ∈ � to escape the enclosing domain through one of the
small absorbing windows, or traps, which are respectively
characterized by a length |∂�εj

| = O(ε) (in two dimensions)
or an area |∂�εj

| = O(ε2) (in three dimensions). Here, ε � 1
is a small parameter, in terms of which, diam (�) = O(1).

Narrow escape problems arise in the modeling of escape
kinetics in chemistry [1], as well as in multiple cell-biological
applications, such as receptor trafficking in a synaptic mem-
brane [2], RNA transport from the cell nucleus through
the nuclear pores [3], and others. An excellent review of
applications involving narrow escape problems is provided
in [4].

In a narrow escape problem, the MFPT can be expressed
as the solution of the following Poisson equation with mixed
Dirichlet-Neumann boundary conditions [5]:

�v = − 1

D
, x ∈ �, (1a)

v(x) = 0, x ∈ ∂�a, (1b)

∂nv(x) = 0, x ∈ ∂� \ ∂�a, (1c)

D being the diffusivity coefficient. An additional quantity that
is of interest is the average MFPT v̄, which describes the spatial
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average of the MFPT, and is given by

v̄ ≡ 1

|�|
∫

�

v(x) dx. (2)

For small trap sizes, the quantities v(x) and v̄ can be sought in
terms of asymptotic series in terms of the dimensionless size
parameter ε. As ε → 0, the MFPT diverges, indicating that
this problem is singularly perturbed.

Consideration of the narrow escape problem in two-
dimensional domains has yielded numerous results for both
the MFPT and the average MFPT. Results for the average
MFPT in the case of a single absorbing window when the
two-dimensional domain is bounded by a smooth curve, a
nonsmooth curve, or when the domain is a unit disk can
be found in [2,6–8]. Using a different approach, the authors
in [9] determined a higher-order asymptotic expansion for an
arbitrary two-dimensional domain with an arbitrary number of
well-separated absorbing windows. These asymptotic expan-
sions are formulated in terms of the regular part of the surface
Neumann Green’s function for the domains. In the particular
case of a unit disk and unit square, where explicit analytic
expressions for the surface Neumann Green’s functions are
known, explicit asymptotic expansions can be given as in [9].

The added complexity of three-dimensional domains has
restricted the generality and accuracy of the results for the
MFPT and average MFPT. In [10], the authors considered an
arbitrary three-dimensional domain with a smooth boundary
and a single circular absorbing window. By first finding an
expression for the singular part of the corresponding surface
Neumann Green’s function, and then solving an integral
equation, the authors of [10] determined a two-term asymptotic
expansion for the average MFPT. Using similar methods to
those found in [9], the authors of [11] were able to give a
three-term asymptotic expansion for both the average MFPT
and the MFPT for the unit sphere with an arbitrary number of
well-separated nonequal absorbing windows. A rigorous proof
of some of the asymptotic results in [11] has been recently
given in [12]. Applicability limits of asymptotic MFPT results
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FIG. 1. A schematic of the narrow escape problem in a two- and
a three-dimensional domain.

for some two- and three-dimensional domains have been
numerically studied in [13].

The higher-order term of the three-term asymptotic expan-
sion for the spherical average MFPT is dependent on the trap
sizes as well as mutual trap locations [11]. In particular, for N

equal traps, the interaction term is proportional to the “inter-
action energy” given by a sum of Coulombic, logarithmic, and
additional regular pairwise interaction energies:

H(x1, . . . ,xN ) =
N∑

i=1

N∑
j=i+1

[
1

|xi − xj | − 1

2
log |xi − xj |

− 1

2
log(2 + |xi − xj |)

]
. (3)

Here, xi , i = 1, . . . ,N , are Cartesian coordinate triples for the
trap locations on the unit sphere, and log denotes the natural
logarithm.

A related global optimization problem arises, to minimize
the average MFPT by optimizing boundary trap locations.
This problem is a generalization of the famous Thomson
problem for electrons on the unit sphere, interacting with
a Coulomb potential. Except for special symmetric cases,
exact optimal configurations of N particles on the surface
of a unit sphere or any other three-dimensional domain are
not known; finding them numerically presents a significant
computational challenge due to the existence of numerous
local minima. Extensive literature on the subject exists; see,
e.g., [14,15] and references therein. A number of putative
optimal configurations of N equal traps minimizing the MFPT
on the unit sphere have been computed in [11]. An asymptotic
expression for the trap “interaction energy” for a unit sphere
with N small traps of a common radius and N large traps of a
common radius has been computed and numerically optimized
in [13].

When the number of traps is large N � 1, a dilute
trap limit of homogenization theory can be used to replace
the strongly heterogeneous Dirichlet-Neumann problem (1)
with a spherically symmetric Robin problem for which an
exact solution is readily found. The Robin problem boundary
condition parameters for the case of the unit sphere have been
asymptotically calculated in [16].

The primary objective of this paper is to extend the results
of [10] and [11] to a wider class of three-dimensional domains,
in particular, domains bounded by smooth surfaces that are
coordinate surfaces of one of the coordinates of a general
orthogonal coordinate set in three dimensions. Local stretched

coordinates in the vicinity of a boundary point are considered
in Sec. II, and asymptotic expressions for the Laplacian and the
surface Neumann Green’s function are derived. These are used
in the method of matched asymptotic expansions to compute
the first two terms of the average MFPT v̄ for an arbitrary
domain within the considered class (Principal Result II D).
This is a direct generalization of the results of [10] onto the
case of N > 1 traps, and the results of [11] onto nonspherical
domains.

In Sec. III, we compare the derived two-term asymptotic av-
erage MFPT for nonspherical domains with numerical results
obtained using the COMSOL Multiphysics finite element solver.
Comparisons are performed for several three-dimensional
domains, and show good agreement for small trap sizes.

