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Thermodynamic curvature for a two-parameter spin model with frustration
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Microscopic models of realistic thermodynamic systems usually involve a number of parameters, not all of
equal macroscopic relevance. We examine a decorated (1 + 3) Ising spin chain containing two microscopic
parameters: a stiff parameter K mediating the long-range interactions, and a sloppy J operating within local spin
groups. We show that K dominates the macroscopic behavior, with varying J having only a weak effect, except
in regions where J brings about transitions between phases through its conditioning of the local spin groups with
which K interacts. We calculate the heat capacity CH , the magnetic susceptibility χT , and the thermodynamic
curvature R. For large |J/K|, we identify four magnetic phases: ferromagnetic, antiferromagnetic, and two
ferrimagnetic, according to the signs of K and J . We argue that for characterizing these phases, the strongest
picture is offered by the thermodynamic geometric invariant R, proportional to the correlation length ξ . This
picture has correspondences to other cases, such as fluids.
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In microscopic models, the parameters setting the strength
of the interactions among the model elements are not usually
all equal in importance for determining the overall macro-
scopic character of the system. Some of these parameters
have only a weak influence over the macroscopic properties.
The sorting of parameters according to whether they are
macroscopically important or unimportant, or stiff or sloppy,
has recently seen systematic examination by Sethna et al. [1,2]
in a number of contexts with methods based on the Fisher
information matrix (FIM) corresponding to the microscopic
parameters.

In this analysis [1,2], let us imagine that we have some
data set D taken for a macroscopic system with an underlying
microscopic model containing n adjustable constants θα (α ∈
{1,2, . . . ,n}). Each set of values θα produces for D a value of
χ2, the sum of squares of residuals of the data fit. The FIM g is
the Hessian of χ2 with respect to the θα . The eigenvalues of g
may be sorted in terms of size, and on decreasing correspond
to progressively less significant linear combinations of the θα .
Namely, θα associated with small eigenvalues may be varied
with little effect on χ2, and, hence, have little importance at
the macroscopic level.

In this paper we propose an alternative expression of these
ideas in the thermodynamic realm, and with a somewhat
different FIM, one based on thermodynamic parameters rather
than microscopic model constants. This FIM results from
thermodynamic fluctuation theory [3,4]. However, our basic
agenda of sorting microscopic model parameters according to
their effect on the macroscopic behavior is the same in spirit
as that of Sethna et al. [1,2]. Our analysis focuses in particular
on the invariant thermodynamic Ricci curvature scalar R of
the thermodynamic FIM. R reveals information about the
character of mesoscopic fluctuating structures. Our viewpoint
is that such structures play a significant role in mediating the
transition from microscopic to macroscopic [3].
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Thermodynamic curvature R is an element of thermody-
namic metric geometry. A pioneering paper was authored
by Weinhold [5] who introduced a thermodynamic energy
inner product. This led to the work of Ruppeiner [6]
who wrote a Riemannian thermodynamic entropy metric to
represent thermodynamic fluctuation theory, and was the
first to systematically calculate R. A parallel effort was
authored by Andresen, Salamon, and Berry [7] who began the
systematic application of the thermodynamic entropy metric to
characterize finite-time thermodynamic processes. R has been
worked out in a number of discrete systems [8–15]. Another
recent evaluation of R was Ref. [16].

We illustrate our ideas with a decorated (1 + 3) Ising
spin chain containing two microscopic parameters: a stiff
parameter K mediating the long-range interactions, and a
sloppy parameter J operating within local spin groups. We
show that K dominates the macroscopic behavior, except in
cases where varying J brings about transitions between phases
through its conditioning of the local spin groups with which
K interacts. In addition to R, we calculate the heat capacity
CH , and the magnetic susceptibility χT . We show that CH

is not very effective at displaying the order characterizing the
various magnetic phases. χT does a better job, but we argue that
R offers the cleanest picture of the magnetic order resulting
from K . This is the first evaluation of R in a spin model with
two coupling parameters.

