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Transport of interacting particles in a chain of cavities: Description through a modified
Fick-Jacobs equation
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We study the transport process of interacting Brownian particles in a tube of varying cross section. To
describe this process we introduce a modified Fick-Jacobs equation, considering particles that interact through
a hard-core potential. We were able to solve the equation with numerical methods for the case of symmetric
and asymmetric cavities. We focused in the concentration of particles along the direction of the tube. We also
preformed Monte Carlo simulations to evaluate the accuracy of the results, obtaining good agreement between

theory and simulations.
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I. INTRODUCTION

The diffusion of particles in a narrow channel is a subject
that has attracted attention in the last decade because of its
ubiquity in nature. Examples of this can be found within blood
vessels [1,2], protein channels in cell membranes [3], zeolites
[4,5], and nanoporous materials [6] among others. Theoretical
descriptions of these systems have been proposed by using the
Fick-Jacobs equation. For example, the problem of a Brownian
particle diffusing in smoothly corrugated channels was studied
in [7-10]. Bruna and Chapman [11] also investigated the
case of finite-sized particles interacting through a hard-core
potential and diffusing in a confined environment.

We will focus on identical particles, interacting through
a hard-core potential. If the system is one dimensional, the
process is known as single file diffusion (see, e.g., [12-14]). In
this paper we are interested in diffusion along a narrow channel
of variable transverse area and in the effects of a repulsive
interaction among particles. We propose a generalization of
the Fick-Jacobs equation in order to take into account the
interaction. First we have to obtain the Fokker-Planck equation
for interacting particles, since the Fick-Jacobs equation is
derived from it. We arrive at a nonlinear Fokker-Planck
equation for fermions and bosons that can be reinterpreted
for particles with repulsive or attractive interactions.

This paper is organized as follows. In Sec. II we introduce
the Fick-Jacobs equation. In Sec. III we derive the nonlinear
Fokker-Planck equation for a given class of repulsive or attrac-
tive interaction potentials. In Sec. IV we use the expression
for the particle current derived in Sec. III to obtain a nonlinear
Fick-Jacobs equation that takes into account the hard-core
interaction. We test this novel Fick-Jacobs equation by solving
it using the two cavities depicted in Sec. V and compare this
result with the one obtained from Monte Carlo simulations in
Sec. VI. Some final remarks are stated in Sec. VII.

*gsuarez@mdp.edu.ar

1539-3755/2015/91(1)/012135(6)

012135-1

PACS number(s): 05.60.Cd, 05.40.Jc, 02.50.Ey

II. FICK-JACOBS EQUATION

Jacobs [15] introduced an effective one-dimensional diffu-
sion equation, usually referred to as the Fick-Jacobs equation,
for the description of diffusion of noninteracting particles in a
tube of varying cross section. If the cross section is constant,
the problem is reduced to a simple one-dimensional process.
But if there is a region with, for example, a larger transverse
area, a Brownian particle spends more time exploring the
available space and the random walk along the direction of
the tube is slowed.

Let us consider the x axis along the center of the tube;
A(x) is the transverse area at x. For simplicity, we use two-
dimensional systems, in which A(x) is the width of the channel.
(It is straightforward to extend the results to three dimensions.)
The local concentration is c(x,y,t) and evolves according to
the diffusion equation

dc D d%c n 9%c

ar  \ax2  ayr)’
where D is a constant diffusion coefficient and the tube
geometry is taken into account in the boundary conditions.

Jacobs gives an equation for the reduced one-dimensional
concentration g(x,r) = [ c(x,y,r)dy:

dg _ 0 (08 AW
o = Py <8x AX) g)’ M

where A'(x) = ‘;—?. At equilibrium, ¢ is constant and g is
proportional to A(x). An external potential U(x) is included
in the more general version [16]:

98 _ Die—ﬂmx)ieﬂH(x)g
at 0x 0x
a (0g ,
=D—|—+BHX)g], (2)
dx \ 0x

where H(x) = U(x) — B~!log A(x) is the free energy and
klog A(x) is interpreted as the entropy (8 = 1/kT'). The main
assumption in the derivation of (1) or (2) is local equilibrium,
i.e., for each point x, the particle distribution in the transverse
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direction is approximately homogeneous, so that we can write

g(x,t)/A(x) inside the channel,
0

outside.

c(x,y,t) =~ { 3)

The aim is to derive a Fick-Jacobs equation for particles
with hard-core interaction. In the next section we obtain, as a
first step, the diffusion equation for interacting particles. Then
we obtain the corresponding Fick-Jacobs equation.

