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Completely positive quantum operations are frequently discussed in the contexts of statistical mechanics
and quantum information. They are customarily given by maps forming positive operator-values measures.
To intuitively understand the physical meanings of such abstract operations, the method of phase-space
representations is examined. This method enables one to grasp the operations in terms of the classical statistical
notions. As an example of physical importance, here, the phase-space representation of the completely positive
quantum operation arising from the single-mode subdynamics of the two-mode squeezed vacuum state, which
maps from the vacuum state at vanishing temperature to mixed states with perfect decoherence including the
thermal state, is studied. It is found in the P representation that remarkably this operation is invertible, implying
that coherence lost by the quantum operation can be recovered.
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I. INTRODUCTION

The concepts of generalized measurements and associ-
ated nonunitary operations play important roles in statistical
mechanics and quantum information. Consider one such
operation, �, which maps from an “initial” density matrix ρ0

to another ρ, that is, ρ0 → ρ = �(ρ0). It is natural in view of
the principle of quantum mechanics to impose the conditions
that it is linear, completely positive, and trace-preserving.
Then, the most general form of such � is given by the Kraus
representation [1–4],

ρ = �(ρ0) =
∑

n

Knρ0K
†
n, (1)

where the matrices Kn’s obey∑
n

K†
nKn = I , (2)

with I being the identity operator. Equation (2) ensures
that � is, in fact, trace preserving: Tr�(ρ0) = Trρ0(=1).
The set {K†

n Kn}n forms a positive operator-valued measure
(commonly abbreviated as POVM).

Now, although the operation in Eq. (1) is convenient
for describing nonunitary quantum subdynamics [1–4], it is
apparently formal and abstract. It may be physically desirable
to be able to perceive it in a more intuitive manner. In this sense,
the method of phase-space representations [5] is expected to
offer a useful tool, since it helps one to grasp formal quantum
operations in terms of the classical statistical notions.

In this paper, we develop the phase-space approach to
the completely positive quantum operation of the form in
Eq. (1). We present the integral transformation in phase
space associated with Eq. (1). In particular, we consider
the operation arising from the subdynamics of the two-mode
squeezed vacuum state, which realizes perfect decoherence
and generates the thermal state, and we analyze its phase-
space representations. We derive an explicit formula for the
transformation kernel and find a remarkable fact that the
transformation is of the convolution type and therefore is
invertible. The restorability of coherence may be relevant to,
e.g., error correction in quantum information processing.

Throughout this article, both � and the Boltzmann constant,
kB , are set equal to unity for the sake of simplicity.

II. REDUCTION OF TWO-MODE SQUEEZED VACUUM
AND ASSOCIATED QUANTUM OPERATION

In this section, we discuss the completely positive quantum
operation derived from the two-mode squeezed vacuum state.
Consider a two-mode radiation field. Its quadratures, XA, XB ,
YA, YB , are given in terms of the creation and annihilation
operators, a†, b† and a, b as follows: XA = a† + a, XB = b† +
b, YA = i (a† − a), YB = i (b† − b). The basic commutation
relations are [a, a†] = IA, [a, a] = [a†, a†] = 0, [b, b†] =
IB , [b, b] = [b†, b†] = 0, [a, b†] = 0, and so on, where IA

and IB are the identity operators in the spaces of the modes
A and B, respectively. The two-mode squeezed vacuum is
defined as follows:

|θ〉 = U (θ ) |0〉A|0〉B, (3)

U (θ ) = exp[θ (a†b† − ab)]. (4)

|0〉A and |0〉B in Eq. (3) are the vacuum states of A and B

annihilated by a and b, respectively: a |0〉A = 0, b |0〉B = 0.
θ in Eq. (4) is a real parameter. It is possible to introduce
a complex parameter, in general, but we take a real one for
the later purpose. Note that U (θ ) is a nonlocal operator that
entangles A and B.

It is known [6] that two-mode squeezed states are related to
thermal states. Let us see this point in terms of an operation of
the form in Eq. (1). Ignore the mode of B. Then, the reduced
density matrix of the subsystem A is given by the partial trace
over B:

ρ(A) = TrB[|θ〉 〈θ |]. (5)

If the partial trace is performed by the use of the number-
state basis {|n〉B = (b†)

n|0〉B/
√

n!}n=0,1,2,..., then Eq. (5) is
written in the form of Eq. (1):

ρ(A) = �(ρ0(A)) =
∞∑

n=0

Knρ0(A)Kn
†, (6)
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where

ρ0(A) = |0〉A A 〈0| , (7)

