
PHYSICAL REVIEW E 91, 012119 (2015)

Thermal fluctuations and stiffening of symmetric heterogeneous fluid membranes

Tirthankar Banerjee* and Abhik Basu†

Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Calcutta 700064, India
(Received 2 September 2014; published 9 January 2015)

We study the effects of thermal fluctuations on symmetric tensionless heterogeneous (two-component) fluid
membranes in a simple minimal model. Close to the critical point Tc of the associated miscibility phase transition of
the composition and for sufficiently strong curvature-composition interactions, mediated through a composition-
dependent bending modulus, thermal fluctuations lead to enhancement of the effective bending modulus. Thus,
the membrane conformation fluctuations will be suppressed near Tc, in comparison with a pure fluid membrane,
for which thermal fluctuations are known to reduce the effective bending modulus at all nonzero temperatures.
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I. INTRODUCTION

Miscibility phase transitions (MPT) in model heteroge-
neous membranes are prominent examples of phase tran-
sitions in two dimensions; see, e.g., Ref. [1] for a review
on phase transitions with a connection to biomembranes.
Typical experiments on model lipid bilayers, e.g., artifi-
cially prepared lipid bilayers made of lipids and cholesterol,
display second-order MPTs from high-temperature homo-
geneous phases to a low-temperature phase-separated state
with coexisting liquid-ordered (Lo) and liquid-disordered (Ld )
domains [2–4] with distinctly different densities. For in-
stance, a bilayer membrane composed of three components—
dipalmitoylphosphatidylcholine (DPPC), diphytanoylphos-
phatidylcholine (diPhyPC), and cholesterol—clearly displays
this MPT [5]. The universal scaling exponents that characterize
MPTs in model lipid bilayers are experimentally found to be
close to those of the two-dimensional (2D) Ising model [5,6].
In general, model lipid bilayers are symmetric under inversion,
due to the identical nature of the two monolayers, i.e., nothing
distinguishes the top from the bottom of the membranes. While
MPTs for the composition field are well-studied, the statistical
properties of the membrane conformation fluctuations at the
MPTs have received much less attention theoretically.

It is well known that at any finite temperature T , a
sufficiently large 2D tensionless pure or homogeneous (i.e.,
made of only one lipid) fluid membrane is always crumpled
due to thermal fluctuations (see below), i.e., there are no
long-ranged orientational correlations [7,8]. As a result, such
a membrane cannot be in a statistically planar configuration
beyond a certain size, determined by T and the microscopic
bending rigidity κ0. Physically this is seen as a consequence
of the Mermin-Wagner theorem (MWT) [9]. At the critical
temperature Tc of the MPT, the presence of the long-
ranged composition fluctuations may introduce long-ranged
interactions between different parts of the membrane. These
long-ranged interactions should take the system outside the
validity of the MWT. This leaves the nature of the effective
membrane fluctuations open to various possibilities. Whether
or not membrane fluctuations are affected by the MPTs remains
a question of both theoretical and experimental significance. In
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this work, we address this issue by introducing a simple coarse-
grained model for a tensionless two-component heterogeneous
membrane, symmetric under inversion, useful as a model for
lipid bilayers with two identical monolayers. We find that
at the physically relevant dimension 2, the behavior of the
membrane at or near Tc is essentially controlled by the strength
of the interactions between the local curvature and composition
(heterogeneity). If the strength of the interaction coupling
between composition and membrane conformation fluctu-
ations (introduced here through a composition-dependent
bending modulus; see below) exceeds a critical value that
depends on the temperature, the effective large-scale bending
rigidity diverges with the system size L. As a result, the
membrane conformation fluctuations are suppressed near Tc,
or, equivalently, the membrane appears stiffer. The variance of
the associated local normal fluctuations diverges very slowly
with L; on a formal note, this L-dependence is found to be
weaker than the L-dependence of the variance of the elastic
variable fluctuations in models with continuous symmetries,
described by an elastic free energy. On the other hand, if the
interaction strength is less than the critical value, the effective
scale-dependent bending rigidity vanishes for a sufficiently
large length scale at any T > 0. Hence the membrane at that
scale (or at larger scales) appears crumpled. In this respect,
this behavior is qualitatively the same as that for a pure
fluid membrane. In addition, we discuss the true area of the
membrane and show that the fractal dimension d̃ approaches
2 near Tc if the curvature composition interaction strength
exceeds the critical value, in agreement with the behavior of
the associated membrane conformation fluctuations. The rest
of the paper is organized as follows: In Sec. II, we construct
our model for a two-component symmetric heterogeneous
membrane. In Sec. III, we briefly discuss the phase transitions
in the model within a mean-field approach. Then in Sec. IV, we
consider the effects of thermal fluctuations on the membrane
conformations at Tc. Next, in Sec. V, we discuss a generalized
version of the above-mentioned model and show that the
essential qualitative results do not change. Finally, in Sec. VI,
we conclude.