III. DIFFUSION WITH INTERACTION

Let us consider a one-dimensional lattice; n{ is the
occupation number of site i, and consecutive sites are separated
a distance a (and, as shown below, the results are easily
generalized to higher dimensions). The current between sites
i and i + 1 for a given configuration is

o o o
JP=ni P —ni P, 4

where P; ;1 is the transition rate fromi toi + 1, which satisfies
the relation

P; i1

— e_IB(AUiJFAVi). (5)
Piiy,

We have separated the external potential AU; = U;4 — U;
from the interaction potential AV; = V;;; — V;, which de-
pends on the configuration {n;}. It is convenient to define the
transition rate

P =Py P AU = Py eV (6)
so that the current (4) takes the form
—B(AU+V; -BV;
Jf:n?Pe B(AU;+ *‘)—anPe BVi (7

The previous equations hold for any kind of interaction. In
particular, for the hard-core interaction, the potential in site
i, Vi, is infinite if the site is occupied and O otherwise, so
that e #Vi = 1 — n{, where n{ takes the values 0 or 1. If we
assume that the variation of the external potential is small
(BIAU;| <« 1), then

J? =P —BAU)N! (1 —nl ) — Pniyy (1—nf). (B

1

We are interested in the configuration average of the current,
Ji = (J?), and the occupation number, n; = (n?). We take the
decorrelation of the product (njn{, ;) =~ n;n;1 (which does
not usually hold for occupation number of tagged particles, as
explained in [17], but in our case particles are indistinguishable
and it turns out that the decorrelation is a valid approximation).
In the continuous limit we replace the discrete variables by
fields as follows: n;/a — c(x), J; = J(x), and U; — U(x),
with x = ia; we approximate "L = 2 and consider that
the concentration is smooth, i.e., az% < 1. After some

algebra, from (8) we obtain
ac ,
J:—D<a— +,3Uc(l—ac)>, )
X

where the diffusion coefficient D is equal to Pa>. In the
following, we use the dimensionless space scale x — xa,
so that the lattice spacing is eliminated in (9). In this case,
c(x) = n(x), where n(x) is the continuous limit of n;. We will
use n instead of ¢ in order to make clear that we use the
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dimensionless space scale. The corresponding Fokker-Planck
equation, generalized to higher dimensions, is

on
ot

The result can be generalized to a wider class of repulsive
potentials: e #Y' = 1 — n?/b (b € N). The potential becomes
infinite when site i is occupied by the maximum number of
particles, b. The same equation (10) is obtained, the only
difference being a scaling of the concentration n — n/b. A
value of the concentration equal to 1 means that the maximum
number of particles is reached.

A further generalization is to consider attractive potentials
of the form e™#Y = 1 4 n?/b. In this case, by using again the
scaling n — n/b, the equation becomes

on
E:DV-[Vn+ﬁVUn(l+n)]. (11)

We arrived to the well-known Fokker-Planck equations
for fermions (10) and bosons (11) [18] with the peculiarity
of a classical context. It can be shown that the stationary
solutions (zero current) correspond to the Fermi-Dirac and
Bose-Einstein statistics.

=DV .-[Vh+BVUn(l—n)]. (10)

IV. FICK-JACOBS EQUATION WITH
HARD-CORE INTERACTION

We consider a two-dimensional channel. The diffusion of
particles takes place in this confined environment. We are
looking for a reduced description in a one-dimensional space
(the coordinate along the direction of the channel), including
effects of the hard-core interaction. We consider an external
potential U (x) independent of the transverse direction.

Integrating the continuity equation 3—’[’ = —V - J along the
transverse direction y, we obtain
a a
% _ %Ay, (12)
ot dax

where ¢ = [ dyn =~ nA and we have approximated [ dy J ~
J A. Since the concentration n is approximately constant along
the y direction (from the local equilibrium assumption), then
the x current J, given by (9), is also constant in the transverse
direction. We obtain

g a (dg , g A’
9 _pl(B ipue(1-8)-2g). 3
ot 8x<8x+'3 g( A) Ag> (13)

The expression takes a more compact form in terms of n:

on D 0 on
P _Z A L pun—n)). 14
ot Aox (ax+ﬁU"( ")> (14

For the case of noninteracting particles, replacing (1 — n) by
1 in (14), we recover the corresponding Fick-Jacobs equation
(2).

Let us consider the transversely integrated current j =
JA produced by —U’ = f/B, where f is a dimensionless
force. The condition B|AU;| <« 1 implies that | f| <« 1. From
Eq. (14) we have

on .
A— — fAn(1 —n) = —j/D. (15)
0x
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We are interested in the stationary state with a constant
force, where j and D are constants. In order to find the solution
to this equation we use the expansion

(x) = by + i in (250 b AL IS
nx)= ay SIn X COS X ),
0 o k Lx k LX

with the condition
Ly
/ AX)n(x)dx = N, a7
0

where N is the total number of particles in the cavity, and L,
is the length of the cavity.

