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Fluctuation theorem for partially masked nonequilibrium dynamics

Naoto Shiraishi and Takahiro Sagawa
Department of Basic Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
(Received 17 March 2014; revised manuscript received 25 September 2014; published 16 January 2015)

We establish a generalization of the fluctuation theorem for partially masked nonequilibrium dynamics. We
introduce a partial entropy production with a subset of all possible transitions, and show that the partial entropy
production satisfies the integral fluctuation theorem. Our result reveals the fundamental properties of a broad
class of autonomous as well as nonautonomous nanomachines. In particular, our result gives a unified fluctuation
theorem for both autonomous and nonautonomous Maxwell’s demons, where mutual information plays a crucial
role. Furthermore, we derive a fluctuation-dissipation theorem that relates nonequilibrium stationary current to
two kinds of equilibrium fluctuations.
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I. INTRODUCTION

In modern nonequilibrium statistical physics, the fluc-
tuation theorem (FT) is significant for characterizing the
foundation of thermodynamic irreversibility [1–6]. The FT
has revealed that entropy production is directly related to the
probability of the observed trajectory and that of its time
reversal. The entropy production is measured by observing
the microscopic trajectories, which has been experimentally
demonstrated in a variety of systems [7–11].

In many nonequilibrium systems, however, we are not
necessarily interested in all of the microscopic transitions. A
prominent example is Maxwell’s demon, which is a composite
system of an engine and a memory. The memory measures
the state of the engine and performs feedback control on
the engine. If we calculate the entropy production with
the engine alone, the engine apparently violates the FT
and the second law of thermodynamics. Moreover, in many
experimental situations with complicated artificial [12–14] and
biological [10,15–19] nanomachines, we cannot observe all of
the transitions. If we observe only a some of the transitions,
we cannot determine the total amount of entropy production.
In such situations, is it still possible to obtain a universal
nonequilibrium relation like the FT?

In this paper, we reveal the universal property of partially
masked nonequilibrium dynamics. Let G be the set of all
possible transitions between microscopic states, and � be
a subset of G. We call transitions in � observed, and its
complement masked [see Fig. 1(a)]. We then introduce a
partial entropy production associated with �. Surprisingly,
we can show that the integral FT holds for the partial entropy
production, which is regarded as an interesting generalization
of the FT.

The concept of partial entropy production is straightfor-
wardly applicable to quite a broad class of nanomachines
in thermal environments, such as autonomous Maxwell’s
demons (or bipartite sensing systems) [20–31], molecular
motors [10,15,16], ion exchangers [32], bacterial chemo-
taxis [17–19], and single-electron boxes [14]. In order to
discuss the power of our result, we show two applications.
First, we apply it to autonomous demons [20,22–25], which
reveals the crucial role of mutual information at the level of
stochastic trajectories. Our approach reproduces the previous
results on nonautonomous Maxwell’s demons as a special

case [33,34]. Moreover, we derive a fluctuation-dissipation
theorem (FDT) for a pair of transitions.

II. TOTAL ENTROPY PRODUCTION

A thermodynamic system obeys a continuous-time Markov
jump process for the time interval 0 � t � T . We assume that
the number of states of the system is finite. The transition (i.e.,
jump) from state w′ to state w is written as w′ → w, to which
we assign a transition probability P (w′ → w; t) that depends
on time t in general. The dynamics of the system is described
by the master equation

∂P (w,t)

∂t
= J (w,t) :=

∑
w′

J (w′ → w; t), (1)

where P (w,t) is the probability of w at time t , and J (w′ →
w; t) := P (w′,t)P (w′ → w; t) − P (w,t)P (w → w′; t) is the
probability flux from w′ to w. We assume that the system is
attached to a single heat bath at inverse temperature β. From
the local detailed balance condition, the heat absorbed by the
system from the bath during the transition w′ → w at time t

is given by

Q(w′ → w; t) = − 1

β
ln

P (w′ → w; t)

P (w → w′; t)
. (2)

Let � be a realized trajectory of the dynamics, in which
transitions occur N times at t = t1,t2, . . . ,tN . The state during
the time interval ti � t < ti+1 is denoted by wi with t0 := 0
and tN+1 := T . In particular, the initial and the final states
are denoted by w0 and wN , respectively. The total entropy
production along trajectory � is then given by

σtot := −β

N∑
i=1

Q(wi−1 → wi ; ti) + �s, (3)

where the stochastic entropy at time t is given by s(w,t) :=
− ln P (w,t), and its change is given by �s := s(wN,T ) −
s(w0,0).
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FIG. 1. (Color online) (a) Schematic of a Markov jump process,
where the circles indicate the microscopic states and the arrows
indicate the paths of possible transitions. The four bold red arrows
indicate the observed transitions in � and the eight black arrows
indicate its complement. (b) Schematic of a quantum dot with at
most one electron. Two electron baths, a source and a drain, provide
(absorb) electrons to (from) the dot. There is also a leak of an electron
to the outer environment. We observe only the transfer of electrons
between the source and the dot. Thus, we cannot distinguish the
transition associated with the drain from that associated with the
leak.