II. THE MODEL

For simplicity, we ignore the bilayer structure [10] and
consider a single membrane consisting of two different
components (lipids) A and B. The local inhomogeneity is
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appropriately described by a single composition field φ(x),
which is defined as the local difference between the concentra-
tions nA and nB of A and B, respectively: φ = nA − nB [11]; φ
is the order parameter field for the MPT. How composition fluc-
tuations may affect the membrane conformation fluctuations
depends upon the nature of coupling between the local compo-
sition and curvature. We consider a bilayer with two identical
monolayers; toward that end, we study a symmetric membrane,
invariant under inversion and hence with zero spontaneous
curvature. In the simplest description for such a membrane, φ

couples with the local mean curvature through a composition-
dependent bending modulus κ(φ). We make a simple choice
κ(φ) = κ + 2λφ + 2λφ2 giving a minimal coupling between
the composition and curvature (see, e.g., Ref. [11] for a similar
model with λ = 0). The sign of λ is arbitrary, whereas λ > 0
strictly. Therefore, depending upon the sign of λ, κ(φ) is either
higher or lower in A- or B-rich regions. As a result, domains
with smaller κ(φ) have a lower free-energy cost for supporting
a given curvature of either sign. Naturally, regions of higher
curvature will tend to favor regions of smaller curvature. Given
the extensive experimental evidence in support of second-order
MPTs in symmetric heterogeneous membranes, we adopt the
standard Ginzburg-Landau free-energy functional for binary
mixtures [12,13], useful near a critical point. We study a
nearly flat membrane, for which membrane conformations
are conveniently described by a single-valued height field
h(x,y) measured from a perfectly flat base plane in the Monge
gauge [8]. Obviously, the choice for the base plane is arbitrary.
Hence, the membrane free-energy functional density should be
invariant under the tilt: h → h + a · r, where a is an arbitrary
constant three-dimensional (3D) vector and r is a 3D radius
vector.

Our model free-energy functional F for a two-component
symmetric tensionless membrane (i.e., zero effective surface
tension) [14] to the lowest order in gradients and nonlinearities
is given by

F =
∫

dS

[
1

2
κ(φ)H 2 + r

2
φ2 + 1

2
(∇αφ)(∇αφ) + u

4!
φ4

]

=
∫

dS

[
1

2
κH 2 + r

2
φ2 + 1

2
(∇αφ)(∇αφ)

+ u

4!
φ4 + λφ2H 2 + λφH 2

]
, (1)

where H is the mean curvature, ∇α is the gradient operator,
∇α = gαβ∇β , gαβ is the metric on the membrane, and
gαβgβγ = δ

γ
α [8]. Further, κ is the (bare) bending modulus,

r ∼ T − Tc, u > 0 is a coupling constant, and λ,λ are
coupling constants that couple the composition with the mean
curvature. Note that the λ term in (1), which is quadratic in
φ and H , ensures thermodynamic stability with λ chosen
to be strictly positive. With φ as a number density, taking
ζ ∼ microscopic molecular length (∼10 Å), φ ∼ 1/ζ 2, λ ∼
KBT ζ 4, λ̃ ∼ KBT ζ 2. Further, surface element dS is related to
the projected surface element dx dy in a flat reference plane via
dS = dx dy

√
g, g = det gαβ . In the Monge gauge, the metric

tensor gαβ is given by

gαβ =
(

1 + (∂xh)2 ∂xh∂yh

∂xh∂yh 1 + (∂yh)2

)
.

