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Nonthermal and suprathermal distributions as a consequence of superstatistics
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We propose to put the well-known nonthermal and suprathermal empirical distributions, used in plasma
physics, onto a more rigorous foundation. Their use is frequently criticized because of a lack of formal derivation
and physical explanation. A connection between these non-Maxwellian distributions and the Beck-Cohen
superstatistics is suggested. They are perceived as a consequence of typical temperature fluctuations. We show
that the suprathermal distribution is generated by the � distribution of the inverse temperature, in the same way as
the Tsallis q statistics. The nonthermal distribution also follows from the χ2 distribution, with a small variance.
Our contribution provides a possible physical meaning for these ad hoc distributions.

DOI: 10.1103/PhysRevE.91.012133 PACS number(s): 05.30.Jp, 05.90.+m, 05.20.−y

I. INTRODUCTION

The most important concept—with regard to its
omnipresence—in the study of complex systems, such as
plasmas, is undoubtedly the concept of distribution functions.
Indeed, the latter are involved in the derivation of thermo-
dynamical measurable quantities, such as density or mean
velocity and can be experimentally obtained by the direct
observation of the system. Thus, the major applications of
statistical physics relate to the use of distribution functions to
describe various phenomena, e.g., electrons in a metal [1,2],
Brownian motion of a particle in a fluid [3], or wave
propagation in plasmas [4]. On the other hand, most of the
developments in the foundations of statistical mechanics are
motivated by the observation of distribution functions that
cannot be explained by the usual first principles of statistical
physics. The so-called nonextensive statistical mechanics
proposed by Tsallis [5], a quarter century ago, has been
introduced to deal with this problem. In fact, it leads to
power-law distributions, observed in a variety of systems,
that cannot be derived from the usual statistical mechanics.
And so do the κ statistics proposed by Kaniadakis [6] or
the Beck-Cohen superstatistics [7], to cite only few. The
most common distribution function is the one derived by
Boltzmann [8] in the kinetic theory of gases,

pi = exp(−βεi)

Z
, (1)

where εi is the energy of the ith state, β is the inverse
temperature in energy units (β = 1/kBT ), and Z is the
partition function that normalizes the distribution Eq. (1). Let
us shed light on the procedure that leads to its establishment.
Boltzmann considered an ideal gas of N particles in the phase
space of one molecule, i.e., each one having a certain position−→
r and a certain velocity −→v , and he partitioned the phase-space

into W cells (W � N ) with a defined energy and a certain
volume ωi . He assumed equal the probability for any particle
of the gas to be in any cell. Then, he maximized the probability
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under the constraint of a given number of particles,

W∑
i=1

ni = N, (2)

and a given total energy,

W∑
i=1

niεi = E. (3)

This procedure leads to the Boltzmann distribution Eq. (1),
which states that the probability of a given energy decreases
exponentially with this energy. The distribution Eq. (1) is
very common in nature. It describes, for example, velocity
distribution of galaxy clusters in astrophysics [9]. However,
numerous observations pointed out distributions that differ,
more or less slightly, from it. Different empirical distribution
functions have then been introduced to model such a behavior
in a variety of systems out of thermal equilibrium. These
distributions (frequently criticized because of a lack of formal
derivation) could be a consequence of the inadequacy of
one of the steps performed by Boltzmann, and can be a
result of a yet unknown statistics. Among these distributions,
the most commonly encountered in plasma physics are the
nonthermal [10] and the suprathermal [11] distributions. The
latter have been observed over and over and numerous in situ
observations clearly indicate that they are ubiquitous in astro-
physical plasma environments [12–15]. Empirical functions
have then been introduced either in an ad hoc manner [10]
or by curve fitting methods [11] to model such spatial
environments. These functions are, nowadays, widely used
in the investigation of various phenomena in plasma physics
[16–19]. However, their use is frequently criticized because
of a lack of formal derivation and physical explanation [20].
This paper is therefore aimed at putting the nonthermal and
suprathermal distributions onto a more rigorous foundation,
based upon the Beck-Cohen superstatistics [7].

