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Random-walk model to study cycles emerging from the exploration-exploitation trade-off
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We present a model for a random walk with memory, phenomenologically inspired in a biological system. The
walker has the capacity to remember the time of the last visit to each site and the step taken from there. This
memory affects the behavior of the walker each time it reaches an already visited site modulating the probability of
repeating previous moves. This probability increases with the time elapsed from the last visit. A biological analog
of the walker is a frugivore, with the lattice sites representing plants. The memory effect can be associated with the
time needed by plants to recover its fruit load. We propose two different strategies, conservative and explorative,
as well as intermediate cases, leading to nonintuitive interesting results, such as the emergence of cycles.
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I. INTRODUCTION

The movement of animals in search for food, refugia, or
other resources is the subject of active research trying to
unveil the mechanisms that give rise to a wide family of
related complex patterns. In particular, physicists find in these a
fruitful field to explore reaction-diffusion mechanisms [1,2], to
apply the formalism of stochastic differential equations [3–5],
and to perform simulations based on random walks [6–9].

One of the key aspects of this phenomenon is the feedback
interaction between the individual and the environment [10].
These interactions may involve intraspecific and interspecific
competitions that, together with previous experience [11,12]
and the search for resources, drive the displacement of the
individuals. In particular, when animals move around in order
to collect food from patches of renewable resources, their
trajectories depend strongly on the spatial arrangement of such
patches [13]. This observation has motivated a large collection
of studies focused on finding optimal search strategies under
different assumptions of animal perception and memory
[14,15]. A related open question is that of the origin of home
ranges, a concept introduced in [16] to characterize the spatial
extent of the displacements of an animal during its daily
activities. Many species perform bounded explorations around
their refugia, even though the available space and resources
extend far beyond. There are several hypotheses that try to
explain this phenomenon, which could be only an emergent
behavior associated with very simple causes [17]. The review
by Börger et al. [9] is an exhaustive compilation of the state
of the art. There the authors point out that movement models
do not always lead to the formation of stationary home ranges.
Still, home ranges arise, for example, in biased diffusion [3],
in self-attracting walks [18], and in models with memory
[19]. Nevertheless, the quest to unveil and characterize the
underlying weave of causes and effects behind the emergent
patterns is not over. How do these emerge as the result of the
interaction between the behavior of an organism and the spatial
structure of the environment?

In this context, the venerable symmetrical random walk
has been the subject of many studies, with a large collection of
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applications and characterizations that include aspects beyond
the simple walker capable of only uncorrelated short-range
steps. Just to focus on what we want to present here, let us
restrict the examples to random walks on discrete lattices
where the walker can gather information to build up a history.
One such case is the self-avoiding walk, where the walker
builds up its trajectory by avoiding stepping onto an already
visited site [20,21]. A characteristic result corresponds to the
walker running into a site with all its neighboring sites already
visited and being blocked. The converse case occurs when the
walker prefers sites visited earlier.

Previous works have shown that introducing long-range
correlations into a random walk may lead to nontrivial effects
translated into drastic changes in the asymptotic behavior.
The usual diffusive dynamics can evolve into subdiffusive,
superdiffusive, or persistent. Such random walks with long-
range memory have been extensively studied in recent years
[19,22–28].

In [29–31] a behavior that can be interpreted as memory
was explored. These works analyze a self-attracting walk
where the walker jumps to the nearest neighbor according to
a probability that increases when the site has already been
visited. A generalization that includes an enhancement of
this memory with the frequency of visits, but also with a
degradation with time, was proposed in [18].

In this work we propose a random walk with a specific
memory that induces local correlations at long times. The
rationale for this model is to mimic the movement of a foraging
animal, e.g., a frugivore, going from one plant to another in
order to feed. We show that the emergence of looped walks,
which can be associated with home ranges, can be promoted
by very rudimentary capacities of the individual together with
a natural dynamics of the environment.

II. MODEL

For a forager the proximity of a plant is not enough to
make it attractive for a future visit: The plant must also have a
visible and interesting load of fruit. Moreover, when visiting
a plant the animal usually takes only part of the available
fruit and moves on. After this, the plant needs some time to
recover its fruit load. Such a model was analyzed in [17].
We attempt here a further simplification, coding the complex
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interaction of memory, consumption, and relaxation in the
probabilities defining the random walk from each site of the
lattice.

As a first simplification, consider that the animal eats all
the available ripe fruit in the visited plant and leaves. Let us
say that a walker moving in such a substrate has a memory,
allowing it to remember the time of visit to every site and
the step taken from there. When revisiting a fruitful plant the
animal will consider it a success and repeat the step taken
from there, “remembering” its previous visit. When returning
to a plant before its recovery the walker takes a random step.
This unlimited memory is not necessarily associated with
extraordinary skill of the forager. It could be stored in the
environment as the state of each plant, whose proximity and
fruit load can trigger in the forager the inclination to choose
a specific direction. Thus, the memory of having visited a site
once need not be stored in the animal but recorded on the
topology of the environment (as is the case in [17]). Also, we
can anticipate here that when a home range emerges the walker
effectively uses a bounded amount of memory.