In addition, surface element dS = dx dy
√

1 + (∇h)2 and
mean curvature H = ∇[ −∇h√

1+(∇h)2
] in the Monge gauge. The

membrane being symmetric is invariant under h → −h.
In the Monge gauge, dS =

√
1 + (∇h)2dx dy ≈ [1 +

1
2 (∇h)2]dx dy, assuming small height fluctuations for a nearly
flat membrane. Evidently, if the nonlinear forms of dS and
H are included in F above, additional nonlinear terms will
be generated. These are geometric nonlinearities due to their
origin in the Monge gauge, as opposed to the thermodynamic
nonlinearities in F .

III. PHASE TRANSITION

It is instructive to begin with a mean-field theory (MFT)
description in terms of (assumed constant) order parameter
m = φ and mean curvature C = −∇2h. Neglecting the geo-
metric nonlinearities and minimizing F with respect to m and
C, we obtain

rm + u

3!
m3 + 2λmC2 + λC2 = 0, (2)

κC + 2λCm2 + 2λmC = 0, (3)

yielding C = 0 at all T and rm + u
3!m

3 = 0, which describes a
second-order transition for the order parameter m with m = 0
for r > 0 (T > Tc) and m2 = −3!r/u for r < 0 (T < Tc).
Solution C = 0 is consistent with the inversion symmetry of
the model free energy (1), a requirement for any symmetric
membrane. Notice that Eq. (3) may be written as

κmC = 0, (4)

where κm = κ + 2λm + 2λm2 is the effective bending modu-
lus in MFT (we ignore the possibility of κm = 0 for a nearly
flat membrane). Clearly, with λ > 0, km is reduced in domains
with m < 0, but enhanced in domains with m > 0; λ > 0
contributes positively to κm for both signs of m. This is
consistent with the interpretation of the λ and λ terms in F , as
discussed above.

IV. THERMAL FLUCTUATIONS AND BENDING
MODULUS NEAR Tc

We begin with the partition function given by

Z =
∫

Dh Dφ exp[−βF], (5)

β = 1/kBT . Taking the Boltzmann constant kB = 1, T/κ is
a dimensionless number in the problem. We wish to explore
the possible nearly flat configuration of the membrane, such
that the available thermal energy ∼kBT � bending energy,
the scale of the latter being set by κ . Hence, we take
T/κ � 1 [7,13]. Below we construct a perturbation theory
with T/κ as the (small) expansion parameter; we calculate
fluctuation corrections to κ to first order in T/κ . It is convenient
to truncate the free-energy functional (1) up to O(T/κ).
We find to the lowest order in T/κ that the free energy F
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is given by

F =
∫

d2x

[
κ

2
(∇2h)2 − κ

4
(∇2h)2(∇h)2

− κ∇2h∇αh∇βh∇α∇βh + r

2
φ2 + 1

2
gαβ(∇αφ)(∇βφ)

+ 1

4
(∇φ)2(∇h)2 + λφ2(∇2h)2 + λφ(∇2h)2

]
, (6)

where the nonlinear terms are kept up to O(T/κ) [15]. Notice
that (1) and hence (6) is invariant under inversion of the
membrane, i.e., under h → −h, as it should be for a symmetric
membrane. However, the λ term in (1) or (6), being linear in
φ, breaks the Ising symmetry. For the special case of λ = 0,
the Ising symmetry of φ is restored.