Kn = B〈n|U (θ )|0〉B. (8)

To calculate Kn, it is convenient to decompose U (θ ) as follows
[7]:

U (θ ) = exp(a†b† tanh θ )exp[−(a†a + b†b + 1) ln(cosh θ )]

× exp(−ab tanh θ ). (9)

With this form, Kn is immediately calculated to be

Kn = (a† tanh θ )
n

√
n! cosh θ

exp[−a†a ln(cosh θ )]. (10)

The trace-preserving condition in Eq. (2) is fulfilled, and
{K†

n Kn}n=0,1,2,... forms a POVM. However, the operation is
not unital [8], since

∑∞
n=0 Kn Kn

† = IA/ cosh2θ �= IA; that is,
IA is not a fixed point: �(IA) �= IA.

ρ(A) = � (ρ0(A)) is expressed as follows:

ρ(A) =
∞∑

n=0

pn|n〉A A 〈n| , (11)

pn = (tanh2θ )
n

cosh2θ
. (12)

Equation (11) shows that perfect decoherence is realized
because of the absence of off-diagonal terms. The value of
the von Neumann entropy, S [ρ] = −Tr (ρ ln ρ), vanishes for
the pure state ρ = ρ0(A) in Eq. (7), whereas it is nonvanishing
for ρ = ρ (A) ≡ � (ρ0(A)) in Eq. (11). However, in the next
section, the operation in Eq. (6) is shown to be invertible. In
particular, if θ is chosen to be

cosh θ = 1√
1 − exp(−βωA)

, (13)

then ρ(A) in Eq. (11) becomes the canonical density matrix
with the inverse temperature β:

ρ(A) = 1

Z(β)
exp(−β HA), (14)

where HA = ωA a†a is the Hamiltonian of A with the
frequency ωA and Z(β) the partition function given by Z(β) =
TrAexp(−βHA) = 1/[1 − exp(−βωA)].

Closing this section, we mention that thermofield dynamics
[9] gives a basis for how the subdynamics of the two-mode
squeezed state generates the thermal state, and a quantum-
optical implication of this fact is discussed in Ref. [6].
However, the choice in Eq. (13) is not necessarily made in
the subsequent discussion, and a general form in Eq. (11) is
considered.

III. PHASE-SPACE REPRESENTATION OF COMPLETELY
POSITIVE QUANTUM OPERATION: OPERATION
ARISING FROM SUBDYNAMICS OF TWO-MODE

SQUEEZED VACUUM STATE AND ITS INVERTIBILITY

Our interest is in the structure of Eq. (6) with Eq. (10). In
this section, we discuss its phase-space representation in order
to “visualize” such an abstract operation. For this purpose, let

us recall the phase-space operator [5],

�(s)(α, α∗)

= 1

π2

∫
d2zexp

[
− s

2
z∗z + (a† − α∗)z − z∗(a − α)

]
, (15)

where α is the complex phase-space variable, d2z ≡
d(Rez)d(Imz), and the integration is performed over the whole
complex z-plane. It satisfies the relations∫

d2α �(s)(α, α∗) = IA, (16)

TrA[�(s)(α, α∗) �(−s)(α′, α′∗)] = 1

π
δ 2(α − α′). (17)

where δ 2(α) ≡ δ (Reα) δ (Imα). �(s)(α, α∗) defines the cor-
respondence relation between a quantum operator and its
classical counterpart in phase space:

Qs(a, a†) =
∫

d2α Q(α, α∗)�(s)(α, α∗), (18)

Q(α, α∗) = π TrA[Qs(a, a†) �(−s)(α, α∗)], (19)

where Qs(a, a†) is the s-ordered operator obtained by quan-
tizing a classical quantity Q(α, α∗). Three special cases are
important: s = 0, s = −1, and s = +1 correspond to the Weyl
ordering, normal ordering, and antinormal ordering, and the
phase-space distribution

F (s)(α, α∗) = TrA[ρ(A) �(s)(α, α∗)] (20)

becomes the Wigner distribution function, Sudarshan-Glauber
P function, and Husimi Q function, respectively. Among
them, the Husimi Q function is always positive semidefi-
nite, whereas the others can take negative values, in gen-
eral. From Eq. (16), F (s)(α, α∗) is seen to be normalized:∫

d2α F (s)(α, α∗) = 1. Also, from Eqs. (18) and (20), a
quantum expectation value is expressed as a statistical average
in phase space:

TrA[ρ(A)Qs(a, a†)] =
∫

d2α Q(α, α∗)F (s)(α, α∗). (21)

To formulate the phase-space representation of the quantum
operation in Eq. (1), the P representation with s = −1 turns
out to be convenient. In this representation, the density matrix,
ρ = ρ(A), is expressed as follows:

ρ(A) =
∫

d2αP (α, α∗)|α〉A A 〈α| , (22)

where P (α, α∗) ≡ F (−1)(α, α∗), and |α〉A ≡ exp(a†α −
aα∗)|0〉A is the coherent state that is the eigenstate
of the annihilation operator, a|α〉A = α|α〉A, satisfying
the (over)completeness relation, (1/π )

∫
d2α|α〉A A 〈α| = IA.

