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Relevance of the eigenstate thermalization hypothesis for thermal relaxation
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We study the validity of the eigenstate thermalization hypothesis (ETH) and its role for the occurrence of initial-
state independent (ISI) equilibration in closed quantum many-body systems. Using the concept of dynamical
typicality, we present an extensive numerical analysis of energy exchange in integrable and nonintegrable spin-1/2
systems of large size outside the range of exact diagonalization. In the case of nonintegrable systems, our finite-size
scaling shows that the ETH becomes valid in the thermodynamic limit and can serve as the underlying mechanism
for ISI equilibration. In the case of integrable systems, however, indication of ISI equilibration has been observed
despite the violation of the ETH. We establish a connection between this observation and the need of choosing a
proper parameter within the ETH.
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I. INTRODUCTION

Due to experiments in ultracold atomic gases [1–5], the
question of thermalization in closed quantum systems has
experienced an upsurge of interest in recent years. It is,
however, a paradigm of standard thermodynamical processes
that the final equilibrium state is generally independent of
the details of the initial state. But this general initial-state
independence (ISI) is challenging to proof from an underlying
theory such as quantum mechanics. While for local density
matrices of subsystems the issue of necessary and sufficient
conditions for ISI is subtle [6,7], for expectation values of
observables a widely accepted sufficient condition for ISI
is the validity of the eigenstate thermalization hypothesis
(ETH) [8–10]. It claims that the expectation values of a
given observable A should be similar for energy eigenstates
|n〉 if the energy eigenvalues En are close to each other,
i.e., 〈n|A|n〉 ≈ 〈n′|A|n′〉 if En ≈ En′ . The relation to ISI
equilibration can be seen from considering the dynamics

a(t) := Tr{ρ(t) A} =
∑

nm

ρnm Amn eı(Em−En)t , (1)

with Amn = 〈m|A|n〉 and averaging over sufficiently long
times. Given that there are no degeneracies [11], this averaging
yields

ā ≈
∑

n

ρnn Ann. (2)

If, as the ETH claims, all Ann from an energy region around
E are similar, i.e., Ann ≈ A(E), then obviously ā ≈ A(E)
regardless of the initial state ρ(0), as long as it is also restricted
to the same energy region. Hence, if various a(t) from an
energy shell equilibrate at all (for conditions on that see
Refs. [7,11]), they must do so at the same value A(E), i.e.,
ISI applies.

Much less clear is whether or not the validity of the
ETH is also a physically necessary condition for ISI in
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the sense that no relevant set of states can exhibit ISI
without the ETH being fulfilled. (It is surely necessary if one
requires that all states exhibit ISI.) Equation (2) allows for
mathematically constructing different initial states with the
same ā even in cases where the ETH does not apply (see,
e.g., Refs. [12,13]). Thus, the ETH may not be a physically
necessary condition. However, the ETH has numerically been
found to be fulfilled for a variety of systems and observables,
and it is commonly expected that the ETH applies to few-body
observables in nonintegrable quantum systems [8,9,16,17].
But this expectation is still lacking a rigorous proof. Therefore,
the crucial question is: Is the ETH the “force that drives”
physical equilibration?

In the present paper, we consider this question by two dif-
ferent numerical approaches: (i) We study the ETH concerning
energy exchange for a variety of coupled subsystems. From
the second law, ISI equilibration is strongly expected for each
setting. (ii) We investigate equilibration dynamics in systems
for which the ETH is clearly violated. In both approaches,
we apply the concept of dynamical typicality [18–22] and
provide a careful finite-size scaling since, for any finite
system, the ETH is never strictly fulfilled [i.e., Ann �= A(E)
except for trivial cases] [21,23–25]. Our study in approach
(i) unveils that the ETH is fulfilled for energy exchange
in nonintegrable systems and particularly approaches the
thermodynamic limit according to a power-law dependence
on the effective Hilbert-space dimension. Our investigations
in approach (ii) are different from other approaches based on
quantum quenches [16,26–30] or a period of time-dependent
driving [31]. Still, we use initial pure state. But we prepare
initial states with the property that the observable of interest
deviates largely from its equilibrated value, while these states
are still restricted to an energy shell. We consider this subclass
of all possible initial states to be generic for equilibration
experiments. As a main result, we observe ISI relaxation
of energy exchange in an integrable system where the ETH
clearly breaks down. In this way, we unveil the need of
choosing a proper ETH-violation parameter.

