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Prior-predictive value from fast-growth simulations: Error analysis and bias estimation
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Variants of fluctuation theorems recently discovered in the statistical mechanics of nonequilibrium processes
may be used for the efficient determination of high-dimensional integrals as typically occurring in Bayesian data
analysis. In particular for multimodal distributions, Monte Carlo procedures not relying on perfect equilibration
are advantageous. We provide a comprehensive statistical error analysis for the determination of the prior-
predictive value (the evidence) in a Bayes problem, building on a variant of the Jarzynski equation. Special care
is devoted to the characterization of the bias intrinsic to the method and statistical errors arising from exponential
averages. We also discuss the determination of averages over multimodal posterior distributions with the help of
a consequence of the Crooks relation. All our findings are verified by extensive numerical simulations of two
model systems with bimodal likelihoods.
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I. INTRODUCTION

Statistical data analysis is at the heart of all quantitative
science. Observations, measurements, and numerical simu-
lations alike are prone to random perturbations, and effort
and care are needed to scrutinize the influence of these noisy
disturbances on the results of the respective investigation. A
particularly clear and efficient procedure to do so is provided
by Bayesian inference [1–3]. In a typical setup, a model M

specified by parameters x is checked against observational,
experimental, or numerical data d. All information on the
parameters already available from previous experience is
subsumed in the prior distribution pp(x|M) of the parameters.
The model itself is characterized by a likelihood distribution
pl(d|x,M) specifying the probability of data conditioned on a
particular choice of the parameters. The application of Bayes
rule,

ppost(x|d,M) = pp(x|M)pl(d|x,M)

p(d|M)
, (1)

then yields the posterior distribution ppost(x|d,M) for the
parameters x. It provides the statistically optimal combination
of the information about the parameters contained in the prior
and in the new data. Bayesian methods are being used for
various problems in quite diverse fields of research [4–7]. They
are particularly appropriate for testing null hypotheses [8] and
in problems of model selection [2].

A crucial problem in concrete applications of Bayesian
inference is the determination of the denominator in (1),

p(d|M) :=
∫

pp(x|M)pl(d|x,M)dnx, (2)

which is called evidence, or prior-predictive value, or
marginal likelihood. Typically, the integral extends over a
high-dimensional parameter space, and it is dominated by
contributions from small and labyrinthine regions. This makes
straight Monte Carlo methods rather inefficient [9].

Moreover, depending on the random data d = {di}, the
evidence is itself a random quantity. As a rule, the likelihood
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is of the form

pl(d|x,M) ∼ exp

(∑
i

f (di)

)
(3)

with some function f (d), i.e., it factorizes in the individual data
di . Since these data are commonly assumed to be independent,
the evidence (2) is roughly a product of many independent
random terms. As such, its probability distribution is similar
to a log-normal distribution with a long tail implying a large
difference between the average and the most probable value.
Consequently, the whole distribution of the evidence as well
as a typical value are badly characterized by the average.

Contrary, the log-evidence, ln p(d|M), has the structure of
a sum of independent random terms, and therefore, for large
data sets, its distribution may be expected to be similar to a
Gaussian one. Then, the most probable value and the typical
value are similar to each other, and the distribution is well
characterized by its first cumulants. This is the reason why the
statistical characteristics of the log-evidence rather than those
of the evidence itself are of central importance in Bayesian
inference. Considering ln p(d|M), as opposed to p(d|M), also
makes it easier to draw links with the studies [10,11], which
have guided our analysis.

Similar problems arise in statistical mechanics in the
determination of partition functions as compared to free
energies; see Sec. III A of [12]. It is hence not surprising that
methods developed in statistical physics are being increasingly
used in data analysis. A prominent example is thermodynamic
integration [13], which is meanwhile routinely implemented
in Bayesian inference [7,9,14]. Its applicability rests on the
accurate determination of thermal averages of the logarithm
of the likelihood distribution. This is a standard problem in
computational physics and can often be accomplished by
Markov chain Monte Carlo methods [7,15]. Nevertheless,
for multimodal distributions, the relaxation times to thermal
equilibrium can be very large, which may compromise the
determination of the necessary averages. In fact, for a model
system with a bimodal likelihood distribution, thermodynamic
integration was shown to have substantial difficulties in
determining the evidence p(d|M) of a Bayes problem [16].
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There are several situations in which multimodal distri-
butions occur quite naturally in Bayesian inference. A well-
documented case is the determination of the relative phase
between two interferometers in the presence of noise [17].
Plotting the two sinusoidal signals against each other results
in an ellipse, the ellipticity of which determines the relative
phase. Given the additional constraints present, there remain
two possible ellipses for each data point; the corresponding
likelihood distribution is hence bimodal. More complex situa-
tions are mixture models, which allow for an arbitrary number
of components [18]. Problems of Monte Carlo methods for
such mixture models are discussed, e.g., in [19].