In Sec. IV, using certain assumptions for the far-field be-
havior of one of the components of the asymptotic expansion,
we show that the form of the higher-order asymptotic MFPT
v(x) within a domain in the considered class is similar to that
of the unit sphere, in particular, it involves a higher-order term
depending on mutual trap locations and the Green’s function
matrix. For the unit sphere, the MFPT formula reduces to the
one known from [11].

A discussion of results and open problems is presented in
Sec. V.

II. ASYMPTOTIC ANALYSIS OF THE MFPT PROBLEM

We now wish to calculate an asymptotic MFPT expression
for the narrow escape problem (1) for a class of three-
dimensional domains � specified below. The smooth domain
boundary ∂� will contains N � 1 small well-separated traps
centered at xj , j = 1, . . . ,N . We will assume that each trap
has a circular projection onto the tangent plane to ∂� at xj ,
and has a radius εaj , with ε � 1, aj = O(1). For the domain
itself, it is assumed that diam � = O(1).

To perform the calculations, the method of matched asymp-
totic expansions will be applied, extending the work of [11]
to the case of a nonspherical domain. We will derive and use
explicit asymptotic expressions for the Laplacian and surface
Neumann Green’s function in local stretched coordinates near
a boundary trap.

A. A general class of three-dimensional domains

Let (μ,ν,ω) be an orthogonal coordinate system in R3. In
addition, suppose that fixing μ and varying the remaining two
coordinates in some specified range leads to a smooth closed
bounded surface in R3. It is the interior of such a surface to
which we will restrict � in our considerations. In particular,
we will be considering � defined by

� ≡ {(μ,ν,ω)|0 � μ � μ0, 0 � ν � ν0, 0 � ω � ω0},
∂� ≡{(μ,ν,ω)|μ = μ0, 0 � ν � ν0, 0 � ω � ω0}.

The restriction of domains � to this particular form allows the
unit normal to the surface ∂� to be written as n̂ = μ̂ so that the
normal derivative becomes ∂n|∂� = ∂μ|μ=μ0 , where we have
assumed that μ̂ is normalized. A general point in the domain
� or on its surface ∂� will be denoted x = (μ,ν,ω).
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Next, denoting the scale factors by hμ(x), hν(x), hω(x), we
define

hμj
= hμ(xj ), hνj

= hν(xj ), hωj
= hω(xj ),

where xj = (μj ,νj ,ωj ) ∈ ∂�, j = 1, . . . ,N , denote the cen-
ters of the boundary traps. Finally, we introduce the local
stretched coordinates (centered at the j th trap) which are
defined by

η = −hμj

μ − μj

ε
, s1 = hνj

ν − νj

ε
, s2 = hωj

ω − ωj

ε
.

(4)

In (4), the coordinate η is chosen to increase towards the
inside of the domain. The above-described class of three-
dimensional domains includes spheres, ellipsoids, spheroids,
and, in general, all axially symmetric domains.

B. Laplacian in local stretched coordinates

We recall that for an orthonormal coordinate system
(μ,ν,ω), the Laplacian is given by

�	 = 1

hμhνhω

[
∂

∂μ

(
hνhω

hμ

∂	

∂μ

)
+ ∂

∂ν

(
hμhω

hν

∂	

∂ν

)

+ ∂

∂ω

(
hμhν

hω

∂	

∂ω

)]
.

Converting to the local stretched coordinates defined in (4) and
then expanding the Laplacian in terms of ε, one gets

� = 1

ε2
�(η,s1,s2) + 1

ε
L� + O(1), (5)

where

�(η,s1,s2) ≡ ∂2

∂η2
+ ∂2

∂s2
1

+ ∂2

∂s2
2

and

L� ≡ 
η

∂2

∂η2
+ 
s1

∂2

∂s2
1

+ 
s2

∂2

∂s2
2

+ λη

∂

∂η

+ λs1

∂

∂s1
+ λs2

∂

∂s2
.

A somewhat lengthy calculation involving the series ex-
pansion about ε = 0 shows that the λ coefficients are given
by

λη = − 1

hνj
hωj

∂

∂μ

(
hνhω

hμ

)∣∣∣∣
xj

,

λs1 = − 1

hμj
hωj

∂

∂ν

(
hμhω

hν

)∣∣∣∣
xj

,

λs2 = − 1

hμj
hνj

∂

∂ω

(
hμhν

hω

)∣∣∣∣
xj

.

Similarly, we find that each of the 
 coefficients can be
expressed as a linear combination of η, s1, and s2. Explicitly,
each of these coefficients can be written as


α = 
η
αη + 
s1

α s1 + 
s2
α s2, α = η, s1, s2

where


η
η = 2

h2
μj

∂hμ

∂μ

∣∣∣∣
xj

, 
s1
η = − 2

hμj
hνj

∂hμ

∂ν

∣∣∣∣
xj

,


s2
η = − 2

hμj
hωj

∂hμ

∂ω

∣∣∣∣
xj

, 
η
s1

= 2

hμj
hνj

∂hν

∂μ

∣∣∣∣
xj

,


s1
s1

= − 2

h2
νj

∂hν

∂ν

∣∣∣∣
xj

, 
s2
s1

= − 2

hνj
hωj

∂hν

∂ω

∣∣∣∣
xj

,


η
s2

= 2

hμj
hωj

∂hω

∂μ

∣∣∣∣
xj

, 
s1
s2

= − 2

hνj
hωj

∂hω

∂ν

∣∣∣∣
xj

,


s2
s2

= − 2

h2
ωj

∂hω

∂ω

∣∣∣∣
xj

.