This paper is structured as follows: In Sec. II we introduce
the numerical method used as well as the models and
observable studied. Then we summarize and discuss in Sec. III
our results on the ETH and ISI equilibration in nonintegrable
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systems. The following Sec. III is devoted to the relationship
between the ETH and ISI equilibration for the specific case
of integrable systems and the above mentioned “observable
displaced” initial states. In Sec. V we summarize and draw
conclusions.

II. METHOD, MODELS, AND OBSERVABLE

Convenient parameters to quantify the ETH with respect to
a given Hamiltonian H and observable A are

Ā =
d∑

n=1

pn Ann, �2 =
d∑

n=1

pn A2
nn − Ā2, (3)

where Ann are diagonal matrix elements with respect
to the Hamiltonian eigenstates |n〉 with eigenvalues En,
pn ∝ e−(En−Ē)2/2σ 2

is a probability distribution centered
at Ē, and d is the Hilbert-space dimension. The quantities
Ā(Ē,σ ) and �(Ē,σ ) are obviously functions of Ē and an
energy width σ . Routinely, the ETH is said to be fulfilled if �

is small. However, whenever σ is finite, � can only be zero for
vanishing slopes of Ā, i.e., ∂Ā/∂Ē = 0. Therefore, for finite
σ , the ETH is fulfilled if � → ∂Ā/∂Ē σ in the limit of large
system sizes [21].

A crucial point in this paper is of course finite-size scaling.
To render this scaling as convincing as possible, one needs
data on systems as large as possible. Usually, checking the
ETH requires exact diagonalization [24,25] that is limited
to rather small system sizes. Thus, we employ a recently
suggested method [21] that is based on dynamical typicality
and allows for the extraction of information on the ETH from
the temporal propagation of pure states. This propagation can
be performed by iterative algorithms such as Runge-Kutta
[20–22], Chebyshev [32,33], etc., and is feasible for larger
system sizes. We use a fourth-order Runge-Kutta iterator with
a sufficiently small time step. Due to typicality-related reasons,
the so-computed quantities Ā and � are subject to statistical
errors. These errors, however, turn out to be smaller than the
symbol sizes used in this paper [22].

We study systems consisting of two weakly coupled XXZ
spin-1/2 chains (except for one example discussed below).
The Hamiltonian of the chains has open boundary conditions
and is given by

Hj = J

Nj −1∑

i=1

(
Sx

i,j S
x
i+1,j + S

y

i,j S
y

i+1,j + �Sz
i,j S

z
i+1,j

)

+
Nj∑

i

hi,j Sz
i,j , (4)

where j = L, R labels the “left” and “right” chain. NL,
NR are the respective numbers of spins in the chains, see
Figs. 1(a)–1(c). J = 1 is the antiferromagnetic exchange
coupling constant and � is the exchange anisotropy. hi,j

are spatially random magnetic fields in z direction that are
drawn at random according to a uniform distribution between
−W/2 and W/2. This way of introducing disorder is similar
to the random on-site potential of the Anderson model, widely
investigated in the context of many-body localization [34].
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FIG. 1. (Color online) Schematic representation of the systems
for the study of energy exchange between a “left” (L) and “right” (R)
part.

To allow for energy exchange, we add a coupling term HC

between the two chains: H = HL + HR + HC. This term has
a very similar form and reads

HC = JC

NL∑

i=1

ci

(
Sx

i,LSx
i,R + Sx

i,LSx
i,R + �Sz

i,LSz
i,R

)
, (5)

where JC is the coupling strength. For ci = 1, the total
Hamiltonian H represents a nonintegrable structure of ladder
type, while for ci = δ(i,1), H reduces to a single chain.
This chain is integrable for J = JC and W = 0 only. We
also consider the intermediate case with ci = δ(i,1) + δ(i,NL)
and a two-dimensional situation with ci = 1: In this situation
the chains in Eq. (4) are replaced by Nj × Nj lattices with
interactions between all nearest neighbors and the coupling
in Eq. (5) is replaced by an interaction at the contact of the
lattices, as illustrated in Fig. 1(d).