Consider a pure (homogeneous) fluid membrane, φ = 0.
It is evident from (6) with φ = 0 that if the geometric non-
linearities are included, then κ receives a negative fluctuation
correction proportional to 〈(∇h)2〉 [7]. In a renormalization-
group (RG) language this implies that the effective scale-
dependent bending modulus κ(l) has no fixed point and
flows to a negative value for a large length scale at any
finite temperature T > 0. This result is interpreted as the
impossibility of finding a (statistically) flat membrane beyond
a finite scale determined by T and the bare or small-scale
bending modulus κ0 at dimension d � 2 [7]. On the other
hand, for a heterogeneous membrane φ 
= 0, and the λ term
positively contributes to the scale-dependent κ(l) by an amount
proportional to 〈φ2〉. This contribution formally diverges at Tc

and hence can potentially lead to stiffening of membranes.
Thus, for an inhomogeneous membrane, the competition
between the geometric nonlinearity and the nonlinearity
of the curvature-composition interaction, mediated by a
composition-dependent κ(φ), should determine the membrane
fluctuations in the thermodynamic limit.

We employ the perturbative Wilson RG procedure [13,16]
to the lowest order in O(T/κ) to circumvent the difficulty in
perturbative expansions near Tc due to the large fluctuations. In
addition, we obtain our results within a harmonic approxima-
tion for φ, i.e., we set u = 0 for simplicity. We eliminate fields
h(q) and φ(q) with wave vector �/b < q < �, b > 1, where
� is an upper cutoff for the wave vector, by integrating over
them perturbatively up to one-loop order and then rescaling
wave vectors according to q′ = bq (or rescaling real-space
coordinate x according to x′ = x/b). Since we are interested
in finding the renormalization of κ due to the geometric
nonlinearities and the curvature-heterogeneity couplings, it is
convenient to let h(x) rescale as h(x′) = h(x)/b with x′ = x/b.
Further, rescale φ by φ(x′) = b−ε/2φ(x), ε = 2 − d. Under this
rescaling, κ ′ = b−εκ, λ′ = b0λ, λ

′ = b−ε/2λ.
One-loop corrections to κ may be straightforwardly ex-

tracted from (6) by contracting fields in the nonlinear terms
leaving two external ∇2h legs [17]. We follow the procedure
as outlined above and find perturbatively

bεκ ′ − κ = −κ
3

2
〈(∇h)2〉� + 2λ〈φ2〉�

− λ
2
∫ �

�′

d2q

(2π )2
〈|φ(q)|2q4|h(q)|2〉, (7)

h h

h h

FIG. 1. One-loop Feynman diagram contributing to the fluctua-
tion correction to κ . This originates from the geometric nonlinearity;
see Eq. (8).

where �/�′ = b and

〈(∇h)2〉� =
∫ �

�/b

d2q

(2π )2

T q2

κq4
= T

ln b

2πκ
, (8)

〈φ2〉� =
∫ �

�/b

d2q

(2π )2

T

q2
= T ln b

2π
. (9)

The two relevant one-loop Feynman diagrams corresponding
to the corrections (8) and (9) are shown in Figs. 1 and 2,
respectively.

By using Gaussian decomposition and 〈|h(q)|2〉 = T/κq4,
we note from Eq. (7) that the contribution to κ ′ from the λ

term in (1) or (6) is linear in T/κ , whereas the remaining
contributions are O(T/κ)0. Thus, we neglect this O(T/κ)
contribution from the λ-nonlinear term below.