C. Surface Neumann Green’s function

The surface Neumann Green’s function plays a critical role
in the method of matched asymptotic expansions, which is used
in the bulk of the upcoming analysis. The surface Neumann
Green’s function is defined for each trap ∂�εj

as the solution
of the problem

�Gs(x; xj ) = 1

|�| , x ∈ �

∂nGs(x; xj ) = δs(x − xj ), x ∈ ∂�∫
�

Gdx = 0.

(6)

Explicit analytic solutions to the problem (6) are not known for
arbitrary domains �. However in the case of a unit sphere an
explicit expression for the surface Neumann Green’s function
is available (see, e.g., [11]). It has the form

Gs(x; xj ) = 1

2π |x − xj | + 1

8π
(|x|2 + 1)

+ 1

4π
log

(
2

1 − |x| cos γ + |x − xj |
)

− 7

10π
,

(7)

where γ is the angle between the vectors x ∈ � and xj ∈ ∂�,
defined by |x| cos γ = x · xj , |xj | = 1.

For more general domains, the authors of [10] determined
that the surface Neumann Green’s function takes the form

Gs(x; xj ) = 1

2π |x − xj | − H (xj )

4π
log |x − xj | + vs(x; xj ),

(8)

where H (xj ) is the mean curvature of ∂� at xj , and vs(x; xj )
is a bounded (but not necessarily regular) function of x and xj

in �.
In a similar procedure to that used for finding the approxi-

mate Laplacian in local stretched coordinated, we can obtain
an asymptotic expression for the surface Neumann Green’s
function in local stretched coordinates. To do this, first observe
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that expansions about ε = 0 yield

1

|x − xj | = 1

ερ
+ YD(η,s1,s2) + O(ε),

log |x − xj | = log ε + 1

2
log ρ + O(ε),

(9)

where ρ =
√

η2 + s2
1 + s2

2 . A lengthy calculation, based on
the orthogonality of the coordinates (μ,ν,ω), shows that

YD(η,s1,s2) = 1

4ρ3

[

ηη

2 + 
s1s
2
1 + 
s2s

2
2 + γD

]
,

with γD a constant defined by

γD = 12
∂x
∂μ

∂2x
∂ν∂ω

hμj
hνj

hωj

∣∣∣∣
xj

= 12
∂x
∂ν

∂2x
∂μ∂ω

hμj
hνj

hωj

∣∣∣∣
xj

= 12
∂x
∂ω

∂2x
∂μ∂ν

hμj
hνj

hωj

∣∣∣∣
xj

.

It remains to put these expansions together with the expansion
of the bounded unknown function vs . Based on the bounded-
ness of vs(x; xj ) for x and xj in � as well as the coordinate
transformations given in (4), and the known result for the unit
sphere, we pose the following asymptotic expansion for vs :

vs(x; xj ) = b0(η,s1,s2) + g1(η,s1,s2)ε log
ε

2
+ O(ε).

With this, the surface Neumann Green’s function becomes

Gs(η,s1,s2) = 1

2πρ

1

ε
− H (xj )

4π
log

ε

2
+ g0(η,s1,s2)

+ g1(η,s1,s2)ε log
ε

2
+ O(ε), (10)

where

g0(η,s1,s2) = 1

2π
YD(η,s1,s2) + H (xj )

8π
log

ρ

4
+ b0(η,s1,s2).

It is worthwhile to note that for the unit sphere the results
in [11] indicate that

g0 = 1

4π

[
η
(
s2

1 + s2
2

)
ρ3

− s2
1s2 cot θj

ρ3

]

− 1

4π
log(ρ + η) − 9

20π
,

g1 = 0,

where θj is the spherical polar angle of the trap position xj .

D. Matched asymptotic expansion solution
of the MFPT problem

The method of matched asymptotic expansions is now
used to compute an approximation for the solution v(x) of
the narrow escape problem (1) in domains � specified in
Sec. II A. Consider N small traps centered at the points xj

on the domain boundary, j = 1, . . . ,N . For a point x ∈ � far
from each of the boundary traps xj , |x − xj | = O(1), define
the outer asymptotic expansion for the MFPT v(x):

v ∼ 1

ε
v0 + v1 + ε log

ε

2
v2 + εv3 + · · · . (11)

Substitution of (11) into the problem (1) yields

�vk = − 1

D
δk1, x ∈ �; ∂nvk = 0,

x ∈ ∂� \ {x1, . . . ,xN }, (12)

where k = 0,1,2, . . ., and δij denotes the Kronecker delta
symbol. In a similar way, when x ∈ � is close to a trap xj , we
pose the inner asymptotic MFPT expansion

v(x) = w(η,s1,s2) ∼ 1

ε
w0 + log

ε

2
w1 + w2 + · · · , (13)

using the local stretched coordinates (η,s1,s2). Substituting
this expression into (1) and this time using the local form of
the Laplacian given by (5), we obtain for k = 0,1,2, . . .

�(η,s1,s2)wk = −δk2L�w0, η � 0, s1,s2 ∈ R

∂ηwk = 0, η = 0, s2
1 + s2

2 � a2
j , (14)

wk = 0, η = 0, s2
1 + s2

2 � a2
j .

The inner expansion (13) is matched with the outer expan-
sion (11) by imposing the matching condition v ∼ w or,
explicitly,

1

ε
v0 + v1 + ε log

ε

2
v2 + εv3 + · · ·

∼ 1

ε
w0 + log

ε

2
w1 + w2 + · · · , (15)

where the left- and right-hand sides must agree as x → xj and
as ρ =

√
η2 + s2

1 + s2
2 → ∞.

The leading order matching condition is w0 ∼ v0 as ρ →
∞; this is satisfied by the form

w0 = v0(1 − wc),

(see [11] for details), where wc is the solution to the electrified
disk problem

�(η,s1,s2)wc = 0, η � 0, s1,s2 ∈ R

∂ηwc = 0, η = 0, s2
1 + s2

2 � a2
j ,

wc = 1, η = 0, s2
1 + s2

2 � a2
j .