A significant property of R is that, at zero magnetic field,
R is proportional to the correlation length ξ in both the
ferromagnetic and the ferrimagnetic phases. Namely, near
critical points of fluid and spin systems (including critical
points at T = 0),

ξd = − 1
2R, (1)

where d is the spatial dimensionality (here, d = 1) [3,13]. As
a convenience for d = 1, we use the notation

− 1
2R = ξR, (2)

for purposes of comparing R and ξ .
Although the model employed here is too simple to fully

bring out what Sethna et al. [1,2] have in mind (here the spin
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FIG. 1. The decorated (1 + 3) Ising chain. The N lattice basis
elements, each consisting of a single Ising spin and a three Ising
spin plaquette, are enumerated by an index i ∈ {1, . . . ,N}, with
periodic boundary conditions (N + 1) ↔ 1. The plaquette spins are
enumerated by an index α ∈ {1,2,3}. Spins within a plaquette interact
with each other via a parameter J , and with the single neighboring
Ising spins via a parameter K .

groups merely tend to lock into place with each other, instead
of having the effects of their local fluctuations averaged out
at the mesoscopic level), our use of the terminology stiff or
sloppy seems nevertheless appropriate, and sets an agenda for
future exploration.

In the theory of critical phenomena, the terms relevant and
irrelevant are used for variables, which either affect or do
not affect universal critical properties [17]. Our toy model
has critical points (at T = 0), so we could certainly pitch
our discussion in terms of critical phenomena. However, we
present our ideas in a broader context, and we get strong results
even well beyond what might be termed the critical point
regime.

Figure 1 shows our spin model, which contains instances
of ferromagnetism, antiferromagnetism, and ferrimagnetism.
The model consists of N single Ising spins σi = ±1, alter-
nating with N triangular Ising spin plaquettes σiα = ±1. Two
such interlaced sublattices offer the possibility of noncanceling
magnetic moments, characteristic of ferrimagnetic states [18].

The Hamiltonian H is a sum over block Hamiltonians Hi ,

H =
N∑

i=1

Hi , (3)

where

Hi = − 1
2Hσi + J [σi1σi2 + σi1σi3 + σi2σi3]

+K(σi + σi+1)(σi1 + σi2 + σi3) − H (σi1 + σi2 + σi3)

− 1
2Hσi+1, (4)

with coupling parameters (J,K), and magnetic field
H parallel to the z axis, shown in Fig. 1. This
block Hamiltonian is that of the solved quantum Ising-
Heisenberg chain (N → ∞) with anisotropy � set
to zero [19]. The solution yields the transfer matrix
T = {{T11,T12},{T21,T22}} with:

T11 = 2e−h−3βJ cosh(h + 2βK)

× [2 cosh(2h + 4βK) + 3e4βJ − 1], (5)

FIG. 2. (Color online) The ground-state spin configurations, as a
function of J and for H ↓ 0, for (a) K = −1 and (b) K = +1. S

denotes the saturated phase, FA and FB the ferrimagnetic phases, and
AF the antiferromagnetic phase. These spin configurations repeat
over the entire lattice. J = 1 marks the phase boundary for K = ±1.

T12 = T21 = 6eβJ cosh(h) + 2e−3βJ cosh(3h), (6)

and

T22 = 2eh−3βJ cosh(h − 2βK)

× [2 cosh(2h − 4βK) + 3e4βJ − 1]. (7)

Here, {β,h} = {1/T ,−H/T }, with T the temperature.
Boltzmann’s constant kB = 1. T has two eigenvalues λ+ and
λ−, ordered as λ+ > λ−. The thermodynamic potential per
lattice constant (a lattice constant is the distance between spins
σi and σi+1) is

φ(β,h) = ln λ+. (8)

ξ , in units of lattice constants, for a decorated Ising chain is
[20]

ξ−1 = ln

(
λ+
λ−

)
. (9)

ξ is nonthermodynamic since it may not be calculated from
φ(β,h).