Besides this, imagine two possible strategies for the update
of the memory, the details of which will be given below. A
conservative walker will keep in memory the time in which
the visit to that site was successful and the step taken on
that occasion. An exploring walker instead will update the
memory of the visit to the current time and the step to the
randomly chosen one. Between these two strategies there
might be intermediate ones, all of which will be explored
below.

Now, with the motivation just exposed, let us define a
random walk that modifies the probabilities of steps from each
site according to the time since the last visit and a parameter
defining the strategy. The rules of the walk can be summarized
as follows.

(i) When visiting a new site, take a random step in one of
the four directions. Store in memory the time of visit tv and
the step.

(ii) When returning at time t to a site previously visited at
time tv , (a) with probability pr (t − tv) repeat the step stored in
memory and update the visit time stored in memory or (b) with
probability 1 − pr (t − tv) take a random step and either with
probability ρ update in memory the time of visit and the step
taken or with probability 1 − ρ keep the memory unmodified.

The probability distribution used to repeat the step taken
in the previous visit is used to model the replenishment of
the fruit mentioned above. It can be simply a Heaviside step
function pr (t − tv) = θ (t − tv − τ ), where τ is a parameter
representing the recovery time of the plants. It is equivalent to
the memory of the elephant walk [19], but used in a different
way. Contrary to the usual memory that makes the probability
of revisiting a site fade with time, here we are considering the
probability of revisiting a site that increases with time. In such
a case the walker will always repeat its step when returning
after τ steps and always take a random step when returning
earlier. This strict condition can be relaxed by modeling pr

with a smooth step function. In the results shown below only
the Heaviside step distribution will be used since, as we will
show later, no significant differences were found when using a
smooth distribution. In such a case, the walks are characterized
by two parameters τ and ρ.

Our results show the emergence of closed circuits in
nontrivial ways. To characterize the behavior of these we
analyze both the duration of the transient elapsed until the
walker enters the closed circuit and the length of such cycles.

The emergence of such circuits is reflected in the fact that
during the initial stages the mean square displacement exhibits
a diffusive behavior whereas for longer times it reaches a
plateau. Such a behavior has been already reported in previous
works [23,24] where, due to a feedback coupling between a
particle and its environment, it gains experiences with modified
surroundings, resulting in a bounded walk.

III. RESULTS

The results presented below correspond to mean values
taken over 103–104 realizations, on a two-dimensional lattice,
large enough to prevent the walker from reaching the borders.
The simulations were done for 105 and 106 time steps, showing
no significant dependence between them.

One of the most revealing features of any sort of walk, be it
random, self-avoiding, self-attracting, etc., is its mean square
displacement (MSD). The behavior of the MSD in the present
model shows rather interesting features. Figure 1 displays the
MSD as a function of time for a range of values of ρ, from
0 to 1, and for τ = 20. Recalling that ρ is the probability
that the walker updates the information, stored in its memory,
regarding the time of visit to a site and the step taken from
there, we associate ρ = 1 with the exploring behavior and
ρ = 0 with the conservative one. We observe that for ρ = 0
the behavior is clearly diffusive, while for ρ = 1 the MSD
reaches a plateau, indicating that the walker remains trapped
in a bounded region. Contrary to the intuitive guess, this shows
that it is the exploring behavior that allows the walker to find
closed circuits more easily, while the conservative behavior
leads to a diffusive walk. Intermediate values of ρ generate
intermediate behaviors. We have analyzed the model for values
of τ ranging from 5 to 150, finding analogous results for all of
them.

FIG. 1. (Color online) Mean square displacement vs time for
probability ρ = 0 (black), ρ = 1 (orange), and intermediate values
and corresponding to the recovery time of the plants τ = 20.
Simulations were performed on a square lattice of 5000 × 5000 sites,
105 time steps, and 103 realizations.
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FIG. 2. (Color online) Contour plot of the fraction of realizations
that end in a cycle, as a function of parameters ρ and τ . Simulations
were performed on a square lattice of 5000 × 5000 sites, 105

time steps, and 104 realizations. The gray region corresponds to
realizations that do not end in cycles due to finite observation time.

These results raise several questions about the dependence
of the emergence of cycles on each parameter. Even though all
two-dimensional walks (including the case ρ = 0) eventually
return to a site in a condition that allows the settling of a cycle,
the time necessary to fulfill this condition can vary greatly.
As a result, after a fixed number of steps only a fraction of
the walkers are able to do so. In the following we proceed
to characterize the statistical behavior of these walkers by
measuring several relevant quantities.