The solution to this problem is explicitly known to be given
by

wc = 2

π
sin−1

(
aj

L

)
, (16)

where

L(η,σ ) ≡ 1

2
{[(σ + aj )2 + η2]1/2 + [(σ − aj )2 + η2]1/2},

σ ≡ (
s2

1 + s2
2

)1/2
.

Expanding as ρ → ∞, we obtain the far-field behavior of wc

as ρ → ∞:

wc ∼ 2aj

π

[
1

ρ
+ a2

j

6

(
1

ρ3
− 3η2

ρ5

)
+ · · ·

]
.

For convenience, define the trap “capacitance” cj ≡ 2aj/π .
The far-field behavior of w0 as ρ → ∞ is consequently given
by

w0 ∼ v0

[
1 − cj

ρ
+ O(ρ−3)

]
.
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Substituting this result into (15), we have

1

ε
v0 + v1 + ε log

ε

2
v2 + εv3 + · · ·

∼ 1

ε
v0

[
1 − cj

ρ
+ O(ρ−3)

]
+ log

ε

2
w1 + w2 + · · · .

Using (9), we find that the ρ−1 terms contribute ε/|x − xj |,
so that the next leading order matching condition above gives
v1 ∼ −v0cj /|x − xj | as x → xj (j = 1, . . . ,N ). This singular
behavior of v1 near each xj can be expressed as

�v1 = − 1

D
, x ∈ �;

∂μ|μ0v1 = −2πv0

N∑
i=1

ci

hνi
hωi

δ(ν − νi)δ(ω − ωi).

Applying the divergence theorem to ∇v1, we obtain

−|�|
D

=
∫ ∫ ∫

�

∇ · (∇v1) dV

=
∮ ∮

∂�

∂nv1 dA = −2πv0

N∑
i=1

ci,

and hence

v0 = |�|
2πDNc̄

. (17)

In (17), c̄ = ∑N
i=1 ci is the average trap capacitance.

Further, with reference to (6), one observes that v1 can
be expressed as a superposition of surface Neumann Green’s
functions as

v1 = −2πv0

N∑
i=1

ciGs(x; xi) + χ, (18)

where χ is an unknown integration constant. Using the local
form of the Green’s function (10), the behavior of v1 near xj

is determined to be given by

v1 ∼ − cjv0

ρ

1

ε
+ cjH (xj )v0

2
log

ε

2
− 2πv0cjg0

− 2πv0cjg1ε log
ε

2
+ Bj + χ,

where Bj = −2πv0
∑

i 
=j ciGs(xj ; xi). With this near-field
expansion, the matching condition (15) near xj now reads
as

1

ε
v0

(
1 − cj

ρ

)
+ v0cjH (xj )

2
log

ε

2
− 2πv0cjg0 + Bj + χ + (v2 − 2πv0cjg1)ε log

ε

2
+ εv3

∼ 1

ε
v0

[
1 − cj

ρ
+ O(ρ−3)

]
+ w1 log

ε

2
+ w2 + · · · , (19)

from which we deduce the far-field behavior for w1 as ρ → ∞
to be

w1 ∼ v0cjH (xj )

2
.

Up to the multiplicative factor of H (xj ), the above far-field
behavior is identical to that encountered in [11] for the
unit sphere, where the mean curvature at each trap center
H (xj ) ≡ 1. Parallel to [11], such an expansion leads to a
problem in v2 with no solutions. This can be fixed by inserting
a constant term of order O(log ε) between v0 and v1 in the
outer expansion (11), as follows:

χ = χ0 log
ε

2
+ χ1,

where χ0,χ1 are unknown constants independent of ε. This
leads to the far-field behavior

w1 ∼ v0cjH (xj )

2
+ χ0

as ρ → ∞.
The next step is to express w1 in terms of the solution to

the electrified disk problem wc, as it was done for w0:

w1 =
[
χ0 + v0cjH (xj )

2

]
(1 − wc).

Thus, the far-field behavior of wc yields the far-field behavior
of w1:

w1 ∼
[
χ0 + v0cjH (xj )

2

][
1 − cj

ρ
+ O(ρ−3)

]
.

The ρ−1 term gives an ε term with coefficient of 1/|x − xj |,
which yields an ε log ε

2 term in the right-hand side of the
matching condition. With reference to the latest result in the
matching condition above, this yields the following condition
on v2 as x → xj :

v2 − 2πv0cjg1 ∼ −
[
χ0 + v0cjH (xj )

2

]
cj

|x − xj | .

To proceed with the analysis, more information about
g1(η,s1,s2) is needed. As discussed earlier, for the sphere it was
observed in [11] that there is no ε log ε

2 term in the near-field
expansion of the surface Neumann Green’s function (i.e.,
g1 ≡ 0). This leads us make the following key assumption.

Key Assumption 1. The g1 term in the local expansion of
the surface Neumann Green’s function is identically zero.

The above assumption is motivated by the explicit form
of the surface Neumann Green’s function for the unit sphere,
and is supported by the numerical results in Sec. III. Using
the above expansion, we can rewrite the problem for v2 in
distributional form as

�v2 = 0, x ∈ �;

∂μ|μ0v2 = −2π

N∑
i=1

[
χ0 + v0ciH (xi)

2

]

× ci

hν1hωi

δ(ν − νi)δ(ω − ωi).
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FIG. 2. Illustration of extremely fine and fine mesh regions.