III. MAIN RESULT

First of all, we define the entropy production associated
with a single path of w′ → w (see Fig. 2):

σw′→w := −βQw′→w + �sw′→w. (4)

The right-hand side (RHS) consists of the following two
terms. First, Qw′→w is the heat absorbed by the system during
transitions in w′ → w:

Qw′→w :=
N∑

i=1

Q(wi−1 → wi ; ti)δw′→w(wi−1 → wi), (5)

where δw′→w(wi−1 → wi) takes the value 1 if wi−1 = w′ and
wi = w, and 0 otherwise. Second, �sw′→w is the change in
the stochastic entropy induced by the transition w′ → w:

�sw′→w := sw′→w,jump −
∫ T

0

J (w′ → w; t)δw(t),w

P (w(t),t)
dt, (6)

where w(t) represents the state at time t , and δw(t),w takes the
value 1 if w(t) = w and 0 otherwise. The first term on the RHS
in Eq. (6) represents the change in the stochastic entropy due

w

w’

FIG. 2. (Color online) An example of the single path w′ → w,
which is bold and colored red.

to the realized jumps in w′ → w:

sw′→w,jump :=
N∑

i=1

s(wi,ti) − s(wi−1,ti)δw′→w(wi−1 → wi).

(7)

The second term on the RHS in Eq. (6) represents the change
in the stochastic entropy due to the time evolution of the
probability distribution induced by transitions in w′ → w. The
sum of the second term on the RHS in Eq. (6) for w′ equals
the time differential of the stochastic entropy:

∂s(w,t)

∂t
= −

∑
w′

J (w′ → w; t)

P (w,t)
. (8)

We can then show that the sum of the single-path entropy
production for all paths recovers the total entropy production:

σtot =
∑

w′→w∈G

σw′→w, (9)

which is a crucial property of the definition (4). By summing
up the single-path entropy production over a subset of all paths,
we define the partial entropy production with a subset � ⊂ G;

σ� :=
∑

w′→w∈�

σw′→w = −βQ� + s�,jump −
∫ T

0

J�(w,t)

P (w,t)
,

(10)

where

Q� :=
∑

w′→w∈�

Qw′→w, (11)

s�,jump :=
∑

w′→w∈�

sw′→w,jump, (12)

J�(w,t) :=
∑

{w′|(w′→w)∈�}
J (w′ → w; t). (13)

From Eq. (9), we can show that

σtot = σ� + σ�c , (14)

where �c is a complement of �. In general, if G is divided
into m parts �1, . . . ,�m, then

∑
i σ�i

= σtot holds. Therefore,
our formalism enables additive decompositions of the total
entropy production; we call this property additivity.

We here discuss a simple example of the choice of �.
Figure 1(b) shows an experimentally realizable setup of a
quantum dot with two electron baths (the source and the
drain) [14]. At most one electron is in the dot. Electrons
are provided from these two baths. In addition, there is a
leak of electrons; an electron sometimes escapes from the
dot to the outside environment that is regarded as the third
bath. Suppose that we observe transport of the electrons only
between the source and the dot. We set transitions associated
with the source to �, which is denoted by two bold red arrows
in Fig. 1(b). Note that we cannot distinguish the transition
associated with the drain from that associated with the leak,
and thus we cannot calculate the total entropy production from
the observed data. Even in such a case, we can calculate the
partial entropy production with �.
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In the above example, there is no backward process of the
leak, and therefore the total entropy production and the partial
entropy production with �c are not well defined. However,
the partial entropy production with � is still well defined. In
general, in order to define the partial entropy production with
�, we assume only that, for any w → w′ ∈ � with P (w →
w′; t) �= 0, the backward transition probability is also nonzero
P (w′ → w; t) �= 0.