Now, let b = edl � 1 + dl. Then,

dκ

dl
= κ

[
−ε − 3Tc

4πκ
+ 2λTc

2πκ

]
. (10)

h

φ φ

h

FIG. 2. One-loop Feynman diagram contributing to the fluctua-
tion correction to κ . This is due to the composition fluctuations and
exists only for inhomogeneous membranes; see Eq. (9).
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Notice that in the flow Eq. (10), we have set T = Tc, since
we are at the critical temperature of the MPT. At the RG fixed
point (FP), dκ/dl = 0, which yields

−ε − 3Tc

4π
+ 2λcTc

2π
= 0, (11)

which defines a critical λc:

λc = πε

Tc

+ 3

4
, (12)

for this unstable RG FP. Thus for λ < λc,

dκ

dl
< 0, (13)

implying that under successive applications of the RG proce-
dure, scale-dependent κ(l) reduces linearly with l, eventually
becoming zero at a particular scale that depends upon κ and
λ [18]; see also Ref. [7]. Thus even for a heterogeneous fluid
membrane, for a weak coupling λ < λc, the membrane still
crumples at any T for a sufficiently large size. The discrete
recursion relation for κ at 2D is given as

κ = κ0 − 3Tc

4π
ln b + λTc

π
ln b. (14)

Noting that ln b = ln(�/q) = − ln(qa0), where a0 ∼ �−1 is a
microscopic length, we obtain a q-dependent κ(q),

κ(q) = κ0 + 3Tc

4π
ln(qa0) − λTc

π
ln(qa0). (15)

Similar to Ref. [7], Eq. (15) allows us to define a de Gennes–
Taupin persistence length ξ ∼ 1/q, such that κ(ξ ) = 0. This
yields

ξ = a0 exp

(
4πκ0

Tc(3 − 4λ)

)
. (16)

Clearly, as λ → λc− = 3/4 at two dimensions, the membrane
crumples less and less, and ξ → ∞.

In contrast, for λ > λc,

dκ

dl
> 0 (17)

generically, and hence κ grows under successive applications
of the RG transformations. Therefore, the membrane at larger
scale should appear stiffer than it is at smaller scales. Clearly,
as dimensionality rises, i.e., as ε reduces and becomes negative
through zero, λc reduces. Formally, therefore, at higher dimen-
sions, weaker curvature-heterogeneity interactions through
κ(φ) are enough for κ(l) to grow under RG transformations.
To know whether or not a heterogeneous fluid membrane with
λ > λc crumples in the thermodynamic limit, we need to find
κ(q) in the limit q → 0 with λ > λc. Define �λ = λ − λc > 0.
Then,

κ(q) = −�λTc

π
ln(qa0) + κ0, (18)

which diverges in the thermodynamic limit q → 0.
The statistical flatness of a membrane may be ascertained

by the variance of the fluctuation of the local normal n =
(−∇h,1). We define fluctuation in the normal, δn = −∇h,
as the deviation from the normal for a perfectly flat surface.
Now calculate �0 = 〈(δn)2〉. If �0 at a given temperature

for a membrane (pure or inhomogeneous) is independent of
the system size L, �0 remains finite even in the thermo-
dynamic limit L → ∞. This implies that the membrane at
that temperature possesses a long-ranged orientational order
in the thermodynamic limit, or the membrane is statistically
flat [8,13]. Otherwise the membrane is crumpled. We find at
two dimensions,

〈(δn)2〉 =
∫

d2q

(2π )2
〈|δnq|2〉 ∼

∫
L

d2q

(2π )2

Tc

κ(q)q2
, (19)

where a subscript L refers to a lower momentum cutoff ∼1/L.
With κ(q) ∼ − Tc

π
�λ ln(qa0), clearly, within the validity of our

calculations (Tc/κ � 1),

�0 ∼ − 1

�λ

∫
dq

q ln(qa0)
∼ − 1

�λ
ln ln

(
a0

L

)
(20)

in the critical region (T = Tc), regardless of the specific value
of Tc, so long as λ > λc. Thus, �0 still diverges for L → ∞,
albeit very slowly, and it is finite for any finite L. In fact,
the system size L required to have a given �0 is given by
L/a0∼ exp(exp[�0�λ]). Thus, L rises very rapidly with �λ.
Compare this with a pure fluid membrane, for which κ(q)
vanishes for a low enough q. Thus for a pure fluid membrane
�0 should diverge even for a finite system size (∼ξ ). Notice
that since κ(q) here remains finite (in fact growing) even down
to q → 0, ξ is formally infinitely large. As a result, for a
finite membrane of any size, �0 
= 0, and hence a nonzero
orientational correlation should be present. The very weak
divergence of �0 with L means its experimental detection
should be rather difficult; crumpling may be observed only in a
very large membrane. Notice that the ln ln(L/a0) dependence
on L in Eq. (20) is even weaker than the well-known ln L

dependence of the variance of orientation fluctuations in 2D
classical spin systems having continuous symmetries that
display QLRO [13].