In recent years, there have been fascinating developments
in the statistical mechanics of nonequilibrium systems that
gave rise to the emerging field of stochastic thermodynam-
ics [20–22]. Central to this field are so-called work and
fluctuation theorems, which, among other things, may be used
to determine free-energy differences from nonequilibrium
trajectories [23–25]. Because of the close relation between
free-energy estimates and calculations of the log-evidence
ln p(d|M), these developments also bring about new pos-
sibilities for Bayesian data analysis [16]. In an inference
problem, the nonequilibrium aspect is exhibited by the use
of nonstationary, explicitly time-dependent Markov processes
that do not rely on repeated equilibrations. Accordingly, when
multimodal distributions are considered, these methods can
prove advantageous.

In [16], a method was proposed to determine the evidence
in a Bayes problem by using a variant of the Jarzynski
equation [26,27]. In the present paper, we provide a detailed
error analysis of this method when used to estimate the
log-evidence in a Bayesian analysis. Due to the nonlinearities
involved, the method has a bias and resilient statistical
errors [11,28,29] which need to be treated with care. We also
detail the calculation of averages over multimodal posteriors
using a consequence of the Crooks relation [30].

The paper is organized as follows. In Sec. II, we provide
the basic equations and fix the notation. In Sec. III, we present
a detailed error analysis of the method for determining the
log-evidence. Section IV demonstrates the performance of
the proposed error analysis by means of two examples: a bi-
modal likelihood distribution composed of two Gaussians [9],
and a similar likelihood distribution but composed of two
Lorentzians [31]. Section V provides an analogous analysis
for averages with the posterior distribution. Finally, Sec. VI
contains our conclusions.

II. BASIC EQUATIONS

In the following, the dependence of the prior and the
likelihood distribution on the parameters x of the model is
the important one. We therefore temporarily suppress the
dependence on d and M for notational convenience.

For a successful application of Bayesian inference in
problems of practical relevance, effective numerical methods
are crucial. It is well known that normalization factors of
distributions, such as the evidence p(d|M), are much harder
to obtain using Monte Carlo methods than the corresponding
averages [15]. It is therefore desirable to replace the integration

in (2) by functions of such averages. A simple method to do
so is the following variant of thermodynamic integration [13].

Defining the auxiliary quantity

Z(β) :=
∫

[pl(x)]βpp(x)dnx, (4)

we have Z(0) = 1 due to the normalization of the prior dis-
tribution and Z(1) = p(d|M), which is the desired evidence.
Moreover,

d

dβ
ln Z(β) = 1

Z(β)

∫
ln pl(x) p

β

l (x) pp(x)dnx. (5)

The right-hand side of this equation denotes the average
〈ln pl(x)〉β of the log-likelihood distribution with

Pβ(x) := 1

Z(β)
p

β

l (x) pp(x). (6)

Hence,

ln p(d|M) =
∫ 1

0
dβ

d

dβ
ln Z(β)

=
∫ 1

0
dβ 〈ln pl(x)〉β. (7)

In practical applications of this relation, one chooses n =
10, . . . ,100 values βn from the interval (0,1) and calculates the
averages 〈ln pl(x)〉βn

by standard Markov chain Monte Carlo
(MCMC) sampling. The implemented transition probability
ρ(x,x ′; βn) of the Markov chain has to be consistent with
the corresponding stationary distribution (6). This is most
directly ensured by the detailed balance condition [15]. Having
obtained the n averages 〈ln pl(x)〉βn

, the integral in (7) can be
determined approximately. We note that the Markov chain used
for each of the β values is stationary, i.e., there is no explicit
time dependence in the transition probability ρ(x,x ′; βn).

This variant of thermodynamic integration works fine as
long as there are no difficulties with the equilibration of the
individual Monte Carlo runs [9]. However, for multimodal dis-
tributions, problems may arise due to trajectories getting stuck
in local maxima of the distribution [19]. In the generic case of
unimodal prior and multimodal likelihood distributions, such
problems show up when β approaches 1. The last points for
the calculation of the integral in (7) are then prone to errors,
and the estimate for the evidence p(d|M) becomes unreliable.