V. CAVITIES

To test its accuracy, Eq. (15) has been solved by using
smooth cavities, as shown in Fig. 1. For simplicity, we
selected cavities that are a linear combination of trigonometric
functions. In addition to this, we created a discretized version
of the same cavities depicted inside a square lattice. Monte
Carlo simulations were carried out and we compared the
solutions obtained from these two methods. Further details
of the numerical simulations are included in Sec. VI.

Inside each of these cavities we are going to consider a
mean concentration of particles,

= ——, (18)

where, in the discrete case, fOL * A(x)dx is equal to the total
number of sites in the cavity.

60
40

i A A
28 W
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(b)
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FIG. 1. (Color online) (a) Symmetric and (b) asymmetric cavities
used for testing the theory. The distances are expressed in terms of
the lattice spacing a. See the text for further details.
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In the symmetric case we use a cavity with a cosine shape,
with top and bottom limits given by

e ()]
Wiop = | 1 —cos | —x ,
P L, 4 (19)

Whottom = —Wrop»

so that the transverse width is A(x) = 2wiqp.

We used the following set of parameters in order to
characterize the symmetric cavity: o = 10.5, y =4, and
L, = 100. It is worth mentioning that, in this case, if ¢ = 0.5
only the coefficients a; in (16) are different from zero; i.e.,
by=0Vk=1,2,...,00and by = C.

We also used Eq. (15) to find the steady state of the
transversally averaged concentration along the direction of
the channel, n(x), in an asymmetric cavity. This is, probably,
the most interesting case because a different behavior can be
obtained when the force is applied in opposite directions. It
is specially compelling because of its application in devices
to separate particles of different sizes [19,20]. The top and
bottom borders of the asymmetric cavity shown in Fig. 1 are
given by

. (27 n A . [4rm n
Wiop = | sin [ — —sin | — ,
top = & L) 4 L. " 20

Whottom = — Wtop»

so that A(x) = 2w;ep.

We used the following set of parameters to characterize the
cavity: A = 1, = 20,y = 26,and L, = 100. By using these
values, and within the range 0 < x < L,, Eq. (20) presents
its minimum at x >~ 20, so all the results have been shifted
horizontally 20 units in order to place the bottleneck in x = 0
andx = L,.

VI. NUMERICAL SIMULATIONS

With the purpose of confirming the prediction of Eq. (15),
Monte Carlo simulations were carried out in cavities of
different shapes. We analyzed two cases, symmetric and
asymmetric cavities (Fig. 1). In a square lattice of L, x L,
sites, a discretized version of each cavity was depicted,
indicating the region where the particles can diffuse. In this
discretized version the contour of the cavities become irregular
(see Fig. 4). Within this region, N particles are placed at
random positions. They are allowed to jump freely inside the
cavity, except when the new site is occupied with another
particle. In this case the particle will remain on its site. We
say that one Monte Carlo step has passed when, on average,
every particle had had the opportunity to jump once. Periodic
boundary conditions were set in the exits to simulate an infinite
chain of cavities.

When there are no forces applied, all the particles have the
same jumping rate in all directions. The jumps have a length
equal to the size of a particle. If there is a force, f, acting along
the x axis, the jumping rate will be higher in the direction of
the force. Thus, if the force is applied to the right, the jump
rates in different directions are

pPr =Pl =DP=D;

(21)
P— = P(l + f)
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0 20 40 « 60 80 100

FIG. 2. (Color online) Site concentration in the stationary state
against position x in a symmetric lattice for (a) ¢ =0.5 and
(b) ¢ = 0.8. For each mean concentration, the values of the force are
f =0.01 (red squares), 0.1 (black circles), and 0.5 (blue triangles).
Parameters of the cavity in (19) are « = 10.5, y =4, and L, = 100.
Full lines were obtained with 15 terms of Eq. (16). Dots were obtained
with numerical simulations. The average is taken over 10° samples
between ¢ = 10* and ¢ = 10® Monte Carlo time steps.

Likewise, if the force is applied to the left,

Py =p,=p->=0p,
pe = p(lL+f).

We let the system evolve for some time, until it reaches the
stationary state. After that, we start to measure the amount of
particles on every slice of the cavity of width §x = 1. After
performing an average on configurations of this quantity, we
divide by the area of the cavity, A(x), to find an estimation of
n(x).

In Figs. 2(a) and 2(b) we can see that there is a good
agreement between analytical results (full lines) and numerical
simulations (dots). For the symmetric cavity we show only the
results with the force to the right, in view to the fact that the
exact same behavior is expected when the force is applied in
the opposite direction.