Noting that (12) yields an unstable FP for dκ/dl = 0, our
results above may be interpreted as a phase transition in the
membrane between a crumpled phase (finite ξ , �λ < 0) and a
stiff phase (diverging ξ , �λ > 0) for a given T = Tc, with λ ap-
pearing as the control parameter. We take O = [ln(ξ/a0)]−1 =
−Tc�λ/(πκ0) with λ < λc and O = 0 with λ � λc as the

λ
λ

O

c

0

FIG. 3. (Color online) Schematic variation of order parameter O

as a function of λ; O ∝ (λ − λc) for λ � λc, O = 0 for λλc as shown
by the blue broken line; see the text.
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Tc

λ
Stiff

Crumpled

FIG. 4. Schematic phase diagram in the λ-Tc plane for ε > 0. The
continuous line represents Eq. (12).

order parameter; thus O in the crumpled phase rises smoothly
from zero as λ is reduced from λc. Thus, with λ as the control
parameter, the “order parameter exponent” is 1. In the stiff
phase, O is naturally zero. We plot O versus λ in Fig. 3.
Figure 4 shows a schematic phase diagram in the λ-Tc plane.

Notice that the membrane fluctuations are unaffected by
the λ term to the leading order in T/κ . This suggests that in
the long-wavelength limit, the Ising symmetry is restored. So
far we have discussed the membrane fluctuations at the MPT,
i.e., at T = Tc. Away from Tc, contribution of the λ term to
renormalized κ is small; renormalized κ is dominated by the
contributions from the geometric nonlinearities. Therefore, at
T 
= Tc, the large-scale properties of a heterogeneous fluid
membrane described by (1) are identical to a pure fluid
membrane. However, as one approaches Tc from either side,
the contribution from the λ term becomes significant. For
a membrane of finite linear size L, 〈(∇h)2〉 scales as ln L,
whereas 〈φ2〉 ∼ ln L

L
√

r+1
at T > Tc, i.e., r > 0. Clearly, the

latter contribution rises as r → 0, and hence renormalized κ ,
which now depends on L, rises in magnitude. Therefore, any
measurements of κ as a function of T should detect this rise
as Tc is approached. Similar behavior for κ(L) follows for
T < Tc as well. A schematic plot of κ(L) versus r is shown
in Fig. 5. The general nature of this plot remains unchanged
regardless of whether λ > λc or not.

We now calculate the effective membrane area S =
〈
√

1 + (∇h)2〉S0 and compare it with the base area S0 (the
projected area on the Monge gauge reference plane) by
defining the fractal dimension d̃ of the membrane via the

0 r

κ(L)

FIG. 5. (Color online) Schematic plot of renormalized κ for a
system of size L as a function of r = T − Tc; a rise in κ as T → Tc

due to a nonzero λ is shown.

relation S ∝ S
d̃/2
0 . Hence, for d̃ = 2, S ∝ S0, corresponding

to a membrane that is on average flat, while for d̃ > 2, S

rises faster than S0 and hence a more corrugated membrane at
larger scales is obtained. We find at Tc, to the lowest order in
h fluctuations [7],

d̃

2
= d ln S

d ln S0
� 1 + 1

2

d

d ln S0
〈(∇h)2〉

= 1 + 1

8π

Tc

κ
. (21)