These equilibration problems may be circumvented by
building on modern methods for free-energy estimation that
use nonstationary trajectories [25,26]. Toward that end, one
considers a finite time interval t ∈ (0,T ) in which β changes
from 0 to 1. In the numerics, this is done by fixing a set of
intermediate times and corresponding increments {tm,�βm},
the so-called protocol β(t). Starting from a point x0 sampled
from the prior distribution, MCMC simulations with the
time-dependent transition rate ρ(x,x ′; β(t)) are performed. For
each realization x(t) of such a simulation, one determines the
quantity

R[x(· · · )] =
∑
m

�βm ln pl[x(tm)]. (8)

As shown in [16], one then finds the exact relation

〈eR〉 = Z(1) = p(d|M), (9)
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where the average in (9) is over independent realizations
x(t) of the nonstationary Markov process. In nonequilibrium
thermodynamics, the above relation is known as the Jarzynski
equation. The continuum version of (8) has the form (see
also [32–34])

R[x(· · · )] =
∫ T

0

∂

∂t
β(t) ln pl[x(t)] dt. (10)

Notably, averages with the posterior distribution may be
expressed in a similar way. For a reasonable function f (x),
one can show that [16]

〈f 〉post =
∫

f (x) ppost(x) dx = 〈eRf [x(T )]〉
〈eR〉 , (11)

where x(T ) denotes the final point of the trajectory x(t), and
the averages are again over an ensemble of realizations. We
remark that (11) is a consequence of the Crooks relation; see
Eq. (21) in [30].

III. ERROR ANALYSIS OF THE JARZYNSKI ESTIMATOR

The Jarzynski equation (9) to determine the evidence
from nonstationary realizations x(t) involves the exponential
average

〈eR〉 :=
∫

dx p(R) eR. (12)

In practice, the distribution p(R) of the random variable R is
unknown, and 〈· · · 〉 is replaced by an ensemble average,

〈eR〉M := 1

M

M∑
i=1

eRi , (13)

where the index M in 〈eR〉M denotes the number of samples
Ri that contribute to 〈eR〉M .

Replacing the exact average (12) with the sample mean (13)
introduces an error that vanishes in the limit of infinitely many
samples, M → ∞. However, due to the exponential weight on
large R values invoked by the nonlinear average, this error may
remain significant even for large M . In addition, estimating the
logarithm of the evidence generates a bias in the statistics of
ln〈eR〉M [10,11,25].

The analysis of these errors is the central subject of this
paper and will be discussed in this section. The first part
concerns the bias of the random variable ln〈eR〉M on the
basis of exact averages. The second part includes the error
for considering finite-sized ensembles of eR .

A. Basic notions

To compute the log-evidence from an M-sized ensemble of
R values, we use (9) and (13) to define the Jarzynski estimator,

ln p(d|M) 	 ln〈eR〉M = ln
1

M

M∑
i=1

eRi . (14)

Considering several M-sized ensembles of R values, the
sample mean 〈eR〉M is a random variable for any finite M .
The statistics of ln〈eR〉M is central to our error analysis of
the Jarzynski estimator. To assess the statistics of ln〈eR〉M , we

define bias B, variance σ 2, and mean square error α2 as

B(M) := 〈ln〈eR〉M〉 − ln p(d|M), (15)

σ 2(M) := 〈(ln〈eR〉M − 〈ln〈eR〉M〉)2〉, (16)

α2(M) := 〈[ln〈eR〉M − ln p(d|M)]2〉. (17)

It is worth noting that these quantities are related by

α2(M) = σ 2(M) + B2(M). (18)

To understand why a nonzero bias (15) may occur, a valid
starting point is

〈〈eR〉M〉 = 〈eR〉 = p(d|M). (19)

One substitutes this identity into the definition for the bias (15),
and establishes that

B(M) = 〈ln〈eR〉M〉 − ln 〈〈eR〉M〉. (20)

Hence, a finite bias signals that the logarithm and the
expectation value do not commute.

A related statement can be derived from the Jensen
inequality [35]. If the function ϕ is convex on the interval
I , and X is a stochastic variable with range J ⊆ I , then

〈ϕ(X)〉 � ϕ(〈X〉). (21)

When ϕ(X) = − ln(X) and X = 〈eR〉M , the inequality (21)
prescribes that

〈ln〈eR〉M〉 � ln 〈〈eR〉M〉. (22)

Thus, according to (20), the bias of the Jarzynski estimator
is negative, or zero. For the analogous property in statistical
physics, we refer to [10,36].

B. Confidence interval

If the bias B and the variance σ 2 as defined in (15) and (16)
are known, the root mean square error α follows from (18) and
serves as a measure of uncertainty for the estimation of the
log-evidence, ln p(d|M). While the computation of σ 2 from
finite samples is straightforward, the determination of B is
intricate as it involves p(d|M) itself. It therefore is common
practice to substitute p(d|M) with an appropriate estimator,
in the case at hand being p(d|M) 	 〈eR〉M . The consequence
is that the resulting α only accounts for the bias generated by
the logarithm in the Jarzynski estimator (14), and not for the
nonlinearity of the exponential average. In what follows, the
full bias B will be split into two contributions C and D, in
which C uses the mentioned substitution p(d|M) 	 〈eR〉M ,
and D takes care of the error brought about by this step.

In tackling the intrinsic problem that the true values of
p(d|M), and therefore also B, are not known, the key point
will be to derive a confidence interval for D from the central
limit theorem [35]. To do so, we make two assumptions:

(i) {eR1 , . . . ,eRN} is a sequence of N independent random
variables that have the same distribution.