II. BECK-COHEN SUPERSTATISTICS

The Beck-Cohen superstatistics [7] are a generalization
of the ordinary Boltzmann statistics, for which it reduces
in a certain limiting case. They constitute a powerful tool
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for studying systems with complex dynamics and out of
equilibrium [21–24]. They rely on a more general formalism
than the Tsallis q statistics, since they generate not only
Tsallis-type distributions but can also generate other statistics.
The main idea of the superstatistics is to consider a system with
spatiotemporal fluctuations of an intensive quantity. In what
follows, we will choose the temperature as our fluctuating
quantity. This could be the inverse of another intensive
quantity, such as the pressure, the chemical potential, or the
energy dissipation rate in a turbulent fluid. Note that such
an approach was first introduced in Refs. [25,26] to give
an explanation of the q parameter appearing in the Tsallis
q statistics, based on fluctuations of the physical quantities.
We consider a nonequilibrium steady state of a macroscopic
system, made up of many smaller cells that are temporarily
in local equilibrium. Within each cell, the temperature is
approximately constant. Each cell is large enough to obey
statistical mechanics but has a different β assigned to it,
according to a probability density f (β). We assume that the
local temperatures in the various cells change on a long time
scale, tscale, much larger than the relaxation time a single cell
needs to reach its local equilibrium. Then, the distribution f (β)
will shape the generalized Boltzmann distribution, which is
given by Ref. [7],

B(E) =
∫ ∞

0
f (β) exp(−βE)dβ, (4)

where B is an effective generalized Boltzmann factor for
the nonequilibrium system. In a certain sense, it represents
the statistics [f (β)] of the statistics [exp(−βE)] of the
cells constituting the system [7]. In absence of fluctuations,
i.e., f (β) = δ(β − β0), the ordinary Boltzmann factor is
recovered. It has been shown that the generalized distributions
Eq. (4) can describe Tsallis distributions or distributions that
are nearly Tsallis with tiny corrections. We will show here that
a judicious choice of f (β) can lead to the so-called nonthermal
and suprathermal distributions.

In principle, f (β) could be any function. Nevertheless, it
has to satisfy some conditions: (i) it must be a normalized
probability density; (ii) it has to be chosen in such a way
that the integral

∫ +∞
0 B(E)dE exists [in a more general way,

the integral
∫ +∞

0 ρ(E)B(E)dE, where ρ(E) is the density of
states, must exist], and (iii) it has to present a limit for which
the usual Boltzmann factor is recovered. The � distribution is
one of the most ubiquitous probability densities in nature. It
reads as [27]

f (β) = 1

b�(c)

(
β

b

)c−1

exp(−β/b), (5)

where b and c are positive real parameters. This two-parameter
continuous probability distribution contains as special cases
the common exponential distribution and the χ2 distribution.
Figure 1 shows its behavior with different values of the
parameters b and c. Making use of Eq. (5), the average value
of the inverse temperature β is given by

β0 =
∫ ∞

0
βf (β)dβ = bc, (6)
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FIG. 1. Variation of the � distribution with the inverse tempera-
ture β for different values of the parameters b and c (b = 1, c = 2,
solid line; b = 2, c = 2, dashed line; b = 1, c = 1, dotted line).

and the variance reads as

σ 2 =
∫ ∞

0
(β − β0)f (β)dβ = b2c. (7)

The generalized Boltzmann factor Eq. (4) becomes

B(E) =
∫ ∞

0
f (β) exp(−βE)dβ = (1 + bE)−c. (8)

By identifying c = κ + 1, Eq. (8) becomes

B(E) =
(

1 + β0E

κ + 1

)−κ−1

. (9)

The latter is the well-known suprathermal distribution. It
has been introduced to fit the OGO1 and OGO2 solar wind
electron data [11]. The parameter κ shapes the suprathermal
tail of the distribution and measures its deviation from the
Maxwell-Boltzmann equilibrium (which is recovered in the
limit κ → ∞). Figure 2 shows the behavior of the distribution
Eq. (9) with different values of c (or equivalently the values
of the so-called spectral index κ). As one may expect, as c

or κ increases (a tendency toward Maxwellian equilibrium)
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FIG. 2. Plot of the suprathermal distribution for different values
of c = 3 (κ = 2, solid line), c = 3.5 (κ = 2.5, dashed line), and c = 4
(κ = 3, dotted line), with b = 1.
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FIG. 3. Plot of the nonthermal distribution for c = 1/2 and b = 1.