Figure 2 shows a contour diagram representing the fraction
of realizations that end in a cycle, as a function of the
parameters ρ and τ . We observe that this fraction increases
both for decreasing τ and for increasing ρ. Consistently,
mapping this situation to the biological scenario, when plants
take too long to recover (large τ ) or when the foragers are not
exploring enough (too small ρ), there is no formation of home
ranges.

Another informative aspect of the walks that needs char-
acterization is the length of the cycles. The concept of a
home range is always associated with the measurement of the
amount of space utilized. Sometimes it is measured through the
utilization distribution [32], which represents the probability
of finding an animal in a defined area within its home range.
In this case, once the cycle is established, the animal will
visit each site within the cycle only once at each turn, so the
utilization distribution will be uniformly distributed among
the sites within the cycle. Still, we can have an estimation of
the amount of used spaced by measuring the longitude of the
cycle. A priori we know that τ is the greatest lower bound
(infimum) for the average cycle length. This average is shown
in Fig. 3. We can conclude that the mean length of the cycles is
very close to this bound for all parameter sets showing a very
weak dependence on ρ for the largest values of τ , undoubtedly
due to the undersampling arising from the finite simulation
runs. Observe, nevertheless, the wedge-shaped region of very

FIG. 3. (Color online) Contour plot of the mean cycle length as a
function of ρ and τ . Simulations were performed on a square lattice
of 5000 × 5000 sites, 105 time steps, and 104 realizations.

conservative walkers that never find a cycle, which grows with
the recovering parameter τ .

Let us now focus on the extreme cases of ρ = 0 and 1. When
ρ = 0 we find that the behavior is diffusive for all values of
τ (see Fig. 4), so 〈x2〉 = D(τ ) t . As shown in Fig. 5, D(τ )
depends on τ approaching 1 from below as τ increases. On the
other hand, perfect explorers, those with ρ = 1, always find a
cycle. We have found that the average length of the transient
depends quadratically on τ .

As can be seen in Fig. 4, the transient regime is longer
as the value of τ is larger, i.e., for short recovery times, the
walker finds a cycle easier (and faster). If τ is very large, it may
happen that the walker returns successive times to the same
site earlier than τ and randomly choose the next step, losing
the possibility of repeating the last steps and thus entering a
cycle.

Observe that the exploring walker is the one that contin-
uously updates the stored information. An intuitive guess of

FIG. 4. (Color online) Contour plot of the mean transient length
as a function of parameters ρ and τ . The color scale is logarithmic.
Simulations were performed on a square lattice of 5000 × 5000 sites
and 106 time steps.
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FIG. 5. Diffusion coefficient of the ρ = 0 case (slope of the
average MSD curves for each value of τ ). Forty uniformly distributed
values of τ were considered between 5 and 200.

the resulting dynamics, analyzed in terms of the intensity of
exploring activity of the individual, may lead us to think that
such a walker would have a higher difficulty in establishing
a walking pattern and finding a closed circuit. Also, for
those who maintain the stored information (the conservative
walkers), finding an optimal closed circuit would be a relatively
simple task. However, our results show that this intuition is
wrong.

Relevant insight into the mechanisms that give rise to
the observed behavior of the forager walk can be obtained
from well known results of conventional random walks. A
random walk in one and two dimensions is recurrent, i.e., the
probability that the walker eventually returns to the starting
site is 1. (In higher dimensions, the random walk is transient,
the former probability being less than 1 [33].) So, in principle,
for any value of τ and ρ = 0 the forager walk eventually ends
up in a cycle. However, this asymptotic behavior of the system
may not be the most relevant one in many contexts. In the
biological scenario, for example, one would be interested in
the possibility of finding cycles in relatively short times.

Our results can be explained by considering the so-called
Pólya problem or first return time. The probability that a simple
random walk in one dimension returns for the first time to a
given site after 2n steps is

(
2n

n

)
1

(2n − 1)22n
. (1)

In two dimensions the probability that a simple random walk
returns to a given site after 2n steps is the square of the previous
probability [33] as a simple random walk in two dimensions
can be projected into two independent one-dimensional walks
on the x and y axes. The probability given by Eq. (1)
asymptotically decays as n−3/2, indicating that returning to
the initial site is increasingly improbable with elapsed time.
The forager walk can be interpreted in the following way. Until
the moment that the walker gets trapped in a cycle, it performs
a random walk. Afterward, the behavior is deterministic. That
very moment corresponds to the first time a cycle is completed,
so it is a return to the initial step of the cycle after τc � τ time
steps, where τc is the period of the cycle of an individual
realization for a given choice of τ . Let us assume that the

FIG. 6. (Color online) Mean square displacement vs time con-
sidering a smooth function for the probability to repeat the step
taken in the previous visit. Here ω = 10 (black), ω = 2 (red), and
ω = 0.5 (blue) and τ = 20. Simulations were performed on a square
lattice of 5000 × 5000 sites, 105 time steps, and 103 realizations. The
inset shows the functional expression and shape of the probability
distribution.

transient walk executed up to this first return can be used to
estimate a probability analogous to Eq. (1). We can do this
from the length of the transient and the fraction of realizations
that successfully ended in a cycle. The transient can be thought
of as consisting of successive realizations of walks of length
τc that were not successful in returning to the starting point.
We have verified this algebraic dependence.