The results of the stationary concentration obtained with
Monte Carlo simulations (dots) and with Eq. (15) (full lines)
are shown in Fig. 3 for the asymmetric cavity. As in the
previous case, there is also a good agreement between theory
and simulation. We use three values of the force and three
different mean concentrations. In all cases the force is applied
to the right. However, as a consequence of the particle-vacancy
equivalence, it is easy to use the same data to obtain the results
with the force to the left. As explained in [21] a system like this

(22)
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n(x)
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X

FIG. 3. (Color online) Stationary state of site concentration along
the direction of the channel in an asymmetric cavity for (a) ¢ = 0.2,
(b)c = 0.5, and (c) ¢ = 0.8. In each case, the following values of the
force were used: f = 0.1 (blue triangles), 0.2 (black squares), and 0.5
(red circles). Solid lines were obtained with 12 terms of Eq. (16). Dots
were obtained with simulations (with 103 samples between ¢t = 10*
and t = 107 Monte Carlo time steps).

one with mean concentration ¢ and a force magnitude f > 0
(to the right) is completely analogous to a system with mean
concentration 1 — ¢ and force — f (to the left), if we consider
the diffusion of the holes instead of the particles. So we can
write

nee(x) =1—n_z1_z(x), (23)

where subscripts indicate the corresponding values of force
and mean concentration.

The equivalence is based on the fact that for every particle
that moves to the left there is an empty site that moves to the
right, and vice versa. Let us stress that this symmetry holds in
Eq. (15) whenn — 1 —n, f - —f,and j — —j.

In Fig. 3(b) a dashed line corresponding to x = 50 is shown.
If the lattice were symmetric, then those three curves should be
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FIG. 4. (Color online) Numerical simulation of average density
or site occupation frequency in an asymmetric cavity in the stationary
state. Values of the mean concentration are (a) ¢ = 0.2, (b) ¢ = 0.5,
and (c) ¢ = 0.8. In all cases the force is f = 0.5 (to the right). The
number of samples is 10°.

symmetric around the x = 50 line. The fact that it is not shows
the effect of the asymmetry of the cavity in the transversally
averaged concentration along the direction of the channel.

In Fig. 4 we can see the average site occupation frequency
on each site. This gives us extra details about the distribution
of particles inside the cavity. In the derivation of Eq. (14) it was
assumed that 7 is approximately constant along the transverse
direction of the channel. It is important to check the ac-
curacy of this assumption. As can be seen from Fig. 4, the
approximation is quite good for ¢ = 0.5, but a deviation from a
constant transverse concentration is visible for ¢ = 0.2 or ¢ =
0.8, especially near the exits. This explains the discrepancy
between theory and simulation in, for example, Fig. 3(c) for
x =~ 15. Note that we are dealing with a rather large value of the
force (f = 0.5), where the condition | f| < 1 does not hold
[see Eq. (15)]. Nevertheless, the equation derived is robust
enough to still provide acceptable results in a considerable

PHYSICAL REVIEW E 91, 012135 (2015)

FIG. 5. (Color online) Site concentration along the direction of
the channel for interacting (blue circles) and noninteracting (red
squares) particles in an asymmetric cavity. Solid lines were obtained
with 12 terms of Eq. (16). Dots were obtained with numerical
simulations. The parameters are ¢ = 0.5 and f = 0.5. Inset: Same
information but for ¢ = 0.1. In all cases, numerical simulations were
averaged over 10° samples between t = 10* and ¢ = 10 Monte
Carlo time steps.

range of concentrations and values of the force, as shown in
Figs. 2 and 3.

To highlight the effect of the hard-core interaction we obtain
n(x) for the same cavity and mean concentration considering
interacting and noninteracting particles (see Fig. 5). The differ-
ence in the concentration profile is clearly visible, especially in
the region with large concentration. A noninteracting system
allows for multiple -occupation of sites. This gives a whole
different dynamic to the problem because the accumulation
of particles in the bottleneck does not affect their mobility.
Also, in this case, n(x) is no longer restricted to the [0; 1]
interval. As expected, the difference between interacting and
noninteracting cases increases when the mean concentration
of particles increases.

VII. CONCLUSIONS

We obtained a nonlinear Fick-Jacobs equation for the
diffusion of interacting particles in a narrow channel with
variable width. The particles are drifted by an external force
f. The equation gives an approximation for the transversally
integrated concentration that holds for | f| < 1. The degree
of accuracy of the approximation was checked with numerical
simulations.

We obtained a good agreement between theoretical and
numerical results even for rather large values of the force
(f = 0.5). This equation has been solved for the cases of
symmetric and asymmetric chains of cavities. The former
was selected mainly because of the simplicity in describing
it, and the latter because of the importance of the asymmetric
diffusion process and its applications. These two geometries
exemplify the accuracy of the equation obtained, but we are
confident that similar results will be found with different
cavities.
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Finally, let us note that, using a discrete model, we derived,
on one hand, the Fick-Jacobs equation for interacting particles
and, on the other hand, the nonlinear Fokker-Planck equation
for fermions and bosons.
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