high-energy states become less probable. Numerous observa-
tions clearly indicate that such distributions are ubiquitous in
a variety of plasma environments. They have been observed,
for instance, in the proton data near the Earth’s bow shock [12]
and IMP6 solar wind proton observations [13]. Nowadays, a
large part of the plasma literature is devoted to their study
and to the investigation of their influence on several plasma
processes. The parameter κ , measuring the deviation from the
usual Boltzmann equilibrium, is, in our interpretation, related
to the fluctuations of the inverse temperature β. It follows
from a �-distributed inverse temperatures β. It has been
shown that the Tsallis q distributions can also be generated
by a � distribution, with the identification c = 1/q − 1 [7].
This is in consistency with recent investigations stating that
the suprathermal distribution is identical to the Tsallis q

distribution, with κ + 1 = 1/q − 1 [20,28,29].
We can show that in a certain limit of fluctuations, the

� distribution may also lead to the nonthermal or Cairns
distribution. In fact, the distribution Eq. (8) can be written
in the form

B(E) = (1 + bE)−c = exp{−c ln(1 + bE)}. (10)

In the case of small fluctuations bE � 1, the exponential can
be expanded to keep only the first term on bE,

B(E) = exp(−β0E)

[
1 + 1

2c
β2

0E2

]
. (11)

Introducing α = 1/(2c), Eq. (11) leads to the well- known
nonthermal distribution

B(E) = exp(−β0E)
[
1 + αβ2

0E2
]
, (12)

where α is the nonthermal parameter. In Fig. 3, we show the
plot of the distribution Eq. (12) for a maximum nonthermality
(α = 1, or equivalently c = 1/2). This distribution exhibits
the presence of a flat shoulder, which is a characteristic of
the nonthermal energetic particles. This distribution Eq. (12)
has been introduced by Cairns et al. [10] to show that the
presence of nonthermal electrons may change the nature
of ion-sound solitary structures and allow the existence of
rarefactive ion-acoustic solitary structures very much like
those observed by the Freja and Viking satellites. In our
interpretation, nonthermal effects are linked to �-distributed
inverse temperatures β.

III. SUMMARY

In this paper, we aimed to deal with the physical expla-
nation of the two famous empirical distributions, namely, the
suprathermal and the nonthermal ones. A connection between
these non-Maxwellian distributions and superstatistics is
suggested. Using the Beck-Cohen superstatistics, we interpret
these two distributions as a consequence of temperature
fluctuations. We have shown that when the inverse temperature
β is �-distributed, the corresponding distribution function
(given by the Laplace transform) leads to the suprathermal
distribution, with the parameter κ that underpins suprather-
mality given by c = κ + 1. Note that the quantity 2c is usually
interpreted as the effective number of degrees of freedom
contributing to this fluctuation. The parameter κ increases
with the degree of freedom of the temperature fluctuation
and (in a certain sense) measures it. This same � distribution
leads to the nonthermal distribution in the case bE � 1 [small
variance case, which is proportional to b, see Eq (7)]. When
the variance σ is getting smaller and smaller, the distribution
tends to have a Maxwellian behavior. In the limit σ → 0,
in which f (β) leads to the Dirac function, the Maxwellian
distribution is exactly recovered. It is interesting to mention
that this interpretation provides somehow an unification of
these different distributions encountered in plasma physics.
In fact, they appear to belong to the same universal class of
temperature fluctuations, with different order of the magnitude
of the variance. It is well-known that temperature fluctuations
occur often in plasma environments, and they contribute
considerably to the particle flux [30] and drive a significant
amount of the anomalously high electron heat transport [31].
Many observations indicate the existence of temperature
fluctuations in astrophysical plasmas environments [32,33]
and in laboratory plasma devices such as spray torches [34]
or fusion plasmas [30,35]. Then, it appears very plausible
to relate the anomalous distributions observed in plasmas to
typical temperature fluctuations. We stress that a comparison
of the experimental data of the temperature fluctuations is a
problem of great importance, but beyond the scope of the
present work.
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