The immediate question about the validity of the present
results for higher dimensions can be answered by invoking
the recurrence theorem presented by Pólya [34], which shows
that a random walk is recurrent in one- and two-dimensional
lattices and that it is transient for lattices with more than two
dimensions. The emergence of home ranges as presented in
this work is strongly dependent of the probability of eventual
returns to already visited places. Thus, for dimensions higher
than 2 the expected cycle lengths will be longer and their very
existence less probable, as can be deduced from the calculated
probabilities of returns to the origin in these cases [35].

In addition, the fact that increasing ρ produces an increase
in the probability of finding a cycle can be understood in the
following way. The probability of returning to a given site
decreases as the walker moves away. When ρ is small the
walker can move increasingly farther away from the stored
site, making it rather difficult to return to it and enter a cycle.
When ρ is high the foraging walker constantly updates its
memory, in a way that it is always relatively close to the most
recently stored site. This increases the probability of returning
to it and triggering a cycle.

For completeness, we include a plot showing results based
on the use of a smoother distribution. The smooth step depends
on two parameters τ and w. The limit w → ∞ tends to
a Heaviside step function at t = τ . Figure 6 displays the
behavior of the walk for three values of ω (10, 2, and 0.5),
exemplifying the typical behaviors for a fixed value of τ = 20.
The MSDs are averages over 1000 realizations. The black
curve corresponds to ω = 10, which is very similar to a step
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and gives an MSD almost identical to the one shown in
Fig. 1, with ρ = 1 (orange curve). While smoother curves
tend to plateaus at higher values, no qualitatively differences
are observed in the behavior.

IV. CONCLUSION

An important aspect related to animal movement is the
effect that spatial heterogeneities have on the observed pat-
terns. When the spatial heterogeneity is manifested through the
distribution of resources, the link between resource dynamics
and random-walk models might be the key to answer many
open questions about the emergence of home ranges. Another
route to explore this problem is by accounting for learning
abilities and spatial memory [36,37].

The formation of a home range has previously been
investigated with models in which a single individual displays
both an avoidance response to recently visited sites and
an attractive response toward places that have been visited
sometime in the past [15,38]. An animal searching for food
would choose its movements based not only on its internal
state and the instantaneous perception of the environment,
but also on acquired knowledge and experience. Animals
use their memory to infer the current state of areas not
previously visited. This memory is built up by collecting
information remembered from previous visits to neighboring
locations [39].

Although the emergence of home ranges is crucial in un-
derstanding the patterns arising from animal movement, there
are few mechanistic models that reproduce this phenomenon.
Traditional random walks, widely used to describe animal
movement, show a diffusive behavior far from displaying a
bounded home range. However, the addition of memory ca-
pacity has proven to predict bounded walks [19,23,24]. Home
ranges also arise in biased diffusion [3] and in self-attracting
walks [18]. The interesting aspect of the results presented

here is that they not only reveal the nontrivial behavior of
the so-called frugivore walk, but also contribute to a deeper
understanding of the causes underlying the constitution of
home ranges as an emergent phenomenon, among which we
highlight the foraging strategy. By considering a minimal
model we have shown that a walker with rudimentary learning
abilities, together with the feedback from a dynamic substrate,
gives rise to an optimal foraging activity in terms of the usage
of the spatial resource. Indeed, neither a foraging strategy
based just on diffusion (a random walk without memory) nor
a walk strongly determined by memory (like our conservative
walker) is optimal. A better strategy is one that combines
the use of memory with an exploratory behavior, such as our
explorative walker.

There is evidence supporting that precisely this combined
strategy may be the one favored by evolutionary mechanisms
[40,41]. Foraging activity must balance between exploration
and exploitation: On the one hand, exploring the environment
is crucial to finding and learning about the distributed
resources; on the other hand, exploitation of known resources
is energetically optimal. Indeed, this trade-off is a central
thesis in current studies of foraging ecology, as it is apparent,
for example, in the thorough work by Bell [42] and in
Lévy flight models [6]. The simple mechanism analyzed here
contributes with theoretical support to these ideas. We have
shown that the balance between exploration and exploitation
not only provides an optimal use of resources, but may also be
responsible for the emergence of a home range. The balance
between exploration and exploitation appears as the route to
successful foraging.
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