Applying the divergence theorem to ∇v2 we find that

χ0 = − v0

2Nc̄

N∑
i=1

c2
i H (xi). (20)

The solution v2 can then be expressed as a superposition of the
surface Neumann Green’s function as

v2 = −2π

N∑
i=1

ci

[
χ0 + v0ciH (xi)

2

]
Gs(x; xi) + χ2,

where χ2 is an unknown constant.
Noting that the average value of each Green’s function

Gs(x; xj ) is zero, it follows from averaging the outer expan-
sion (11) that the leading terms of the average asymptotic
MFPT are given by

v̄ ∼ v0

ε
+ χ0 log

ε

2
,

with v0 and χ0 given by (17) and (20), respectively. With this,
we have obtained the following result:

Principal Result II.1. In the limit ε → 0, the asymptotic
approximation to the average MFPT is given in the outer region
|x − xj | � O(ε) by

v̄ = |�|
2πDNc̄ε

[
1 − 1

2Nc̄

N∑
i=1

c2
i H (xi)ε log

ε

2
+ O(ε)

]
,

(21)

where H (xi) is the mean curvature of the domain boundary
∂� at the center of the ith trap.

III. COMPARISON OF NUMERICAL
AND ASYMPTOTIC SOLUTIONS

We now check the validity of the average MFPT expres-
sion (21), using the COMSOL Multiphysics 4.3b finite element
solver to obtain numerical results for the average MFPT for
three distinct geometries, with N = 3 and 5 traps. The three
domains considered are an oblate spheroid, a prolate spheroid,
and a biconcave disk, a blood-cell-shaped axially symmetric
domain. The comparison is made by considering the relative
error given by

RE = 100% × |v̄numerical − v̄asymptotic|/v̄numerical (22)

for various values of ε. In this expression, v̄numerical refers to
the results obtained using COMSOL, while v̄asymptotic is given
by (21).

We start from a discussion of the meshing, followed by a
section outlining the geometry and results for each of the three
domain geometries.

A. Mesh refinement

COMSOL Multiphysics 4.3b contains predefined mesh pref-
erences varying from extremely coarse to extremely fine.
These preferences vary the maximum element size, minimum
element size, maximum element growth rate, resolution of
curvature, as well as resolution of curvature. For the numerical
simulation we used a free tetrahedral mesh which was
extremely fine in a cylinder of radius 0.25 and depth between
0.14 and 0.125 centered at each trap, and fine mesh in the other
regions. This mesh refinement strategy is illustrated in Fig. 2.

B. Oblate spheroid

As our first numerical example we consider the oblate
spheroidal coordinates

x = ρ cosh ξ cos ν cos φ, y = ρ cosh ξ cos ν sin φ,

z = ρ sinh ξ sin ν, (23)

where ξ ∈ [0,∞), ν ∈ [−π/2,π/2], and φ ∈ [0,2π ). The
orthogonality of such a coordinate system is easily verified.
Furthermore, the level sets ξ = ξ0 generate oblate spheroids
with a minor axis of length ρ sinh ξ0 along the z axis and a
major axis of length ρ cosh ξ0 on the xy plane. The volume
enclosed within ξ � ξ0 therefore falls into our class of three-
dimensional domains.

With ξ0 = tanh−1(0.5) and ρ = (cosh ξ0)−1 the level sur-
face ξ = ξ0 becomes an oblate spheroid with major axis of
length 1 and minor axis of length 0.5. Explicitly, the surface
is parametrized by

x = cos ν cos φ, y = cos ν sin φ, z = 0.5 sin ν. (24)

The volume of this oblate spheroid is |�| = 2.0944 and its
mean curvature is given by

H (ν) = 0.5
8 − 3 cos2 ν

(4 − 3 cos2 ν)3/2
. (25)
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TABLE I. Trap locations and relative radii for in sample MFPT
computations for oblate and prolate spheroids.

Number of Traps a ν φ

1 −3π/8 0
N = 3 2 0 π

4 π/2 0

1 0 π/2
2 π/4 0

N = 5 2 −π/2 0
3 −π/4 π/4
4 π/4 π

The trap configurations and relative radii for both N = 3
and 5 are shown in Table I. The comparisons between the
COMSOL numerical average MFPT and the asymptotic two-
term formula (21) are shown in Figs. 3 and 4 for the three-
and the five-trap configurations, respectively. In addition to
these plots, Figs. 5(a) and 5(b) show the fully numerical
calculation of the MFPT done in COMSOL to demonstrate
the trap arrangements, as well as the MFPT behavior on the
boundary of the domain.

C. Prolate spheroid

In a similar fashion to the oblate spheroid, we can consider
the prolate spheroidal coordinates

x = ρ sinh ξ cos ν cos φ, y = ρ sinh ξ cos ν sin φ,

z = ρ cosh ξ sin ν, (26)

where ξ ∈ [0,∞), ν ∈ [−π/2,π/2], and φ ∈ [0,2π ). As with
the oblate spheroidal coordinates, the volume enclosed by ξ �
ξ0 falls within our class of three-dimensional domains.

With ξ0 = tanh−1(1/1.5) and ρ = (sinh ξ0)−1 the level
surface ξ = ξ0 becomes a prolate spheroid with major axis
of length 1.5 and minor axis of length 1. The surface is
parametrized by

x = cos ν cos φ, y = cos ν sin φ, z = 1.5 sin ν. (27)

(a) (b)

ε ε

FIG. 3. Plots of (a) comparison of numerical (circles) and two-
term asymptotic expression for average MFPT, and (b) relative error
[see (22)] for an oblate spheroid with N = 3.

(a) (b)
ε ε

FIG. 4. Plots of (a) comparison of numerical (circles) and two-
term asymptotic expression for average MFPT, and (b) relative error
[see (22)] for an oblate spheroid with N = 5.

Finally, it has a volume of |�| = 6.2832 and a mean curvature
given by

H (ν) = 1.5
8 + 5 cos ν2

(4 + 5 cos ν2)3/2
. (28)

The trap configurations and relative radii for both N = 3
and 5 are shown in Table I. The comparisons between the
COMSOL numerical average MFPT and the asymptotic two-
term formula (21) are shown in Figs. 6 and 7 for the N = 3 and
5 configurations, respectively. Additionally, Figs. 8(a) and 8(b)
show the fully numerical calculation of the MFPT perfomed
in COMSOL.