(ii) The variance ς2 of that distribution is finite—while the
expectation value is p(d|M), because of (9).

The sample size N , in addition to M , is introduced for later
convenience, and we assume that N � M . Note that (ii) refers
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to the distribution of eR , the variance of which may be finite
despite likelihood distributions with infinite variance. We will
demonstrate this point in Sec. IV B.

If (i) and (ii) are satisfied, the central limit theorem dictates
that, as N approaches infinity, the random variable

Y (N ) :=
√

N [〈eR〉N − p(d|M)]/ς (23)

becomes normally distributed, with zero mean and unit
variance. Accordingly, a confidence interval for Y (N ) may
be written as

Pr[−
√

2 erf−1(γ ) < Y (N ) <
√

2 erf−1(γ )] ≈ γ, (24)

where Pr[· · · ] indicates probability, and erf−1 is the inverse
error function. The confidence level γ can be selected as one
deems fit, but ordinary choices are 95%, 99%, 99.5%, and
99.9%; see [37]. Throughout this paper, we will use the rather
pessimistic choice γ = 0.95. The approximate sign in (24)
accounts for the fact that N is taken to be finite.

The confidence interval for Y (N ) can be transferred to the
bias B. Toward that end, we solve (23) for p(d|M), and we
substitute the result into (15). Hence, the bias is expressed as

B(M) = C(M,N ) + D(N ), (25)

with

C(M,N ) = 〈ln〈eR〉M〉 − ln〈eR〉N, (26)

D(N ) = − ln

[
1 − ς√

N

Y (N )

〈eR〉N

]
. (27)

The dependency on N of the first term in (25) is compensated
by the second term. We multiply the inequality within brackets
in (24) by the positive quantity ς/

√
N〈eR〉N . Then, to

incorporate D(N ), we apply the monotonic increasing function
− ln(1 − X); see (27). Both these operations do not reverse the
sign of the inequality. It follows that

Pr[D−(N ) < D(N ) < D+(N )] ≈ γ, (28)

with

D±(N ) = − ln

[
1 ∓

√
2

N

ς erf−1(γ )

〈eR〉N

]
. (29)

Finally, by adding C(M,N ) to the inequality within brackets
in (28), a confidence interval for the bias is attained,

Pr[B−(M,N ) < B(N ) < B+(M,N )] ≈ γ, (30)

with the confidence limits

B±(M,N ) = C(M,N ) + D±(N ). (31)

Two comments are in order. First, when N is large enough,
one has that

0 <

√
2

N

ς

〈eR〉N < 1. (32)

The inequality on the left always holds true. Because γ is
positive, erf−1(γ ) ranges from 0 to 1, and

0 <

√
2

N

ς erf−1(γ )

〈eR〉N < 1. (33)

This ensures that the confidence limit D+(N ) is finite and
real; cf. (29). Second, in (31), the dependency of C(M,N ) on

N is not compensated by that of D±(N ). It follows that the
confidence limits B±(M,N ) are functions of M and also N .

We are now in the position to derive a confidence interval
for the mean-square error α2(M); see (18). Motivated by the
procedure followed earlier on, it is natural to define

α2
±(M,N ) = σ 2(M) + B2

±(M,N ). (34)

Unfortunately, this is not a monotonic function, and the
direction of previous inequalities gets mixed up. Nevertheless,
it is still possible to conclude that

Pr [α2(M) < max[α2
+(M,N ),α2

−(M,N )]] � γ, (35)

where max[· · · ] selects the larger of its two arguments.
The error analysis proposed above involves the exact

averages 〈· · · 〉. For practical purposes, however, it is necessary
to estimate the averages 〈· · · 〉 by empirical averages as defined
in (13). To do so, we take N as the given total number of R

values, group these into N/M blocks of size M , and estimate

〈〈· · · 〉M〉 	 〈〈 · · · 〉M〉 N
M
. (36)

This procedure, commonly referred to as block-averaging,
was pioneered by Wood, Mühlbauer, and Thompson [38]. We
mention that an alternative to block-averaging is the bootstrap
algorithm, as explored in the article [29] by Ytreberg and
Zuckerman.

In the remaining part of the paper, we will use the
prescription (36) to estimate C(M,N ) and σ 2(M), defined
in (26) and (16), from simulation results of an N -sized
ensemble of R values. To estimate D(N ) and D±(N ), defined
in (27) and (29), as well as the confidence interval for the bias
in (30) and the mean square error in (35), we approximate the
variance ς2 of the distribution for eR with the sample variance

ς̂2(N ) := 1

N − 1

N∑
i=1

(eRi − 〈eR〉N )2. (37)

Likewise, for σ 2, we take

σ̂ 2(M,N ) := 1

N/M − 1

N/M∑
i=1

[
ln〈eR〉M − 〈ln〈eR〉M〉 N

M

]2
.