The observable A we are going to investigate for accord
with the ETH is the energy difference. A is represented by the
operator D = HL − HR . For any left-right symmetric model
and observable, the ETH is necessarily fulfilled. Thus, to avoid
this trivial case, we choose right chains to consist of twice
as much spins as the left chains throughout this paper, see
Figs. 1(a)–1(c). In the two-dimensional situation we choose the
right-lattice side to have one spin more than the left-lattice side.

III. RESULTS ON NONINTEGRABLE SYSTEMS

First, we consider D̄(Ē), i.e., the mean energy difference
for the energy eigenstates in a small energy interval centered at
Ē. We control the smallness of this energy interval by choosing
σ = 0.6. (This choice is kept for the remainder of this paper.)
Results on the model in Fig. 1(a) are displayed in Fig. 2 for
various coupling strengths JC at fixed anisotropy � = 0.3 and
system size NL = 8.

To gain insight into the results in Fig. 2, let us consider
the following analog to the standard equipartition theorem:
Assume that every term in the Hamiltonian (“bond”) contains
for energy eigenstates an amount of energy proportional to
its strength. For weak coupling, the energies corresponding to
terms of HC can be neglected. Then one expects a left- and
right-chain partition of energy as (NL − 1)/(NR − 1) = 7/15,
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FIG. 2. (Color online) Mean energy difference D̄ of energy
eigenstates in an energy shell of width σ = 0.6 around Ē, calculated
for the model in Fig. 1(a) with anisotropy � = 0.3 and system size
NL = 8. For the “average eigenstate,” the distribution of energy onto
the subsystems is proportional to their sizes.

yielding an energy difference D̄ = (NL − NR)/(NR+NL−2)
Ē = −4Ē/11. This expectation is indicated by the solid line
in Fig. 2. Clearly, the equipartition assumption is well justified
for a wide range of interactions strengths JC � 0.6. We find
this principle to hold for each model addressed in this paper,
even though not shown explicitly here. This finding is a first
main result, although not at the center of the investigation in
this paper.

Next we turn to the ETH. To limit computational effort, we
focus on the energy regime around Ē = 0; however, we have
found similar results for other points in energy space. For the
E = 0 regime we compute both, deff = Tr{e−(H−Ē)2/2σ 2} and
�′ = � − ∂D̄/∂Ē σ . deff has the meaning of the number of
eigenstates that constitute the “relevant” energy shell. �′ is
the quantity that is expected to approach zero if the ETH is
fulfilled. (We get ∂D̄/∂Ē σ = 0.21 throughout this paper.) For
all models studied, we show in Fig. 3(a) double logarithmic
plot of �′ as a function of deff that increases with system
size.

In Figs. 3(a)–3(c) we summarize our results on �′ for the
model in Fig. 1(a): In Fig. 3(a) we vary the coupling strength JC

at fixed anisotropy � = 0.3; In Fig. 3(b) we vary the anisotropy
� at fixed coupling strength JC = 0.3; and in Fig. 3(c) we study
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FIG. 3. (Color online) The parameter �′, quantifying the degree
of ETH violation, as a function of the effective dimension deff that
increases with system sizes. The violation appears to vanish according
to a power law in the limit of large system sizes, regardless of the
properties of the specific models studied. For model parameters,
see text.

cases of weak and intermediate amount of disorder for � =
0.6 and JC = 0.3. In Fig. 3(d) we show results for the same
values � = 0.6 and JC = 0.3 but for W = 0 and the different
coupling structure in Fig. 1(b) and the two-dimensional case
in Fig. 1(d).