We stress that it is highly nontrivial whether σ� satisfies the
integral FT. However, we indeed have that for any choice of �

〈e−σ�〉 = 1, (15)

which is the main result in this paper.
We prove Eq. (15) as follows. We define another transition

rate P ∗ as

P ∗(w → w′; t) :=
{
P (w → w′; t), (w′ → w) ∈ �,
P (w′,t)P (w′→w;t)

P (w,t) , (w′ → w) /∈ �,
(16)

with the modified escape rate

λ∗(w,t) :=
∑
w′

P ∗(w → w′; t) = λ(w,t) + J�c (w,t)

P (w,t)
, (17)

where λ is the original escape rate of P . It is easy to show that

P (w → w′; t)eβQ(w→w′;t)+s(w,t)−s(w′,t)δ�(w→w′)

= P ∗(w′ → w; t)
P (w′,t)
P (w,t)

, (18)

where δ�(w → w′) takes 1 if w → w′ ∈ � and 0 otherwise.
In addition, J�(w,t) + J�c (w,t) = dP (w,t)/dt leads to

e
∫ t ′′
t ′ J�(w,t)/P (w,t)dt = P (w,t ′′)

P (w,t ′)
e− ∫ t ′′

t ′ J�c (w,t)/P (w,t)dt . (19)

By using Eqs. (17), (18), and (19), we arrive at our main result

〈e−σ�〉

=
∫

d�P (wN,T )
N∏

i=1

P ∗(wi → wi−1; ti)
N∏

i=0

e
−∫ ti+1

ti
λ∗(wi,t)dt

= 1. (20)

Since Eq. (15) is valid for any Markov jump system and any
choice of �, we obtain many relations in specific situations by
applying Eq. (15). In the following, we show two applications.
One is to bipartite systems, which clarifies how information
is used in autonomous measurement and feedback. The other
gives a FDT for a pair of transitions, in which the empirical
measure fluctuation plays a role as important as that of the
current fluctuation.

IV. AUTONOMOUS MAXWELL’S DEMONS

We consider a model of autonomous Maxwell’s
demons, which is a simplification of models discussed in
Refs. [20,22,23]. We call the system autonomous when the
transition rates are time independent. Suppose that a particle
is transported between two particle baths: H with high density
and L with low density (see Fig. 3). Between the baths, there
is a single site where at most a single particle can come in. Let
x ∈ {0,1} be the number of particles in the site. In addition,

wall

rl

Particle 
bath
(dense)

Particle 
bath
(dilute)

site

H L
y=l

y=r

x=1 x=0

(a) (b)

FIG. 3. (Color online) (a) Schematic of the autonomous demon,
which consists of two baths, a site for a single particle, and a wall. (b)
State space of the model. If a particle is (is not) in the site, the wall
tends to go right (left). The red arrows indicate transitions in �. With
one counterclockwise rotation, one particle is carried from L to H.

we consider a wall that plays the role of the demon. The
wall is inserted between the site and one of the baths. Let
y ∈ {l,r} be the position of the wall corresponding to left
or right. If y = l (y = r), the wall prohibits the jump of the
particle between the site and the bath H (L). The state of the
total system is written as w := (x,y). Correspondingly, we
denote wi =: (xi,yi). We assume that the probability of y = l

is higher (lower) than r if x = 0 (x = 1). Intuitively, the wall
measures x and then changes its own state depending on the
measurement result, which enables the particles to move from
L to H against the chemical potential difference. However,
since the time intervals for measurement processes and those
for feedback processes are not separated from each other, the
previous results for nonautonomous demons [33,34], in which
the mutual information plays a crucial role, cannot apply to
autonomous cases. In more recent works, the role of the mutual
information has been clarified for autonomous demons at the
level of the ensemble average [24,25,28,29]. Here, by applying
our general result, we will show that the mutual information
also plays an important role in autonomous demons at the level
of stochastic trajectories, as is the case for nonautonomous
demons [33,34].