(38)

We will denote estimated quantities that use block-averages
and sample variances instead of exact averages with a “hat,”
for instance,

B̂(M,N ) = 〈ln〈eR〉M〉 N
M

− ln p(d|M), (39)

Ĉ(M,N ) = 〈ln〈eR〉M〉 N
M

− ln〈eR〉N, (40)

D̂±(M,N ) = − ln

[
1 ∓

√
2

N

ς̂ (N ) erf−1(γ )

〈eR〉N

]
, (41)

α̂2(M,N ) = σ̂ 2(M,N ) + B̂2(M,N ), (42)

in contrast to the exact expressions (27), (26), (29), and (18).
The confidence limits D̂±(M,N ), as opposed to D(N ), are
independent of the unknown p(d|M). Accordingly, the same
holds true for

α̂2
±(M,N ) = σ̂ 2(M,N ) + [Ĉ(M,N ) + D̂±(M,N )]2. (43)
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IV. EXAMPLES FOR THE ESTIMATION OF THE
LOG-EVIDENCE

Section III was devoted to the bias B of the Jarzynski
estimator (14). We split the bias into two components, B =
C + D, where C is treated by block-averaging and D is the
remaining unknown discrepancy of the estimator. Based on
the central limit theorem, we derived the confidence limits D±
for the unknown D.

In this section, we demonstrate the performance of the
Jarzynski estimator and the proposed error analysis for
two exactly solvable settings involving bimodal likelihood
distributions. We also relate our error analysis to those existing
in the literature, which exemplifies that C is useful to judge
the applicability of the central limit theorem, indicating the
minimum total number of R values for which D± becomes
reliable.

A. Gaussian bimodal likelihood distribution

To construct a bimodal Pβ(x), the simplest option appears
to be that of setting the likelihood distribution pl(d|x,M) to
be the sum of two Gaussians [9]. Hence, we specify that

pl(d|x,M) = q1G
(
x,d,σ 2

l

) + q2G
(
x, − d,σ 2

l

)
, (44)

where x and d are vectors of dimension n, and q1 and q2 assign
different weights to the Gaussians,

G(x,μ,σ 2) = (2πσ 2)−n/2 exp

(
− (μ − x)2

2σ 2

)
, (45)

with mean vector μ and variance σ 2. Choosing values for
q1 and q2 that differ substantially from each other makes
the equilibration problem particularly pronounced: while the
positions of the maxima become apparent rather quickly,
sampling the maxima with the correct weights q1 and q2

is reliant on the very rare trajectories that cross the low-
probability region between the maxima.

The benefit of the Gaussian model is that the evidence is
known analytically—if the prior distribution is taken to be
Gaussian. Notably, this choice for pp(x|M) is widespread in
the Bayesian inference literature. Thus, we demand that

pp(x|M) = G
(
x,0,σ 2

p

)
(46)

to find

p(d|M) = G
(
d,0,σ 2

p + σ 2
l

)
. (47)

We therefore have an analytic result that we can use to test our
error analysis.

The dimension n will be set to 5, and d will be taken
to have all of its components equal to 10. The maxima
of the likelihood distribution are hence located at ±d =
±(d1, . . . ,d5) = ±(10, . . . ,10). For the weights qi , we choose
q1 = 1

21 and q2 = 20
21 . The variances in (44) and (46) are

selected to be σ 2
l = 1 and σ 2

p = 100, since in the typical
Bayesian setup, the prior distribution is much broader than
the likelihood distribution.

As discussed in Sec. II, the protocol β varies from 0 to 1
along every trajectory. We prescribe that β increases in a cubic
way,

β = 0.05t + 0.95t3, (48)

where t is incremented from 0 to 1 in 25 steps. For each
value of the protocol, the MCMC algorithm explores the
parameter space, with 20 steps in the Markov chain. These
values correspond to relatively short trajectories, whereby
the computational resources can be focused on generating a
large number N of R values.

In Ref. [28], Zuckerman and Woolf demonstrate that, when
M is large,

−B(M) ≈ σ 2(M)

2
≈ 1

2M

[
ς

p(d|M)

]2

, (49)

as a consequence of the central limit theorem. The same result
is obtained in Ref. [11] by Gore, Ritort and Bustamante. It is
worthwhile to observe that (49) involves only exact quantities.
Accordingly, the above relation can be used to identify a
threshold for M above which the central limit theorem for
the random variable 〈eR〉M may be applied. As the derivation
of the confidence limits D±(N ) rests on this very assumption,
we conclude that D±(N ) becomes reliable for values of N

above the same threshold.
To identify for the introduced bimodal Gaussian exam-

ple (44) the regime where the central limit theorem is
applicable, we generated a total number of N = 6 × 107 R

values, and we substitute these in the numerically accessible
variant of (49),

−Ĉ(M) ≈ σ̂ 2(M)