Thus, if λ < λc, renormalized κ gets smaller at larger scales,
and hence d̃ > 2, implying a highly corrugated membrane
at large scales. In contrast, for λ > λc, the effective scale-
dependent κ diverges in the long wavelength limit. Thus,
d̃ → 2, and hence a nearly flat membrane is obtained. These
conclusions are consistent with the behavior of 〈(δn)2〉 for
λ < λc and λ > λc, respectively. We close this section with
a technical comment. The phase transition elucidated above
takes place at a fixed temperature Tc, with λ appearing as
the control parameter. Thus, experimentally, various hetero-
geneous membranes described by (1) will exhibit different
characteristic membrane fluctuations at Tc, depending upon
whether λ > λc or not. This is different from the usual
crumpling transition of membranes [8], where the membrane
goes from the high-temperature crumpled phase to the low-
temperature flat phase through a critical temperature of the
crumpling transition; the temperature is the control parameter
of the usual crumpling transition, unlike in the present case.

V. GENERALIZED MODEL

Our results above depend crucially on the positivity of
the λ term in (1). We now generalize (1) by considering an
arbitrary form of interaction f̃ between the local curvature
and inhomogeneity, maintaining only the tilt invariance and
invariance under inversion of h. We briefly discuss its effects on
the membrane fluctuations near Tc. Expanding f̃ in powers of
φ and (∇2h)2, we write the generalized free-energy functional
Fg as

Fg =
∫

dS

{
κ

2
(∇2h)2 + r

2
φ2 + 1

2
gαβ(∇αφ)(∇βφ)

+ u

4!
φ4 +

∑
m,n

Am,nφ
m(∇2h)2n

}
. (22)

Thus, comparing (22) with (1) above, we find

A1,1 = λ, A2,1 = λ. (23)

All the other A’s are zero in (1). It is clear that contributions of
all terms in f̃ with n > 1 to renormalized κ are higher order
in T/κ . Thus, in a perturbation theory first order in T/κ , all
such terms may be ignored here. The remaining terms in f̃ are
all quadratic in ∇2h:

f̃ =
∑
m

Am,1φ
m(∇2h)2. (24)

For reasons of thermodynamic stability, the series on the right
side of (24) must be truncated at an even m = mmax, with
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Ammax,1 > 0. Notice that under spatial rescaling, x′ = x/b,
A′

2m = b(m−1)(d−2), implying that for m > 1, all of A2m de-
creases under the successive application of rescaling. At d < 2,
following the calculation outlined above, it is straightforward
to obtain the flow equation for κ for the generalized model.
We obtain at d = 2 − ε to the leading order in T/κ

dκ

dl
= −ε − 3Tc

4π
+ 2A2,1〈φ2〉, (25)

up to the one-loop order. Equation (25) is identical in form
to its counterpart (10) above. However, unlike the previous
case, A2 (in fact all of A2m with m < mmax) has one-loop
fluctuation corrections at O(T/κ)0. For d � 2 and at T =
Tc, fluctuations corrections to A2m diverge with L and will
dominate over the corresponding bare parameters. Since A2m

with m = mmax is necessarily positive, it is expected that all
the fluctuation-corrected (i.e., renormalized or effective) A2m

should be positive. Then Eq. (25), with A2,1 being interpreted
as the renormalized quantity (hence positive), yields similar
behavior for κ(q) from (1). In the generalized model A2m with
m = mmax appears as the tuning parameter [19].