A simple reference model for our discussion consists of a
chain of Ising spins alternating with single superspins Si =
±p, where p is a positive integer, in place of the triangular
spin plaquettes. A large |J | will lock the three spins in each
plaquette into specific configurations with respect to each
other, with all three spins in the same direction (J negative) or
with one spin in the opposite direction from the other two (J
positive), as shown in Fig. 2. These configurations correspond
to p either 3 or 1 in the superspin model, which has block
Hamiltonian

HS i = − 1
2Hσi + KS(σi + σi+1)Si − HSi − 1

2Hσi+1, (10)

and one coupling parameter, the stiff parameter KS . The
transfer matrix method allows for an easy solution.1

Let us restrict attention in this paper to zero magnetic field
H = 0. We consider only the values K = −1,0,+1, which
cover the full model. This point is established by the identity
φ(β,h,J,K) = φ(β|K|,h,J/|K|,K/|K|), which follows from

1The idea of lumping triplets of spins into single spins was explored
by Rojas and Alcaraz [21] in a more general setting than is considered
here. These authors map with local gauge transformations, and do not
assume that |J | is necessarily large.
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Eqs. (5)–(8). The ground-state spin configurations for K = ±1
are shown in Fig. 2. There is a saturated ferromagnetic state
S, with all of the spins up, a ferrimagnetic state FA, with all
three plaquette spins up, and the single Ising spin down, a
ferrimagnetic state FB , with frustrated plaquette spins (two
up and one down, with the down spin in any of the three
positions), and the single Ising spin directed with the plaquette
majority spins, and an antiferromagnetic state AF , with
frustrated plaquette spins, and the single Ising spin directed
with the plaquette minority spin. Appropriate wave function
symmetrization was done when combining the three spins in
every plaquette [19]. Details involve paired FB and AF ground
states. These show up in the transfer matrix elements Eqs.
(5)–(7), but do not figure into the present discussion. The FB

and AF phases have zero magnetic field entropy per lattice
constant s = ln 3 as T → 0, due to frustration.

If |J/K| is large, then the spins in each plaquette lock
into place with each other, according to the sign of J , as in
Fig. 2. One expects the (1 + 3) Ising chain to conform to
the superspin chain in this limit, according to the sign of J ,
with positive J corresponding to the frustrated p = 1, and
negative J corresponding to p = 3. Otherwise, only the value
of K(=KS) is important, with variations in J causing little
effect. For K = 0 we expect paramagnetic behavior, with only
small organized fluctuating structure size.

The invariant R results directly from an information theo-
retic thermodynamic metric, with metric elements gαβ = φ,αβ .
The thermodynamic coordinates are (x1,x2) = (β,h), and the
comma notation denotes differentiation [3,22]. Generally [3],

R = 1

2

∣∣∣∣∣∣
φ,11 φ,12 φ,22

φ,111 φ,112 φ,122

φ,112 φ,122 φ,222

∣∣∣∣∣∣
/∣∣∣∣φ,11 φ,12

φ,12 φ,22

∣∣∣∣
2

. (11)

R is in units of lattice constants, and depends on derivatives
of φ up to third-order. For fluid systems R was found to be
negative when attractive intermolecular interactions dominate,
such as near critical points, and positive in cases where
repulsive interactions dominate, such as in solids [23–26].
R = 0 for the (noninteracting) paramagnet [8]. The sign of
R has been less explored in spin systems, though recently it
was shown that the kagome Ising model (2D) in a magnetic
field has R diverging to ±∞ on opposite sides of the phase
transition line (R < 0 on the ferromagnetic side, and R > 0
on the frustrated side) [15].

Let us define the heat capacity per lattice constant at con-
stant H , CH = T (∂s/∂T )H , with entropy per lattice constant
s = φ − βφ,β − hφ,h. Also define the magnetic susceptibility
χT = (∂m/∂H )T , with magnetization per lattice constant m =
−φ,h. Figure 3 shows CH , χT , and ξR = −R/2 as functions
of J for several values of T , and for K = −1,0, + 1. In all
cases with large |J/K|, these three functions reach asymptotic
values independent of J , and equal to the corresponding values
of the superspin chains with KS = K .