2
≈ 1

2M

[
ς̂ (N )

〈eR〉N

]2

, (50)

as used by Gore et al. in [11]. In Fig. 1, we plot the three
quantities in (50) for all possible divisors M of N = 6 × 107.
The threshold above which the central limit theorem applies
appears to be about M ≈ 104; for M > 104, all quantities
exhibit the predicted 1/M behavior. Therefore, our error
analysis is in agreement with [11,28].
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FIG. 1. (Color online) Verifying that our error analysis is consis-
tent with the result (50) obtained in [11,28] based on the central limit
theorem for the random variable eR . The total number of Markov
chains, and consequently of R values, is N = 6 × 107.
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FIG. 2. (Color online) As the number of R values, N , gets larger,
the confidence interval (28) gets smaller. Nevertheless, for the data
set examined here, D(N ) stays within D̂+(N ) and D̂−(N ). The value
of D(N ) follows from (27) using the exact value of p(d|M) given
by (47); the estimated confidence limits D̂±(N ) are derived from (41).

To get an error margin for the estimation of ln p(d|M), one
could choose M < N and use 〈ln〈eR〉M〉N/M as an estimator,
for which C(M,N ) is an appropriate error measure. For the
single-block estimator, that is, choosing M = N , we expect
to be closest to the true value, but since C(N,N ) = 0, the
block-average procedure gives no result for the remaining bias
D(N ). Instead, the confidence limits D±(N ) may be used as
an error margin for the single-block estimate. In Fig. 2, we
plot D(N ) as well as D̂±(N ), estimated by using (41). The
depicted range of N values is larger than the threshold 104

above which we assume the central limit theorem for 〈eR〉N
to hold and D±(N ) to be reliable. Indeed, it is observed that
D±(N ) smoothly approach zero and that D(N ) belongs to the
confidence interval (28).

Finally, in Fig. 3, we demonstrate the performance of the
Jarzynski estimator and the proposed error analysis for an
increasing number N of considered R values. For the single-
block estimate of ln p(d|M), i.e., M = N and σ̂ (N ) = 0, the
estimated root mean square error is α̂ = B̂, and as furthermore
C(N,N ) = 0, it is simply α̂± = D̂±(N ). For the smallest value
of N , we again choose the threshold N = 104 above which
the confidence limits D̂±(N ) are assumed to be reliable. We
therefore use in Fig. 3 the limits D̂±(N ) as error bars, which
are found to always cover the analytic result.

B. Likelihood distribution with infinite variance

The proposed error analysis in Sec. III B relies on the
applicability of the central limit theorem to the random
variable eR , that is, a finite variance ς2. As mentioned
before, the requirement ς2 < ∞ can be satisfied by likelihood
distributions with infinite variance. We demonstrate this in the
present section.

Toward that end, we consider the Cauchy distribution (also
known as a Lorentzian)

p(x) = s

π
[s2 + (x − d)2]−1. (51)
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−18.35

FIG. 3. (Color online) Estimation of the log-evidence for the
bimodal Gaussian model (44) using the Jarzynski estimator (14) for
an increasing number N of R values. The thick line is the analytic
result (47), and the symbols use the Jarzynski estimator. The error
bars are given by the estimates of the bias, D̂±(N ) = B̂±(N,N ) =
α̂±(N,N ), from (41).

Cauchy distributions are known to occur in power spectra of os-
cillating signals [31,39]. Helioseismic spectra to probe the inte-
rior of stars [40,41] are a recent example of a Bayesian analysis
in which a multimodal likelihood distribution of the form (53)
is used. For a limited number of data points, the posterior is
typically multimodal itself due to peaks in the power spectra
being artifacts of data processing or of instrumental origin.

The moments of the Cauchy distribution do not exist; in
particular, the variance is divergent. Therefore, instead of a
mean and a variance, the Cauchy distribution is characterized
by the parameters d and s, where d is the mode of p(x), and
s specifies the width, as 2p(d + s) = p(d). The cumulative
distribution is known analytically and reads

P (x) = 1

π
arctan

[
x − d

s

]
. (52)

To ensure a close analogy to the Gaussian example, we
combine two Cauchy distributions to construct the bimodal
likelihood distribution,

pl(d|x) =
(

s

π

)n
[
q1

n∏
i=1

[s2 + (di − xi)
2]−1

+ q2

n∏
i=1

[s2 + (di + xi)
2]−1

]
. (53)

Here, x is an n-dimensional parameter vector, and we take
again one measurement d to be of the same dimension as x.