In all cases, �′ apparently scales with deff as a power
law �′ ∝ d

−γ

eff , which is in accord with the findings in
Ref. [25]. Consequently, the ETH is fulfilled in the limit of
large system sizes. This is our second main result. It indeed
indicates that the relaxation of the energy difference between
weakly coupled quantum objects may be generically expected
for all sorts of initial states. For a random-matrix model,
one would expect a power-law scaling with the exponent
γ = 0.5. For all nonintegrable cases we studied we find a
slightly different exponent. If we call closeness to γ = 0.5
the “amount” of nonintegrability, then the two-dimensional
case in Fig. 1(d) is the most nonintegrable one studied here.
For the one-dimensional cases, the amount of nonintegrability
does not depend crucially on the coupling constant JC in the
small JC regime, while the dependence on the anisotropy � is
nonmonotonic.

IV. MICROCANONICAL OBSERVABLE, DISPLACED
STATES AND RESULTS ON INTEGRABLE SYSTEMS

The above findings certainly raise immediately the question
of ISI equilibration in integrable models: Is it reasonable to
expect the violation of ISI equilibration for two subsystems
that are connected to form an integrable system? Comparable
investigations found answers in both directions [27,28,35],
even for nonintegrable systems [14,15,36]. To analyze this
question, we study a pure Heisenberg chain, from the point
of view depicted in Fig. 1(c). As already mentioned, this
Heisenberg chain is integrable for JC = 1, � = 0.6, and
W = 0. For this model, we show in Fig. 4 (circles) results
on �′ as a function of 1/NL.

Unlike all previous examples, �′ does not decrease as
system size increases, which is in accord with the system being
integrable. To clarify the impact on relaxation, we analyze
the dynamics of “microcanonical” and “observable-displaced”
initial states ρMOD,

ρMOD :∝ e−{H 2+β2[D−d(0)]2}/2σ 2
. (6)

Obviously, the parameter d(0) controls the degree of observ-
able displacement. The energy is concentrated within a width

0 0.1 0.2 0.3
1/NL

0

0.1

Σ’
, v

, r

1. ETH: Σ’
2. ETH: v
long-time: r

× 0.1

FIG. 4. (Color online) The ETH parameter �′ (circles), the
scaled ETH parameter v (squares), and the long-time value r for the
integrable Heisenberg chain in an energy window of width σ = 0.6
around energy Ē = 0. All quantities are shown as a function of the
inverse number of spins 1/NL.
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σ around zero. Since H and D do not commute, we need to find
a compromise between energy concentration and observable
displacement, done by tuning β. We choose σ = 0.6, β = 0.5,
and d(0)± = NL. This state may be viewed as being based on
Jayne’s principle: It represents the maximum-entropy state
under given means and variances for energy and observable.

A comment on the usage of this type of initial states as
opposed to initial states generated by quantum quenches may
be instructive. While quantum-quench approaches produce a
complex, nonstationary state, it may or may not make the
considered observable deviating from its long-time average.
The MOD state, on the other hand, is deliberately designed
to obtain a specific initial value of the considered observable
while keeping the energy reasonably well-defined. Thus, the
MOD approach facilitates the generation of initial values
of the observable that are “substantially off-equilibrium,” to
put it in a catchy phrase. Using the above parameters, we
indeed get Tr{ρMOD D(0)} ≈ d(0) = ±NL. The largest eigen-
value of D is upper-bounded by D � 9/4(NL − 1). Hence,
the initial expectation value of D reaches at least 50% of the
difference between its highest possible value and its long-time
average. Corresponding values for standard quench dynamics
are usually much lower [15,16].

Note also that such a MOD state does not necessarily feature
a smooth probability distribution with respect to energy, as
suggested in Ref. [37] to explain ISI.

Numerically, ρMOD is challenging to compute for systems
beyond the reach of exact diagonalization. Thus, we prepare
the partially random state

|φMOD〉 = 〈ϕ|ρMOD|ϕ〉−1/2 ρ
1/2
MOD |ϕ〉, (7)

where |ϕ〉 is a random state drawn according to the unitary
invariant (Haar-) measure. In the context of typicality, e.g.,
from Refs. [19,22], it may be inferred that the dynamics
of |φMOD〉 are similar to those of ρMOD with respect to the
observable, i.e.,

d(t) = 〈φMOD|D(t)|φMOD〉 = Tr{ρMOD D(t)} + ε, (8)

where ε is a random variable with zero mean. The standard
deviation of ε is upper bounded by (Tr{ρMOD D4}/deff)1/2.
Thus, since the density of states is large at Ē = 0, we get
ε ≈ 0.