As J increases from very negative values, and reaches
the neighborhood of J = 1 (J = 0 for K = 0), all three
thermodynamic functions go through transitional values as
the corresponding superspin value p goes from 3 to 1. For
K = ±1, the transition is between the phases shown in
Fig. 2. In the transitional regime, the sloppy parameter J is

clearly very relevant to the thermodynamic behavior, and we
can expect no concordance with the superspin chain.

For the paramagnetic state K = 0, we have |ξR| � 1 lattice
constants in all cases, as shown in Fig. 3(f). Such small values
for |ξR| are characteristic of situations with weak interactions
among constituents. For {K,J,H } = {0,0,0}, ξR = −1/16
for all T , leading to the common crossing point shown in
Fig. 3(f). For (K,J,H ) all zero, the spins are randomly directed
for all T , with s = 4 ln 2, and CH = 0, as shown in Fig. 3(d).
χT shows a contrast between different K’s, having diminished
values for the paramagnet. Nevertheless, χT diverges (∝ β)
for the paramagnet in the limit β → ∞, in contrast to |ξR|,
which continues to signal that nothing is going on at long
lattice distances. For K = 0, the nonthermodynamic ξ = 0
for all J , so clearly the strictly local J by itself never produces
fluctuations with large spatial extent.

For K = ±1, and for |J | not too small, Fig. 3 shows strong
divergences for χT and ξR as β → ∞ in the S and FA states.
Weaker divergences are present in the FB state. CH is the same
for K = ±1, since both cases have the same entropy function
s = s(T ). In the transition regime, to the right of the peaks in
Figs. 3(a) and 3(g), CH shows a region of nearly temperature
independent behavior. For decreasing J , values of ξR become
the same for K = ±1, as seen in Figs. 3(c) and 3(i), reflecting a
zero magnetic field symmetry for the S and FA states. However,
this symmetry is not displayed by χT .

For K = +1, χT in Fig. 3(h) has the curves crossing near
J = 5/4, with the crossing depending weakly on β. ξR in
Fig. 3(i) shows negative minima in the transition region on
going from the FA to the AF state. These minima grow
deeper as the temperature decreases. Similar behavior was
seen in the Takahashi gas, a one-dimensional system of hard
rods with both attractive and repulsive interactions, during a
pseudo-phase-transition from gaslike to liquidlike [27]. By
the lattice gas analogy (discussed below), the correspondence
between these negative ξR features is not unexpected. There is
no corresponding feature in the transition from the S to the FB

state in Fig. 3(c).
The best way to characterize divergences as β → ∞ con-

sists of low temperature, zero magnetic field, series expansions
in powers of the small parameter w = e−2p|K|β . In the S, FA,
and FB phases we find that, to leading order, ξR = w−1/4, with
the same divergence for ξ , in accord with Eq. (1). These series
results (independent of J ) are strong, holding (with K ± 1)
for all integer values of J except J = 0,1 in the transition
region. The corresponding superspin chains have the same
series. The absence of J in both w and the series coefficient 1/4
further illustrate J ’s irrelevance out of the transition region. To
leading order, χT = 2pβw−1 for K = −1, and χT = 2βw−1

for K = +1, except for J = 0,1. These series for χT are
not as clean as those for ξR , but they make the same point
about J .

Let us supplement the series results for ξR and ξ with two
examples spanning a range of β. Figure 4 shows excellent
agreement between ξR and ξ in both the S and FB phases, down
to length scales less than about a lattice constant. The concor-
dance with the corresponding superspin chain (not shown here)
is likewise excellent. Outside the transition regime for J , the
quality of these results is representative of that for other values
of J , and clearly extends well beyond the critical region.
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FIG. 3. (Color online) The heat capacity CH , the magnetic susceptibility χT , and the thermodynamic curvature ξR = −R/2 as functions of
J for several values of T , and for the three distinct cases K = −1,0,+1. Cases in the plateau regimes, with J not near 1, are commensurate with
the appropriate superspin chains. The dots in (c) show ξ for T = 8/10, in good agreement outside the transition regime with the corresponding
ξR . There are negative values of ξR in Fig. 3(i) near J = 1, which are omitted on the log scale.