Similar to the Gaussian example, we choose the parame-
ters n = 5, d = (10,10,10,10,10)T, s = 0.1, q1 = 20/21, and
q2 = 1/21. To compute the evidence analytically from (52),
we employ a flat prior on the interval [−20s,20s]. The interval
covers both modes of the likelihood distribution and therefore
does not include any a priori information on the shape of
the likelihood distribution; in fact, choosing a flat prior that
does not cover the modes is found to drastically improve
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FIG. 4. (Color online) Verification for the likelihood distribu-
tion (53) involving two Cauchy distributions that our error analysis
is consistent with the result (50) obtained in [11,28] based on the
central limit theorem for the random variable eR . The total number
of Markov chains, and consequently of R values, is N = 108.

the performance of the Jarzynski method, since the Markov
chains never start at one of the modes but instead run into
the respective minima according to the weights q1 and q2. The
protocol β(t) is the same as for the Gaussian example; see (48).

We repeat the analysis of the Jarzynski estimator as done
for the Gaussian example in the previous section, and we
determine the log-evidence, ln p(d|M), and error margins
for the bimodal likelihood distribution defined in (53). To
do so, we generate N = 108 Markov chains using again the
MCMC algorithm, and we compute the corresponding R

values from (8).
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FIG. 5. (Color online) The value of D(N ) defined in (27) together
with its confidence interval given by D̂±(N ) from (41) as a function of
increasing number N of considered samples for R for the likelihood
distribution in (53). The determination of D(N ) involves the exact
value of p(d|M), which follows from using the cumulative Cauchy
distribution in (52).
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FIG. 6. (Color online) Estimation of the log-evidence for the
likelihood distribution (53), which involves two Cauchy distributions,
using the Jarzynski estimator (14) for an increasing number N of R

values. The thick line is the analytic result obtained from (52); the
symbols use the Jarzynski estimator. The error bars are given by the
confidence limits D̂±(N ) from (41).

Figure 4 reveals that the central limit theorem holds
for a number of more than about 106 Markov chains, cf.
the discussion of the Gaussian example after Fig. 1 in the
preceding subsection. We hence conclude that the variance of
the random variable exp(R) is indeed finite.

The confidence limits of the bias of the single-block
estimate for ln p(d|M), being D̂±(N ) from (41), are depicted
in Fig. 5 for an increasing number N of R values, together with
D(N ) from (27) using the exact result of p(d|M) from (52).
It is evident that for N > 106 the confidence limits D̂±(N )
smoothly approach zero enclosing D(N ).

Finally, in Fig. 6, we demonstrate the performance of
the Jarzynski method and the proposed error analysis for
increasing N . It is evident that D̂± is again a well-suited error
margin even for this example of a heavy tailed likelihood
distribution, as the true value ln p(d|M) is again always
covered by D̂±.

V. AVERAGES WITH THE POSTERIOR DISTRIBUTION

We now focus on the problem of computing averages with
respect to the posterior distribution numerically. Our aim is to
investigate the fast-growth algorithm based on (11), which is
closely related to the Jarzynski estimator (14). We demonstrate
that the fast-growth calculations of 〈· · · 〉post are particularly
advantageous when ppost(x|d,M) is multimodal. The severe
problems that, under these circumstances, affect the standard
Monte Carlo method are, to a large extent, overcome by the
consequence (11) of the Crooks relation.

For the assessment, we make use of the bimodal Gaussian
example described in Sec. IV A and consider the average of
the function

f (x) = x‖ = x · d

|d| (54)

with respect to the posterior distribution. The scalar x‖ is
the component of the vector x along the vector d, specifying
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the locations of the maxima in the posterior distribution. Our
simulations are compared with the analytic result

〈x‖〉post = (q1 − q2)

(
σ 2

p

σ 2
p + σ 2

l

)
|d|, (55)

which, for the parameter values used in Sec. IV A, gives

〈x‖〉post ≈ −20.0308. (56)

To gain insight, it is useful to examine a standard Monte
Carlo algorithm. Multiple stationary Markov chains are set
to explore the parameter space, with ppost(x|d,M) as their
target distribution. Along each trajectory, the average of x‖
is calculated. Then, a further average across the Markov
chains yields an estimate of 〈x‖〉post. In our simulation, 6 × 105

trajectories are generated, each with 5 × 104 steps. This makes
a total of 3 × 1010 steps, and it corresponds to the estimate

〈x‖〉post ≈ −0.12. (57)

It is evident that the standard Monte Carlo algorithm fails to
solve the problem at hand. The histogram in Fig. 7 explains
the reason for such a failure. Although the two peaks of the
posterior distribution have different weights, q1 = 1

21 and q2 =
20
21 , they contribute to (57) roughly in equal measure. More
specifically, one can determine that the chains get trapped
around the maxima of ppost(x|d,M).

