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Diffusion in a potential landscape with stochastic resetting
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The steady state of a Brownian particle diffusing in an arbitrary potential under the stochastic resetting
mechanism has been studied. We show that there are different classes of nonequilibrium steady states depending
on the nature of the potential. In the stable potential landscape, the system attains a well-defined steady state;
however, the existence of the steady state for the unstable landscape is constrained. We have also investigated the
transient properties of the propagator towards the steady state under the stochastic resetting mechanism. Finally,
we have done numerical simulations to verify our analytical results.

DOI: 10.1103/PhysRevE.91.012113 PACS number(s): 05.40.−a

I. INTRODUCTION

Diffusion with stochastic resetting is considered to be
a natural framework for the study of intermittent search
processes [1,2]. The simplest question of finding a lost object,
such as a key, a car, or an offender, is one of the central quests
of the discipline. The search processes related to resetting
are realized in diverse fields such as biochemistry (where
a signaling molecule is reset back to a receptor protein in
the membrane depending on the concentration of certain
molecules in the vicinity) [3], computer networks (to find
an element in a sorted and pivoted array) [4], ecology (e.g.,
Capuchin monkeys, known for long-term memory, foraging a
territory with palm nuts) [5], and microbiology [6]. In addition,
this mechanism was considered to compute the stationary
distribution of variant models of population growth where
the population is stochastically reset to some higher or lower
values leading to a power law growth [7,8]. Also, there has
been interest in studying the continuous time random walk,
where both the position and the waiting time are chosen from
certain distributions in the presence of resetting [9].

“Stochastic resetting” is a mechanism where a Brownian
particle is stochastically reset to its initial position at a constant
rate, thus driving the system away from any equilibrium state
[10–13]. It is thus a simple mechanism to generate a nonequi-
librium stationary state. In such states, probability currents are
nonzero and the detailed balance does not hold naturally. Of
late, the implication of the stochastic reset has been studied
in the one-dimensional reaction-diffusion systems, where a
finite reset rate leads to an unique nonequilibrium stationary
state [14]. The interface growth models described by Kardar-
Parisi-Zhang and Edwards-Wilkinson equations also exhibit
nonequilibrium stationary states with non-Gaussian interface
fluctuations when the interface stochastically resets to a fixed
initial profile at a constant rate [15]. In this backdrop, a natural
question to ask would be the following: Is the nonequilibrium
stationary state generic to any dynamics subjected to stochastic
resetting? The primary goal of this paper is to address this
question. To gain insight, one considers model systems which
are simple enough yet address the basicprinciple. In this paper,
we consider a simple model of a Brownian particle diffusing
in an arbitrary potential landscape in the presence of stochastic
resetting. It is obvious that for a bounded case, even without
reset, one gets a steady state around the minimum of the
potential. But when the equilibrium point of the potential

differs from the reset point, two mechanisms compete with
each other and finally reach a steady state, which shows certain
generic behavior. On the other hand, for a particle diffusing
in an unbounded potential, there exists no steady state at all
in the absence of resetting. We propose to invoke stochastic
resetting to retrieve the steady state. However, this behavior is
not universal and rather puts a general constraint on the nature
of the potential. We derive the conditions that ensure the steady
state in the case of an unbounded potential.

The paper is structured as follows. In the following section,
we introduce the model and the resetting dynamics. In Sec. III,
we obtain the exact steady state distribution Pst(x|x0) for
two representative choices of the potential V (x), namely, (i)
V (x) ∼ μ|x| and (ii) V (x) ∼ μx2. The positive and negative
sign of μ describe the bounded and unbounded potential,
respectively. We also derive the conditions to obtain a unique
steady state for an arbitrary potential landscape. In Sec. IV,
we investigate the transient behavior of the propagator in the
presence of the resetting. We conclude with a summary and
future directions in Sec. V.

II. THE MODEL

Consider a single particle undergoing diffusion in one
dimension in the presence of an external potential V (x):

dx

dt
= −V ′(x) + η(t), (1)

where η(t) is a Gaussian white noise with

〈η(t)〉 = 0, 〈η(t)η(t ′)〉 = 2Dδ(t − t ′), (2)

and D is the diffusion constant and the viscosity of the medium
has been scaled to unity for brevity. Here, angular brackets de-
note averaging over noise realizations. The initial condition is

x(0) = x0, (3)

where x0 ∈ (0,∞]. We now introduce the “stochastic
resetting” mechanism by which the particle returns to its
initial location at a constant rate r . To elaborate, in a small
time �t, the particle is reset to the initial position x = x0 with
probability r�t , while with the complementary probability
1 − r�t, the particle dynamics follows Eq. (1).
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III. STEADY STATE DISTRIBUTION