D. Biconcave disk (blood cell)

The final example to be considered is the biconcave disk,
which models the shape of blood cells, as discussed, for
example, in [17]. This shape is obtained by rotating the curve

x = aα sin χ, z = a
α

2
(b + c sin2 χ − d sin4 χ ) cos χ,

(29)
about the z axis. Here, χ ∈ [0,π ] with χ = 0, π/2, π corre-
sponding to the north pole, the equator, and the south pole of
the biconcave disk, respectively (see Fig. 9).

In general, an axially symmetric domain with a smooth
boundary can be viewed as a coordinate level set in an orthog-
onal curvilinear coordinate system. One of the coordinates of
that system is the azimuthal angle φ. If the desired domain
boundary is given by F (r,z) = ξ0 in cylindrical coordinates,
with a necessary number of derivatives of F by r vanishing at

FIG. 5. (Color online) Three-dimensional (transparent) plots of
the numerical MFPT for the oblate spheroid at ε = 0.02 with
(a) N = 3 and (b) N = 5 traps. The trap parameters are given in
Table I.
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(a) (b)
ε ε

FIG. 6. Plots of (a) comparison of numerical (circles) and two-
term asymptotic expression for average MFPT, and (b) relative error
[see (22)] for a prolate spheroid with N = 3.

(a) (b)
ε ε

FIG. 7. Plots of (a) comparison of numerical (circles) and two-
term asymptotic expression for average MFPT, and (b) relative error
[see (22)] for a prolate spheroid with N = 5.

FIG. 8. (Color online) Three-dimensional (transparent) plots of
the numerically calculated MFPT (in seconds) for the prolate spheroid
at ε = 0.02 with (a) N = 3 and (b) N = 5 traps.

0 0.5 1 1.5
-0.5

0

0.5

x

z

FIG. 9. Biconcave disk cross-sectional view.

TABLE II. Trap locations and relative radii for biconcave disk
(blood cell).

Number of Traps a χ φ

1 0 0
N = 3 2 3π/4 0

4 π/2 π

1 0 0
2 3π/4 0

N = 5 2 π 0
2 π/2 π/2
4 π/2 π

r = 0, the three orthogonal coordinates are (ξ,φ,η), where ξ,η

are defined in the (r,z) plane and are given by ξ = F (r,z) and
η = G(r,z). The latter satisfies a linear homogeneous equa-
tion ∇ F (r,z) · ∇ G(r,z) = FrGr + FzGz = 0. Setting ξ � ξ0

generates the axially symmetric domain �.
Including the rotation about the z axis, the surface

parametrization of the biconcave disk is given by

x = aα sin χ cos φ, y = aα sin χ sin φ,

z = a
α

2
(b + c sin2 χ − d sin4 χ ) cos χ, (30)

where φ ∈ [0,2π ). Keeping the conventions of [17], we pick
the parameters appearing in (29) to be

a = 1, α = 1.385 819 94, b = 0.207,

c = 2.003, d = 1.123.

The locations of each of the traps as well as their relative
radii are given in Table II. The volume of the biconcave disk
is readily calculated using (29); it is found to be

4π

(
1

6
a3α3b + 1

15
ca3α3 − 4

105
da3α3

)
.

The mean curvature calculation is simple but technical; it is
accomplished using the parametrization (30). The comparisons
between the COMSOL numerical average MFPT and that given
by the two-term asymptotic expansion (21) are shown in
Figs. 10 and 11 for N = 3 and 5, respectively. Figures 12(a)
and 12(b) show the fully numerical calculation of the MFPT

(a) (b)

ε ε

FIG. 10. Plots of (a) comparison of numerical (circles) and two-
term asymptotic expression for average MFPT, and (b) relative error
[see (22)] for a biconcave disk with N = 3.
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(a) (b)

ε ε

FIG. 11. Plots of (a) comparison of numerical (circles) and two-
term asymptotic expression for average MFPT, and (b) relative error
[see (22)] for a biconcave disk with N = 5.

with COMSOL, demonstrating the trap arrangements as well as
the MFPT behavior.

IV. TOWARDS HIGHER-ORDER ASYMPTOTICS

To obtain a third-order asymptotic expansion for the MFPT
and the average MFPT, we need to determine the value
of χ1. Substituting the updated χ values into the matching
condition (19), we find that w2 has the far-field behavior

w2 ∼ −2πv0cjg0 + Bj + χ1.

The problem for w2 is further formulated in the Appendix. For
the unit sphere, in [11], it is solved using

w2 = (Bj + χ1)(1 − wc) + w̃2, (31)

where w̃2 is assumed to have the far-field behavior

w̃2 ∼ v0bj

ρ
. (32)

FIG. 12. (Color online) Three-dimensional (transparent) plots of
the numerically calculated MFPT (in seconds) for the biconcave disk
(blood cell) at ε = 0.02 with (a) N = 3 and (b) N = 5 traps.

Under the same assumption, in a similar way as it was done
for w1 and v2, the matching condition (15) yields

v3 ∼ −cj (Bj + χ1) − v0bj

|x − xj | as x → xj , j = 1, . . . ,N.

In distributional form, this leads to the problem

�v3 = 0, x ∈ �;

∂μv3|μ0 = −2π

N∑
j=1

[cj (Bj + χ1) − v0bj ]

× 1

hνj
hωj

δ(ν − νj )δ(ω − ωj ).

Applying the divergence theorem to ∇v3, one has

χ1 = 1

Nc̄

(
v0

N∑
j=1

bj −
N∑

j=1

cjBj

)
.