We introduce the entropy production associated with
x,σx := −βQx + s(xN,T ) − s(x0,0), and the mutual infor-
mation that quantifies the correlation between x and y. The
stochastic mutual information between the particle and the
wall is given by It (x; y) := ln P (x,y,t)/P (x,t)P (y,t) [33,34],
whose ensemble average gives the mutual information [35].
The change in the mutual information associated with the
dynamics of the particle is given by

�Ix := Ix,jump +
∫ T

0
Fx(x(t),y(t),t)dt. (21)

Here, Ix,jump represents the change in the mutual information
induced by jumps in x:

Ix,jump :=
N∑

i=1

Iti (xi ; yi) − Iti (xi−1; yi−1)δyi ,yi−1 , (22)

where δ is the Kronecker delta. With the notation J
y

x ′,x(t) :=
J ((x ′,y) → (x,y); t),Fx(x,y,t) is defined as

Fx(x,y,t) := 1

P (x,y,t)

∑
x ′

J
y

x ′,x(t) − 1

P (x,t)

∑
y,x ′

J
y

x ′,x(t),

(23)
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which represents the change in the mutual information induced
by the time evolution of the probability distribution induced by
transitions in x. To confirm the meaning of Fx(x,y,t), we trans-
form Fx(x,y,t) into another representation. By abbreviating
P (x,y,t) to px,y , the mutual information such as It (0; r) can
be regarded as a function with three arguments p0,r ,p0,l , and
p1,r such that It (0; r) = ln[p0,r/(p0,r + p0,l)(p0,r + p1,r )].
The time differential of the mutual information is then written
as

dIt (x; y)

dt
=

∑
c∈{0,1}

∑
d∈{l,r}

∂It (x; y)

∂pc,d

dpc,d

dt
. (24)

It is easy to show that Fx(x,y,t) corresponds to the contribution
to (24) from the probability flux with x:

Fx(x,y,t) =
∑

c∈{0,1}

∑
d∈{l,r}

∂It (x; y)

∂pc,d

∑
x ′

J d
x ′,c(t). (25)

We note that �Ix is also rewritten as

�Ix =
∫ T

0
ιx(t)dt, (26)

where ιx(t) is defined as

ιx(t) := lim
�t→0

1

�t
I (x(t + �t); y(t)) − I (x(t); y(t)). (27)

Defining ιy(t) in a similar way, we obtain

ιx(t) + ιy(t) = dIt (x; y)

dt
. (28)

Here, the ensemble average of ιx(t) is equal to the dynamic
information flow given in Refs. [21,25].

We now apply Eq. (15) to this model. We set � to transitions
in x [i.e., � := {(0,r) � (1,r),(0,l) � (1,l)}]. Then Q�

describes the heat absorbed by the particles (i.e., Qx = Q�).
We also obtain

−
∑

w′→w∈�

sw′→w,jump = Ix,jump −
N∑

i=1

s(xi,ti) − s(xi−1,ti)

= Ix,jump − s(xN,T ) + s(x0,0)

−
∫ T

0

∑
y,x ′ J

y

x ′,x(t)(t)

P (x(t),t)
dt, (29)

and hence σ� = σx − �Ix . Then Eq. (15) reduces to

〈e−σx+�Ix 〉 = 1, (30)

in which mutual information contributes to the FT on an
equal footing with the entropy production associated with the
particles.

Notably, for any bipartite system described as w = (x,y)
with time-dependent transition rates, Eq. (30) holds with
the same derivation. In this sense, Eq. (30) includes a
previously obtained FT for nonautonomous demons [33,34] as
its particular case (see the Appendix). Thus, Eq. (30) provides
a unified view of autonomous and nonautonomous demons,
where mutual information is a resource of the entropy decrease
of a subsystem.
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FIG. 4. (Color online) Numerical test of Eq. (30). (a) A his-
togram of −σx + Ix,jump [blue (light gray) lines] and −σx + Ix,jump +∫

Fx(x,y,t)dt [red (dark gray) lines] on R = 3.5 with 10 000
trials. (b) 〈e−σx+Ix,jump〉 (blue circles) and 〈e−σx+Ix,jump+∫

Fx (x,y,t)dt 〉 (red
squares) with the change in R. The system is in equilibrium at R = 2;
the larger is R, the larger the stationary flux becomes.

Using Jensen’s inequality, Eq. (30) leads to a second lawlike
inequality

〈σ̇x〉 −
∑
x,x ′,y

J
y

x,x ′ (t)It (x
′; y) − It (x; y) � 0, (31)

which implies that the entropy production rate of the particles
is bounded by the mutual information flow. This inequality has
also been obtained in Refs. [21,24,25]. Note that this inequality
does not include any contribution from Fx(x,y,t), because the
ensemble average of Fx(x,y,t) is equal to zero.