Let us turn now to the antiferromagnetic AF state. Series
expansions show that to leading order in w, ξR = 1/4,
and χT ∝ βw, for J � 2 with K = +1, findings evident in

Figs. 3(h) and 3(i), and in concordance with the corre-
sponding superspin chains. To leading order, ξ = w−1/4,
also in concordance with the corresponding superspin chain.

FIG. 4. (Color online) (a) ξR = −R/2 and ξ for the saturated phase S at zero magnetic field, with {J,K} = {−2,−1}. The agreement
between ξR and ξ is excellent even to regimes with ξR less than about a lattice constant. (b) the corresponding quantities for the ferrimagnetic
phase FB with {J,K} = {+2,−1}. The agreement between ξR and ξ is likewise excellent, except when ξR has value a fraction of a lattice site.
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Clearly, ξR is quite different from ξ for antiferromagnets, as
ξ diverges in the same way as the ferromagnet, while |ξR| has
small value. This has long been known for the simple Ising
chain [8].

Physically understanding ξR for the antiferromagnet ben-
efits from a comparison with fluid systems. Ferromagnetic
Ising spin models prefer to have aligned adjacent spins, and
critical point properties analogous to those for fluid models.
The lattice gas model offers a formal correspondence [28]. In
the lattice gas model, spin up corresponds to a cell occupied by
an atom, and spin down corresponds to an empty cell. Thus,
the Ising ferromagnet corresponds to a fluid model with a
preference for adjacent occupied cells. Near the critical point,
a bunching of atoms, of characteristic size ξ , is brought about
by the attractive interatomic interactions. The critical point
models are characterized by uniformly negative R [23], and
by the asymptotic equality Eq. (1). The S, FA, and FB states,
where all or the majority of spins point in the same direction,
and where there is a critical point at T = 0, corresponds to
a fluid near its critical point. The behavior displayed here is
certainly consistent with this expectation. We thus think of
ferromagnetic spin interactions as attractive.

We might logically think of the antiferromagnetic inter-
actions as repulsive, with positive R, but such thinking is in
need of some refinement. Antiferromagnetism tends to have
disaligned adjacent spins, corresponding to nearest-neighbor
atoms avoiding each other in the lattice gas. Outside the
transition region for J , calculation shows that |R| in the AF

phase tends to be uniformly small, of the order of a lattice
constant. Although the sign of R for the antiferromagnet is
generally negative here, there are cases for this model with the
parameter � �= 0 where either sign occurs, though with |R|
always of the order of a lattice constant. As was shown by May

et al. [25,26], solid models tend to have small positive R, and
condensed liquid states tend to have small |R|, with R positive
or negative depending on the density. By this measure, the
antiferromagnetism here corresponds to the condensed liquid
state. In any case, the results we have obtained here for the
antiferromagnetic states are fully in accord with expectations
from the fluid or solid context.

In conclusion, we have shown that in the zero magnetic field
(1 + 3) Ising chain here, the macroscopic order is connected
with the stiff parameter K , whose repeated application
connects all of the spins in the chain. The sloppy parameter J ,
operating only within local spin groups, affects the long-range
behavior mostly through its conditioning of the local spin
plaquettes for the interaction with K . Our analysis emphasized
the role of the thermodynamic curvature R at characterizing the
resulting magnetism. The ferromagnetic and the ferrimagnetic
phases take on negative curvatures, diverging as the correlation
length ξ as temperature T → 0. The antiferromagnet may
have positive or negative R, with |R| of the order of a
lattice constant. We suggest that at zero magnetic field such
characteristics, which link directly to fluids or solids through
the lattice gas analogy, may be general in spin models. Future
research adds a magnetic field (H �= 0), and a full Heisenberg
interaction between the plaquette spins (� �= 0). Also, most in-
teresting to work out would be a model where the effect of local
spin interactions actually average out at the macroscopic level.
This would relate our ideas of connecting R from the thermo-
dynamic fluctuating FIM fully to those of Sethna et al. [1,2].

We thank Vadim Ohanyan for sharing his insight about
decorated Ising chains. G.R. thanks George Skestos for
research and travel support, and INFN in Frascati, Italy, where
this work was written, for their hospitality.
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