VI. SUMMARY AND OUTLOOK

We have thus proposed a simple coarse-grained model for
symmetric heterogeneous tensionless membranes in terms of
the local mean curvature and a suitably defined composition
field φ in the Landau-Ginzburg approach to study the nature
of membrane conformation fluctuations near the critical point
of the MPT. Our model should be useful for studying
symmetric bilayers made of identical monolayers with strong
intermonolayer interactions. Within the range of validity of a
systematic perturbative expansion in T/κ � 1 (with T = Tc),
we show that the lowest-order nonlinear term that obeys the
Ising symmetry for φ leads to an enhancement of renormalized
or effective κ , provided its strength λ exceeds a critical value.
In that case, renormalized κ diverges in the thermodynamic
limit, albeit very slowly. Nonetheless �0, the variance of
the local normal fluctuations, grows with system size L,
although very weakly, �0 ∼ − ln ln(a0/L). This is weaker
than the ln L-dependence of the variance of elastic variable
fluctuations in classical models with continuous symmetries,
described by elastic free energies. This aspect makes it a
theoretically intriguing result. Thus, the membrane should
appear crumpled in the formal thermodynamic limit, which
in practice may be observed at a very large scale due to
the very weak L dependence of �0; experimental studies on
finite-size membranes may not be able to observe this. We
have argued that our results may be interpreted as a phase
transition between a crumpled phase (finite ξ ) and a stiff
phase (diverging ξ ). With λ as a control parameter for a
given Tc, the transition is second order characterized by an
order parameter O = [ln(ξ/a0)]−1. A generalized model by
us predicts qualitatively similar results. With Tc ∼ 300 K and
bare κ ∼ 10−12 erg [20] for a lipid bilayer, Tc/κ ∼ 0.05 is
small. Thus, our results should hold for MPT in a typical
model heterogeneous bilayer. By tuning λ, experiments (e.g.,
flicker experiments) on MPTs in a two-component symmetric
model lipid bilayer should reveal the suppression of membrane
conformation fluctuations (or membrane height fluctuations)

for λ > λc(Tc) as Tc is approached. Hence, our results offer
an experimental route to investigate the curvature-composition
interactions in an inhomogeneous membrane.

Our results depend sensitively on λ. Since λ ∼ ζ 4kBT ,
performing experiments on model heterogeneous membranes
with different sizes of the constituent lipid molecules (and
hence varying ζ ) should be a promising route to test our
results experimentally. Our results highlight the significant dif-
ferences in the fluctuations of asymmetric [21] and symmetric
inhomogeneous membranes near Tc.

We close our discussions with some technical comments.
While contributions to renormalized κ from the λ term are
neglected for small O(T/κ), for Tc/κ not very small, these
may be retained. Notice that this contribution reduces κ; see
also Ref. [11]. We have treated φ only up to the quadratic
order and have set u = 0. The effects of a nonzero u may
be accounted for by considering φ as the renormalized
composition field with a renormalized critical temperature
and a nonzero anomalous dimension. To the lowest order
in u, the only effect would be to shift Tc, and our basic
results should stay unchanged. The universal properties of φ

fluctuations are described by the Ising universality class by the
φ4 term. It is well known that [1] a small amount of impurities
added to an otherwise pure system keeps the critical behavior
unchanged, affecting only the value of the critical temperature.
In contrast, higher concentration of impurities are known to
alter the nature of the transition qualitatively. Noting that in
our model free energy (1) the effective critical temperature
T̃c = Tc − 2λφ2 − 2λφ is composition-dependent, it would be
interesting to explore possible connections between our results
here and the discussions in Ref. [1]. While constructing the
form of F as given in (1), we have coupled the composition
with the mean curvature H , but we have ignored the Gaussian
curvature G. For a pure fluid membrane with a fixed topology,
G does not play any role in the statistical mechanics of
the system, due to the Gauss-Bonnet theorem [13]. For a
heterogeneous membrane, it is possible to introduce terms
coupling φ and G. However, they do not contribute to the
renormalization of κ to first order in T/κ , and hence they are
neglected. We have ignored the technical issue of choosing the
correct measure in Z [22]. These are not expected to affect our
low-order perturbative results. Our model may be extended for
multicomponent (more than two components) heterogeneous
membranes in a straightforward way by introducing additional
composition variables and coupling all of them to the mean
curvature in ways similar to (6). We expect that the general
features of our results should hold there. Lastly, the dynamical
behavior of a heterogeneous membrane modeled by (1) near Tc

would be interesting to study theoretically [see, e.g., Ref. [23]
for a study of the dynamics of a heterogeneous membrane with
a curvature-composition interaction from (1)].
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