Putting together the results for v0 and v1, we arrive at the
following conjectured results.

Conjecture IV.1. In the outer region |x − xj | � O(ε), the
MFPT and the average MFPT for the problem (1) have the
following asymptotic expressions:

v(x) = |�|
2πεDNc̄

⎡
⎣1 − 1

2Nc̄

N∑
j=1

c2
jH (xj )ε log

ε

2
− 2πε

N∑
j=1

cjGs(x; xj ) + ε

Nc̄

N∑
j=1

bj

+ 2πε

Nc̄

N∑
j=1

∑
i 
=j

cj ciGs(xj ; xi) + O(ε2 log ε)

⎤
⎦ (33)

and

v̄ = |�|
2πεDNc̄

⎧⎨
⎩1 − 1

2Nc̄

N∑
j=1

c2
jH (xj )ε log

ε

2
+ ε

Nc̄

⎡
⎣ N∑

j=1

bj + 2π

N∑
j=1

∑
i 
=j

cj ciGs(xj ; xi)

⎤
⎦ + O(ε2 log ε)

⎫⎬
⎭ . (34)

The above expressions are rather similar to those for the unit
sphere obtained in [11]. In particular, the “interaction energy”

pc(x1, . . . ,xN ) ≡
N∑

j=1

∑
i 
=j

cj ciGs(xj ; xi) (35)

is the lowest-order term in v(x) and v̄ dependent on the mutual
trap positions. The MFPT minimization problem therefore can

be studied, involving finding the globally optimal configura-
tion of the N traps x1, . . . ,xN ∈ ∂�. For the spherical domain,
the constants bj = −cjκj can be computed explicitly [11]. For
the unit sphere with N equal traps, the “interaction energy” is
given by (3).

Formulas (33) and (34) are useful for providing insights
into the asymptotic expansion structure of the MFPT and the
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average MFPT. In order to employ these higher-order formulas
for MFPT computation for a specific nonspherical domain, one
additionally needs to derive exact or approximate explicit ex-
pressions for the Green’s functions Gs(x; xj ) and the constants
bj . Importantly, the lower-order two-term approximation (21)
is ready to use in practical computations since it only involves
known quantities.

V. DISCUSSION AND CONCLUSIONS

This paper aims to widen the body of results for the narrow
escape problem (1) in three dimensions, by considering a
general class of three-dimensional domains with N nonequal
small well-separated boundary traps. This class of domains is
described as the volume enclosed in a curvilinear coordinate
level set of an orthogonal coordinate system, as discussed in
Sec. II A. Using the method of matched asymptotic expansions,
and utilizing the expansion of the surface Neumann Green’s
function of [10], in Sec. II, we determined the two-term
asymptotic expansion for the average mean first passage time
for this class of domains. The average MFPT is given by
formula (21); it involves the mean curvature of the domain
boundary computed at the centers of the small ith trap, and
directly generalizes the results of [10] on the case of several
traps, as well as the results of [11] for the unit sphere onto
nonspherical domains. The derivation assumes the absence
of the term of order ε log ε

2 in the asymptotic expansion of
the surface Neumann Green’s function. While this assumption
obviously holds for the unit sphere, and the comparison with a
full numerical simulation suggests that this is the case for some
nonspherical domains, it remains an open problem to present
a rigorous argument to support or refute the above assumption

for particular domain classes. In the cases where the assump-
tion would not hold, the procedure developed in this paper may
be adjusted to accommodate for the nonzero ε log ε

2 term.
In order to verify the two-term asymptotic expansion of

the average MFPT, in Sec. III, we performed several full
finite element numerical calculations of the average MFPT
using COMSOL Multiphysics. These numerical calculations
were done for three distinct domains: an oblate spheroid, a
prolate spheroid, and a biconcave disk. For each such domain
we considered arrangements of N = 3 and 5 traps of different
relative radii. The two-term asymptotic expansion of the
average MFPT was found to be in close agreement with the full
numerical calculations for small values of ε in each domain.

The form of a higher-order asymptotic expansion of the
MFPT v(x) [Eq. (33)] and the average MFPT v̄ [Eq. (34)],
parallel to that for the unit sphere, were computed for the
considered class of domains in Sec. IV, assuming the far-field
behavior (31) and (32). The higher-order terms involve a “trap
interaction energy” term depending on mutual trap locations
and the Green’s function matrix. It is another open problem to
solve the boundary value problem for the w2 term outlined in
the Appendix, in order to determine the unknown constants bj

in the formulas (33) and (34).
When the trap interaction term for nonspherical domains is

better understood, it would be a natural future work direction
to study the global optimization of the average MFPT with
respect to locations of a prescribed set of traps.
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APPENDIX: THE w2 PROBLEM

To continue the analysis, we must consider the problem for w2. We begin by observing that the terms appearing in the near-field
expansion of v2 do not contribute any O(1) terms because of the log ε

2 term. Thus, the far-field behavior of w2 can be determined
by the O(1) terms already appearing in the matching condition (19). We find that w2 must have the far-field behavior

w2 ∼ −2πv0cjg0 + Bj + χ1.

On the other hand, w2 must satisfy the problem

�(η,s1,s2)w2 = v0L�wc, η � 0, s1,s2 ∈ R

∂ηw2 = 0, η = 0, s2
1 + s2

2 � a2
j , (A1)

w2 = 0, η = 0, s2
1 + s2

2 � a2
j .