Let us investigate the fast-growth estimator

〈x‖〉post ≈ 〈eRx‖(T )〉N
〈eR〉N , (58)

see (11) and (54). As before, 〈· · · 〉N indicates an empirical
average over N nonstationary Markov chains. We consider the
same pool of data as in Sec. IV A. Thus, N = 6 × 107, and
each trajectory is made up of 500 steps. Accordingly, both
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FIG. 7. (Color online) Histogram for the average of x‖ along each
Markov chain in our standard Monte Carlo program. Despite their
different weights, the peaks of the bimodal posterior distribution are
sampled almost equally.
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FIG. 8. (Color online) Histogram for the end location x‖(T ) of
each trajectory in our fast-growth program. Although the Markov
chains are nonstationary, they still get trapped around the maxima of
the posterior distribution.

the fast-growth and Monte Carlo simulations include 3 × 1010

steps in total, which produces similar running times.
The absolute error in the fast-growth calculation,∣∣∣∣ 〈eRx‖(T )〉N

〈eR〉N − 〈x‖〉post

∣∣∣∣ ≈ 1.19 × 10−3, (59)

demonstrates that the method performs well. As a matter of
fact, one obtains the estimate 〈x‖〉post ≈ −20.0296. Notably,
the histogram in Fig. 8 is qualitatively rather similar to the
one in Fig. 7. Even if the Markov chains for the fast-growth
algorithm are nonstationary, the mismatched peaks of the
posterior distribution are sampled equally. However, weighing
the final value of x‖ with eR of the respective trajectory in the
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10−3

10−2

10−1

100

101

102

FIG. 9. (Color online) Absolute error in the fast-growth estimate
of 〈x‖〉post as the number of trajectories N is varied. The rightmost
data point corresponds to (59).
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estimator (58) resolves the different weights of the peaks in
the posterior distribution and yields the correct result for the
average.

Figure 9 specifies the convergence of the fast-growth
algorithm as N increases. The detailed error analysis is a topic
for future work.

VI. SUMMARY

Successful use of Bayesian methods in realistic problems of
statistical data analysis requires efficient ways to numerically
calculate high-dimensional integrals. Due to the similarity of
this problem with the determination of free-energy differences
of complex molecules, the transfer of methods from statistical
mechanics to Bayesian statistics has a long tradition. Notably,
thermodynamic integration, which replaces the determination
of a normalization factor by an integral over much more ac-
cessible averages, has proven very valuable in this connection.

However, relying on well-equilibrated averages for differ-
ent temperatures, thermodynamic integration may run into
difficulties in the presence of multimodal distributions. Since
multimodal likelihoods and posterior distributions are quite
common in Bayesian data analysis, a method less dependent
on perfect equilibration is called for. In statistical mechanics,
the Jarzynski equation and the Crooks relation have been
used successfully to determine free-energy differences from
nonequilibrium trajectories without final relaxation. Slightly
modified variants of these relations may be implemented to
determine the evidence and posterior averages, respectively,
in Bayesian statistics.

In the present paper, we have performed a detailed analysis
of the statistical error inherent in these methods. From the
determination of free-energy differences with the help of the
Jarzynski equation, it is known that the method has a bias
due to the nonlinearities involved and statistical subtleties
of exponential averages. To keep track of these errors in
the setting of Bayesian data analysis, we have split the
mean-square error of the estimator into a contribution from
the bias and from the variance. As usual, the variance may be
well characterized by the empirical sample variance, whereas

the bias depends on the exact value of the log-evidence
ln p(d|M), which is not known. We have therefore split
the bias once more into a contribution that, similarly to the
variance, may be characterized by the sample data alone, and
a remainder for which we provide bounds in the form of a
confidence interval. Taking everything together, we finally
give a confidence interval for the single-block estimate of
the log-evidence, ln p(d|M), determined from nonstationary
Markov chain Monte Carlo simulations.

We have tested our results against extensive numerical
simulations of two model cases with bimodal likelihoods.
These are either sums of two Gaussians or of two Lorentzians.
Combined with appropriate prior distributions, the evidence
can be calculated analytically for both cases, which facilitates
the comparison with the simulation results. By investigating
various samples sizes N , our analytical findings were all
verified, and the predicted dependence of the error measures
on N was reproduced. Our results are also consistent with error
measures discussed previously in connection with free-energy
estimates. Similarly, agreement was found for the determina-
tion of averages with multimodal posterior distributions using
the Crooks relation, where straight Monte Carlo sampling of
the posterior was seen to be problematic.

In conclusion, variants of the recently discovered fluctu-
ation theorems of nonequilibrium statistical mechanics may
prove very helpful in Bayesian data analysis if multimodal
distributions are relevant. In these cases, they allow an efficient
determination of high-dimensional integrals via Markov chain
Monte Carlo methods without requiring complete equili-
bration. Admittedly, these methods build upon exponential
averages that may converge poorly and that show a bias
that needs to be monitored. As in statistical mechanics, the
tradeoff between problems of equilibration and subtleties of
exponential averages is difficult to assess in general, and it has
to be analyzed for each case at hand individually.
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