Then, the P representation of Eq. (1) is found to have the form
of an integral transformation:

P (α, α∗) =
∫

d2α′ G(α, α∗ : α′, α′∗)P0(α′, α′∗), (23)

where P and P0 are the P representations of ρ(A) and ρ0(A),
respectively. G(α, α∗ : α′, α′∗) is the transformation kernel
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given by

G(α, α∗ : α′, α′∗) =
∑

n

A〈α′|K†
n �(−1)(α, α∗) Kn|α′〉A,

(24)

which satisfies
∫

d2α G(α, α∗ : α′, α′∗) = 1, as can be seen
from Eqs. (2) and (16). Equation (23) with Eq. (24) is the
formula for the P representation of a general completely
positive quantum operation.

Now, we evaluate the kernel for the operators in Eq. (10).
Performing a straightforward calculation, we find it to be given
by

G(α, α∗ : α′, α′∗)

= 1

π sinh2θ
exp

(
− 1

sinh2θ
|α − α′ cosh θ |2

)
. (25)

Thus, in this case, the transformation kernel in the P repre-
sentation is Gaussian. [In the special case when the choice in
Eq. (13) is made, then, the factor sinh2θ = 1/[exp(βωA) − 1],
which is the internal energy of A in an equilibrium state
with inverse temperature β, is responsible for the thermal
broadening of the width of the Gaussian function.] What
is to be noted is its θ -dependent translational invariance:
α → α + ξ , α′ → α′ + ξ/ cosh θ , where ξ is an arbitrary
complex constant. In the operator form in Eqs. (6) and (10), it
would be hard to see such a symmetry. This invariance enables
one to rewrite Eq. (23) as a convolution of the kernel in Eq. (25)
and an arbitrary initial distribution:

P (α, α∗) =
∫

d2α′ G(α − α′, α∗ − α′∗)P̃0(α′, α′∗), (26)

where

G(α − α′, α∗ − α′∗) = 1

π sinh2θ
exp

(
− 1

sinh2θ
|α − α′|2

)
,

(27)

P̃0(α,α∗) = 1

cosh2θ
P0

(
α

cosh θ
,

α∗

cosh θ

)
. (28)

Therefore, using the standard technique of the Laplace-
Fourier transformation, we can conversely express P0 in terms
of P , implying a remarkable fact that the quantum operation
in Eq. (1) with Eq. (10), which maps from the vacuum pure
state at vanishing temperature to a mixed state with perfect
decoherence, is invertible.

Finally, noting that the P representation of the “initial”
vacuum state in Eq. (7) is given by

P0(α, α∗) = δ2(α), (29)

it immediately follows from Eq. (26) that

P (α, α∗) = 1

π sinh2θ
exp

(
− 1

sinh2θ
|α|2

)
, (30)

which precisely reproduces the P representation of the state
in Eq. (11).

IV. CONCLUDING REMARKS

We have developed the phase-space representations of
completely positive quantum operations and described them
as integral transformations in phase space in order to describe
such abstract operations in terms of a more intuitively
perceivable classical notion. We have studied as an example
the P representation of the operation associated with the
nonunitary subdynamics of the two-mode squeezed state,
which maps from the vacuum state of the reduced single-
mode field at vanishing temperature to the state with perfect
decoherence. We have derived the explicit form of the kernel of
the integral transformation in phase space and found that the
kernel possesses the translational invariance in phase space,
leading to a remarkable result that the operation is invertible,
and coherence lost by the quantum operation can be recovered.
This highlights usefulness of the phase-space representations.

Quantum-optical techniques are widely used in quantum
information processing, where errors occur due to decoherence
[3]. The present result may have significance for, e.g., error
correction, since lost coherence in the single-mode state arising
from the total two-mode state can be restored because of the
invertibility discovered here.

We expect that the phase-space representations can offer a
useful method for revealing properties of quantum operations
of various kinds in a way similar to the present one. For
example, it is of interest to extend the discussion to the case of
systems in finite Hilbert space [10].
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