While the ensemble average of Fx(x,y,t) vanishes,
this term is needed in Eq. (30). We explicitly show
this point with numerical simulation. Set the parameters
P (1 → 0|r) = P (0 → 1|l) = 1,P (0→1|r) = P (1→0|l)=2,

P (r → l|1) = P (l → r|0) = 1,P (l → r|1) = P (r → l|0) =:
R,T = 10, and set the initial state at its stationary state. We
obtain the probability distribution of −σx + Ix,jump [blue
(light gray) lines] and that of −σx + Ix,jump + ∫

Fx(x,y,t)dt

[red (dark gray) lines] on R = 3.5. As shown in Fig. 4(a), the
variance of the distribution of −σx + Ix,jump + ∫

Fx(x,y,t)dt

is larger than that of −σx + Ix,jump. Since the tails of the
distributions make a significant contribution in Eq. (30),
〈e−σx+Ix,jump〉 deviates from unity as R increases, whereas
〈e−σx+Ix,jump+

∫
Fx (x,y,t)dt 〉 stays at unity in agreement with

Eq. (30).

V. FLUCTUATION-DISSIPATION THEOREM

By expanding our general result (15) around equilibrium,
we derive a FDT for a pair of transitions. Although this FDT
is general, we here discuss it with a specific example, a simple
model of kinesin. The kinesin conveys an object by consuming
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Object

Microtube

w’w

FIG. 5. (Color online) Schematic of the state space of a model
of a kinesin. By consuming ATP, the kinesin conveys an object
with five steps. We focus on the transition w′ ↔ w, which cor-
responds to the bold arrow colored red, and derive a relation
between the nonequilibrium current and two equilibrium fluctuations
with w′ → w.

the chemical fuel ATP with five cyclic steps (see Fig. 5).
In this simple model, the kinesin is in equilibrium with a
stall force. If the applied force is slightly varied from the
stall force, the kinesin is in a linearly nonequilibrium steady
state with stationary current. We will show that the stationary
current is characterized by the fluctuations in the equilibrium
state.

The perturbation on the transition w′ → w (see Fig. 5)
is defined as a := s(w) − s(w′) + �μ, where �μ is the
chemical potential difference coupled to reaction w′ → w.
If the change in the applied force is of order ε,a is also
of order ε. We then introduce two key quantities. First,
let N := ∑

i δw′→w(wi−1 → wi) − δw→w′(wi−1 → wi) be the
empirical current from w′ to w. The ensemble average of
the empirical current equals the probability flux in the steady
state with perturbation ε such that 〈N〉 = T J . Here, we
write J (w′ → w) as J for simplicity. Next, we define the
degree of the fluctuation of the empirical measures for w

and w′ as C := τ (w′)/P (w′) − τ (w)/P (w), where τ (w) :=∫ T

0 δw,w(t)dt is the empirical measure at w. The quantity C

indicates how the rate of the empirical measure between
w and w′,τ (w)/τ (w′), differs from its ensemble average,
P (w)/P (w′). If the empirical measure is equal to the ensemble
average, C is equal to 0. Both the empirical current and the
empirical measure are well studied in the context of large
deviation theory [36–39].

By setting � to the transitions w′ ↔ w, Eq. (15) is written
as 〈e−aN+JC〉 = 1. Note that a and J are of order ε. Hence,
the above equality is expanded as

〈−aN + JC〉 + 1
2 〈(−aN + JC)2〉 + O(ε3) = 0. (32)

From 〈C〉 = 0 and 〈·〉 = [1 + O(ε)]〈·〉0, Eq. (32) is trans-
formed into

aT J = 1
2 〈(−aN + JC)2〉0 + O(ε3), (33)

where 〈·〉0 represents the ensemble average in the equilibrium
state. Since NC changes its sign for the time-reversal trajec-
tory, and since in equilibrium a trajectory and its time reversal
have the same probability, the cross term of the RHS, 〈NC〉0,
is equal to 0. Substituting 〈NC〉0 = 0 into (33) and taking the
equality up to ε2 order, we obtain the FDT

aT J = a2

2
〈N2〉0 + J 2

2
〈C2〉0. (34)

Here, since 〈N〉0 = 〈C〉0 = 0,〈N2〉0 and 〈C2〉0 represent the
current fluctuation and the empirical measure fluctuation in
the equilibrium state, respectively. The obtained FDT (34)
connects the nonequilibrium stationary current J and the two
kinds of equilibrium fluctuations. In contrast to the usual FDT,
the empirical measure fluctuation appears in this FDT. We
note that the fluctuation of C is significant in Eq. (34), while
its ensemble average is zero.

In addition, the condition that J is a real number leads to

1

T 2
〈N2〉0〈C2〉0 � 1, (35)

which implies that both the current fluctuation and the
empirical measure fluctuation cannot be large at the same time.