Let P (x,t |x0) be the probability to find the particle at
position x at time t , given that it was at x0 at time t = 0. From
the dynamical rules for the evolution of the particle given in
the preceding section, it follows that

∂P

∂t
= D

∂2P

∂x2
+ ∂[V ′(x)P ]

∂x
− rP + rδ(x − x0), (4)

with the initial condition P (x,0|x0) = δ(x − x0). Here, the
third and fourth terms on the right hand side (rhs) account
for the resetting events, denoting the negative probability flux
−rP from each point x and a corresponding positive probabil-
ity flux into x = x0. The steady state solution Pst(x|x0) satisfies

0 = D
d2Pst

dx2
+ d[V ′(x)Pst]

dx
− rPst + rδ(x − x0). (5)

In the following section, we have investigated steady state
distributions for various bounded and unbounded potential
landscapes. In particular, we have studied two representative
choices of the potential V (x), namely, (i) V (x) ∼ μ|x| and
(ii) V (x) ∼ μx2.

A. The case of a mod potential

We first consider the case of a mod potential. This potential
is centered either around its minimum or the maximum at 0.
The reset location is at x0 �= 0. The nature of the potential
allows us to identify three regions in x, namely, region I
(x > x0), region II (0 < x < x0), and region III (x < 0). To find
the steady state, we solve Eq. (5) in each region and require
that the solutions are continuous at x = x0, and x = 0 for
a probability distribution representing a physical observable
should be single valued everywhere in the phase space. This
is also required to ascertain a finite diffusive current in the
model system. However, the derivatives are discontinuous and
it can be seen by integrating Eq. (5) over an infinitesimal region
around x = x0,

dP I
st (x|x0)

dx

∣∣∣∣
x=x0

− dP II
st (x|x0)

dx

∣∣∣∣
x=x0

= − r

D
. (6)

This discontinuity does not depend on μ, indicating the
robustness of “kinks” present at x0 irrespective of potential

landscapes. On the other hand, while integrating Eq. (5) over
an infinitesimal region around x = 0, we find that

dP II
st (x|x0)

dx

∣∣∣∣
x=0

− dP III
st (x|x0)

dx

∣∣∣∣
x=0

= ∓2μ

D
P II

st (x|x0)

∣∣∣∣
x=0

,

(7)

in which minus and plus signs are for the bounded and the
unbounded case, respectively. In the following sections, we
consider these two cases, respectively.

1. Bounded potential: V (x) = μ|x|,μ > 0

We first consider the case where μ > 0. The trial solutions
of Eq. (5) are of the form

P I
st (x|x0) = a1e

m1x + a2e
m2x,

P II
st (x|x0) = b1e

m1x + b2e
m2x, (8)

P III
st (x|x0) = c1e

−m1x + c2e
−m2x,

where

m1 = −μ +
√

μ2 + 4Dr

2D
, m2 = −μ +

√
μ2 + 4Dr

2D
. (9)

Since the probabilities should converge at x → ±∞, we have
a1 = c1 = 0. Finally, using Eqs. (6) and (7), we obtain the
steady state solutions given by

P I
st (x|x0) = r√

μ2 + 4Dr
e−m2x0em2x

+ μr√
μ2 + 4Dr(

√
μ2 + 4Dr − μ)

e−m1x0em2x,

P II
st (x|x0) = r√

μ2 + 4Dr
e−m1x0em1x

+ μr√
μ2 + 4Dr(

√
μ2 + 4Dr − μ)

e−m1x0em2x,

P III
st (x|x0) = r√

μ2 + 4Dr − μ
e−m1x0e−m2x. (10)

Figure 1 shows a comparison between simulations and
theory for the steady state given by Eq. (10), demonstrating
a very good agreement. From the solution, it is evident that
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FIG. 1. (Color online) Stationary distribution Pst(x|x0) for the bounded potential V (x) = μ|x|, with μ > 0. We choose D =
0.5,x0 = 1.0, μ = 1.0, while r varies. The (red) dashed line plots the analytical result for Pst(x), while the (blue) points are numerical
simulation results. Also, the vertical solid and dashed lines indicate the location of the stable minimum of the bounded potential and the reset
point x0, respectively. The motion of the peak is also clear from the figure.
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FIG. 2. (Color online) Stationary distribution Pst(x|x0) for the unbounded potential V (x) = μ|x|, with μ < 0. We choose D =
0.5, x0 = 1.0,μ = −1.0, while r varies. The (red) dashed line plots the analytical result for Pst(x), while the (blue) points are numerical
simulation results. Also, the vertical solid and dashed lines indicate the location of the unstable maximum of the unbounded potential and the
reset point x0, respectively.