Using Runge-Kutta we can prepare these initial states and
compute the time evolution of energy-difference expectations
d(t) divided by their initial values d(0), i.e., r(t) = d(t)/d(0).
In Fig. 5 we depict our results for three system sizes NL = 4, 6,
and 8. Remarkably, the scaled differences r(t) are practically
independent of the sign of the initial value d(0). While the
energy difference r(t) decays, it does not decay all the way
to zero. In fact, the fluctuations around the corresponding
nonzero equilibrium value decrease for increasing system
size NL. Thus, for finite systems, there is indeed no clean
ISI equilibration. Since we find the same behavior for the
overwhelming majority of all states prepared according to
Eq. (7), it is reasonable to claim that the validity of the
ETH is imperative for ISI equilibration. However, comparing
Figs. 5(a), 5(b), and 5(c) indicates that r(t) decreases at large
times as system size increases. (Considering r(t) at large
times as a central quantity is also suggested in Ref. [38].)
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FIG. 5. (Color online) Real-time decay of energy-difference ex-
pectation values d(t), divided by their initial values d(0), for initial
states in Eq. (7) and three system sizes: (a) NL = 4, (b) NL = 6, and
(c) NL = 8. While r(t) = d(t)/d(0) does not vanish for long times
and finite systems, comparing (a), (b), and (c) indicates a vanishing
r(t) for long times in the limit of large system sizes. For more details
on finite-size scaling, see Fig. 4 (triangles).

This finding implies that ISI equilibration may be expected
for this specific system and observable in the limit of large
system sizes, regardless of the ETH being fulfilled. While it is
well-known that also integrable systems may exhibit ISI (see
the corresponding statement at the beginning of this section),
these examples either refer to situations where the ETH may
apply with respect to the considered observable regardless of
integrability [14] and/or initial states generated from quenches
that are not tailored to make the considered observable initially
deviating largely from its long-time average [15]. In contrast to
that, our finding addresses the occurrence of ISI for a situation
where the violation of the ETH is numerically evident and the
initial state is specifically chosen to initially deviate largely
from its long-time average. This is a third main result of our
paper.

The above results naturally lead to the question why larger
systems exhibit equilibration that is closer to ISI even though
�′ is essentially the same for large and small systems. To
clarify this question, let us consider a quantity that takes the
“natural” scale of the operator into account, rather than just
the bare �′. Therefore, we define a scaled ETH parameter v as
v := (�′)2/δ2, where δ is the variance of the operator spectrum
within the respective energy regime, i.e., δ2 = D2 − D̄2. The
bar in D2 and D is still defined according to Eq. (3). Obviously,
even if �′ does not decrease as system size increases, v may
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still do so. To find out whether or not it actually does, one has
to compute the two quantities D2 and D. This computation
can be done by the same typicality-based method used so far
in this paper. In Fig. 4 (squares) we show the corresponding
result. Apparently, v vanishes in the limit of large system sizes
even though �′ does not. This observation suggests that v is
a reliable predictor of ISI equilibration that can vanish even if
systems are integrable or close to integrability.

V. SUMMARY AND CONCLUSION

In this paper we studied the validity of the ETH and its
role for the occurrence of ISI equilibration in closed quantum

many-body systems. Using the concept of dynamical typical-
ity, we presented an extensive numerical analysis of energy
exchange in integrable and nonintegrable spin-1/2 systems of
large size outside the range of exact diagonalization. In case of
nonintegrable systems, our finite-size scaling showed that the
ETH becomes valid in the thermodynamic limit and can serve
as the underlying mechanism for ISI equilibration. In case of
integrable systems, however, indication of ISI equilibration has
been observed despite the violation of the ETH and initial states
that specifically facilitate the deviation of the observable from
its equilibrium value. We established a connection between
this observation and the need of choosing a proper parameter
within the ETH.
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