VI. CONCLUDING REMARKS

We have derived a FT (15) for partially masked nonequi-
librium dynamics. Applying the general result to specific
situations, we can obtain both previous results [1,3,5,6,33,34]
and additional relations like Eq. (30), Eq. (34), and Eq. (35).
Equation (30) clarifies the role of mutual information in
both autonomous and nonautonomous Maxwell’s demons.
Equations (34) and (35) show the features of equilibrium
fluctuations with a pair of transition paths. The single-path
entropy production (4) is regarded as a building block for
constructing various thermodynamic relations for Markov
processes. Although we treat only the Markov jump processes
in this paper, it is easy to extend our result to the Markov chain
and the Langevin dynamics.

We here make a remark on the relationship between our
result and a previous work. Although Eq. (15) looks similar
to an equality obtained by Hartich et al. (Appendix A of
Ref. [24]), there is a crucial difference between their result and
ours. Their result is a special case of the following equality:

〈
eβQ�−s�,jump−

∫ T

0 J�(w(t),t)/P (w(t),t)dt
〉 = 1, (36)

where we assumed that, if w → w′ is in � (�c), w′ → w is
also in � (�c). The sign of J�(w(t),t)/P (w(t),t) in Eq. (36)
is opposite to that in Eq. (15). Therefore, the exponent of
the left-hand side in Eq. (36) does not satisfy the additivity,
whereas the additivity is the crucial characterization of our
approach.

The partial entropy production given in Eqs. (4) and (10)
satisfies both the additivity and the fluctuation theorem. The
additivity implies that the total entropy production can be
decomposed into those of the subsets of transitions. The fluc-
tuation theorem leads to a variety of thermodynamic relations.
Therefore, our definition of the partial entropy production is a
reasonable way to assign the entropy production to individual
transitions. This approach would enhance our understanding of
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stochastic thermodynamics at the level of individual transition
paths. For instance, we have derived a FDT for a pair of
transition paths. Another possible application of our frame-
work is to biological molecular motors, which are regarded as
small heat engines converting fuel into work [15,40,41]. In this
approach, for example, we would be able to reveal a bottleneck
process in terms of the thermodynamic efficiency of motors,
and its connection to the design principle of the molecular
structure.
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APPENDIX A: DERIVATION OF THE FT FOR
NONAUTONOMOUS MAXWELL’S DEMONS

FROM EQ. (30)

We reproduce the FT for nonautonomous Maxwell’s
demons [33,34] from Eq. (30). We consider a bipartite system
with state w = (x,y). Intuitively, x is the state of the engine
and y is the state of the memory of the demon. We assume that
the transition rates satisfy

P (x → x ′; t |y) = 0 (T2i � t < T2i+1), (A1)

P (y → y ′; t |x) = 0 (T2i+1 � t < T2i+2), (A2)

with 0 = T0 < T1 < T2 < · · · < T2M = T (see also Fig. 6). In
other words, only y can change in the time interval T2i � t <

T2i+1, where a measurement is performed by the demon; the
measurement outcome is registered in the memory. Whereas
only x can change in the time interval T2i+1 � t < T2i+2,
where feedback control is performed; the engine evolves
depending on the outcome registered in the memory.

x y

T1

0=T0

T2

T3

T4

I   (x;y)T0

I   (x;y)T1

I   (x;y)T2

I   (x;y)T3

I   (x;y)T4

time

FIG. 6. Schematic of dynamics of the total system. The bold lines
indicate the time intervals when the subsystem can evolve, whereas
the dashed lines indicate the time intervals when the subsystem is
frozen.

We apply Eq. (30) to this situation and calculate �Ix . While
�Ix is equal to zero for the time interval T2i � t < T2i+1,

Fx(x,y,t) = ∂

∂t
It (x; y) (A3)

holds for the time interval T2i+1 � t < T2i+2, because the
probability distribution P (x,y,t) changes only by transitions
in x during this time interval. Therefore, �Ix for T2i+1 � t <

T2i+2 becomes

�Ix = Ix,jump +
∫ T2i+2

T2i+1

∂

∂t
It (x; y)dt

= IT2i+2 (x; y) − IT2i+1 (x; y). (A4)

We then transform Eq. (30) into〈
e−σx+

∑
i IT2i+2 (x;y)−IT2i+1 (x;y)〉 = 1, (A5)

which is equivalent to the FT obtained in Refs. [33,34].
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