We decompose w2 as

w2 = (Bj + χ1)(1 − wc) + w2p + w2h,

where wc is given by the solution to the electrified disk problem, w2p satisfies the inhomogeneous partial differential equation
(PDE)

�(η,s1,s2)w2p = v0L�wc,

and w2h satisfies

�(η,s1,s2)w2h = 0, η � 0, s1,s2 ∈ R

∂ηw2h = −∂ηw2p, η = 0, s2
1 + s2

2 � a2
j , (A2)

w2h = −w2p, η = 0, s2
1 + s2

2 � a2
j .
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Theorem 1. The solution w2p to the inhomogeneous problem is given by

w2p = v0

4

{[(
2λη + 
η

s1
+ 
η

s2
− 
η

η

)
η + (

2λs1 + 
s1
η + 
s1

s2
− 
s1

s1

)
s1 + (

2λs2 + 
s2
η + 
s2

s1
− 
s2

s2

)
s2

]
wc

+ [

η

ηη
2 + 2
s1

η ηs1 + 2
s2
η ηs2 − 
η

s1
s2

1 − 
η
s2
s2

2

]∂wc

∂η
+ [


s1
s1
s2

1 + 2
η
s1
ηs1 + 2
s2

s1
s1s2 − 
s1

η η2 − 
s1
s2
s2

2

]∂wc

∂s1

+ [

s2

s2
s2

2 + 2
η
s2
ηs2 + 2
s1

s2
s1s2 − 
s2

η η2 − 
s2
s1
s2

1

]∂wc

∂s2

}
. (A3)

Proof. We begin by defining the three functions with unknown constant coefficients

�
η

A = A
η

1η
2 ∂wc

∂η
+ A

η

2ηwc, �
η

B = B
η

1 η2 ∂wc

∂s1
+ B

η

2 ηs1
∂wc

∂η
, �

η

C = C
η

1 η2 ∂wc

∂s2
+ C

η

2 ηs2
∂wc

∂η
.

A straightforward calculation using the fact that
∂2wc

∂η2
= −∂2wc

∂s2
1

− ∂2wc

∂s2
2

results in

�(η,s1,s2)�
η

A = 4A
η

1η
∂2wc

∂η2
+ 2

(
A

η

1 + A
η

2

)∂wc

∂η
,

�(η,s1,s2)�
η

B = 2B
η

2 s1
∂2wc

∂η2
+ (

4B
η

1 + 2B
η

2

)
η

∂2wc

∂η∂s1
+ 2B

η

1

∂wc

∂s1
,

�(η,s1,s2)�
η

C = 2C
η

2 s2
∂2wc

∂η2
+ (

4C
η

1 + 2C
η

2

)
η

∂2wc

∂η∂s2
+ 2C

η

1

∂wc

∂s2
.

Setting A
η

1 = v0

η
η

4 , B
η

2 = v0

s1
η

2 , C
η

2 = v0

s2
η

2 , as well as B
η

1 = − 1
2B

η

2 and C
η

1 = − 1
2C

η

2 we find that

�(η,s1,s2)
(
�

η

A + �
η

B + �
η

C

) = v0

[

η

∂2wc

∂η2
+ 1

2

(

η

η + 4A
η

2

)∂wc

∂η
− 1

2

s1

η

∂wc

∂s1
− 1

2

s2

η

∂wc

∂s2

]
.

Using the same argument but this time permuting η, s1, and s2 we find that

�(η,s1,s2)
(
�

s1
A + �

s1
B + �

s1
C

) = v0

[

s1

∂2wc

∂s2
1

+ 1

2

(

s1

s1
+ 4A

s1
2

)∂wc

∂s1
− 1

2



η
s1

∂wc

∂η
− 1

2

s2

s1

∂wc

∂s2

]
,

�(η,s1,s2)
(
�

s2
A + �

s2
B + �

s2
C

) = v0

[

s2

∂2wc

∂s2
2

+ 1

2

(

s2

s2
+ 4A

s2
2

)∂wc

∂s2
− 1

2



η
s2

∂wc

∂η
− 1

2

s1

s2

∂wc

∂s1

]
.

With w2p = �
η

A + �
η

B + �
η

C + �
s1
A + �

s1
B + �

s1
C + �

s2
A + �

s2
B + �

s2
C we find that

�(η,s1,s2)w2p = v0

[

η

∂2wc

∂η2
+ 
s1

∂2wc

∂s2
1

+ 
s2

∂2wc

∂s2
2

+ 1

2

(

η

η + 4A
η

2 − 
η
s1

− 
η
s2

)∂wc

∂η

+ 1

2

(

s1

s1
+ 4A

s1
2 − 
s1

η − 
s1
s2

)∂wc

∂s1
+ 1

2

(

s2

s2
+ 4A

s2
2 − 
s2

η − 
s2
s1

)∂wc

∂s2

]
.

Finally, the coefficients of ∂wc

∂η
, ∂wc

∂s1
, and ∂wc

∂s2
are set to zero by choosing A

η

2, A
s1
2 , and A

s2
2 accordingly, which yields the desired

result (A3). �
With the result for w2p above, we can explicitly write out the boundary conditions for w2h as

w2h|η=0 = −v0

4

[(
2λs1 + 
s1

η + 
s1
s2

− 
s1
s1

)
s1 + (

2λs2 + 
s2
η + 
s2

s1
− 
s2

s2

)
s2 − (


s1
η s2

1 + 
s2
η s2

2

)∂wc

∂η

∣∣∣∣
η=0

]

for s2
1 + s2

2 < a2
j , and

∂ηw2h|η=0 = −v0

4

[(
2λη + 
η

s1
+ 
η

s2
− 
η

η

)
wc

∣∣∣∣
η=0

− (

η

s1
s2

1 + 
η
s2
s2

2

)∂2wc

∂η2

∣∣∣∣
η=0

+ 2
η
s1
s1

∂wc

∂s1

∣∣∣∣
η=0

+ v0

2

η

s2
s2

∂wc

∂s2

∣∣∣∣
η=0

]

for s2
1 + s2

2 > a2
j . It may be possible to express the solution to the problem for w2h in terms of the Green’s functions obtained

using the Sommerfeld method, as outlined in [18].
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