Pst(x|x0) exhibits two cusps where its derivatives are discon-
tinuous, namely, (i) at the resetting location x = x0, and (ii) at
x = 0, the point at which the potential V (x) has discontinuous
derivatives.

2. Unbounded potential: V (x) = μ|x|,μ < 0

Following the similar structure as before and using the
matching conditions suitably, we obtain the steady state
solutions for the unbounded case when μ < 0 to be

P I
st (x|x0) = r√

μ2 + 4Dr
em1x0e−m1x − μr√

μ2 + 4Dr(
√

μ2 + 4Dr + μ)
em2x0e−m1x,

P II
st (x|x0) = r√

μ2 + 4Dr
em2x0e−m2x − μr√

μ2 + 4Dr(
√

μ2 + 4Dr + μ)
em2x0e−m1x, (11)

P III
st (x|x0) = r√

μ2 + 4Dr + μ
em2x0em1x,

where m1,m2 are given by Eq. (9).
Figure 2 shows a comparison between simulations and theory for the steady state given by Eq. (11), demonstrating a very

good agreement. Again, Pst(x|x0) exhibits two cusps where its derivatives are discontinuous, namely, (i) at the resetting location
x = x0, and (ii) at x = 0, the point at which the potential V (x) has discontinuous derivatives.

3. Numerical simulations

The probability distribution function Pst(x|x0) can be computed using the basic Langevin dynamics techniques. The dynamical
rule for the resetting process is given by

x(t + �t) =
{

x0, with probability r�t

x(t) + f (x(t))�t + √
2D�ty, with probability (1 − r�t),

(12)

where the force is f (x) = −V ′(x) = −μsgn(x), �t is the
infinitesimal time step chosen a priori, and y is a zero mean,
unit variance Gaussian random variable. So, at each time step
�t , the particle either gets reset at x0 with probability r�t or
undergoes a Brownian dynamics with probability 1 − r�t . In
this way, one will have a time series of the particle’s position
until time t and thus one can compute the position distribution
function of the particle over many realizations starting from
the same initial condition, x(0) = x0. The particle eventually
attains its steady state and we can compute the steady state
distribution from the data.

B. The case of a quadratic potential

We now consider the case of a harmonic potential centered
around 0 which is either its minimum or the maximum. As

before, reset takes place at x0. One can again identify two
regions in x, namely, region I (x > x0) and region II (x < x0).
We solve Eq. (5) in each region and use the fact that the
solutions are continuous at x = x0 while the derivatives are not.
This can be seen by integrating Eq. (5) over an infinitesimal
region around x = x0, where one finds

dP I
st (x|x0)

dx

∣∣∣∣
x=x0

− dP II
st (x|x0)

dx

∣∣∣∣
x=x0

= − r

D
. (13)

This is consistent with the fact mentioned in Eq. (6).
Similar to the last section, in the following we derive the
steady state solutions for both the stable and the unstable
landscape.
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1. Bounded potential: V (x) = (μ/2)x2

We first consider the case where μ > 0 and this is the case
of a bounded harmonic potential. The solutions are then given
by

P I
st (x|x0) = c1e

− μ

2D
x2

H

(
− r

μ
,

√
μ

2D
x

)

+ c2e
− μ

2D
x2

1F1

(
r

2μ
;

1

2
;

μ

2D
x2

)
,

(14)

P II
st (x|x0) = c3e

− μ

2D
x2

H

(
− r

μ
,

√
μ

2D
x

)

+ c4e
− μ

2D
x2

1F1

(
r

2μ
;

1

2
;

μ

2D
x2

)
,

where H (−n,x) is the Hermite polynomial of negative order n

[16], and 1F1(a; b; x) is the Kummer confluent hypergeometric
function. We note that H (−n,

√
μx) converges as x−n when

x → ∞ but diverges as xn−1eμx2
when x → −∞. But

1F1(a; b; μx2) is even in x and diverges as eμx2
xa−b when

x → ±∞. However, these functions are multiplied with e−μx2

and then the exponentials cancel each other which makes the
additional algebraic form important at the asymptotic limits.
This results in two distinct situations, namely, r � μ and
r < μ. In the first case, one needs to choose c2 = 0 for the
convergence of the steady state. However, in the second case,
one can show that it is not necessary to choose c2 = 0, rather
there are infinite choices for c2 and, for each, c1 will be
automatically determined by the normalization condition. In
this paper, we choose c2 = 0 to maintain an identical structure
between the two cases. Using the matching conditions given
by Eq. (13), we obtain

c1H

(
− r

μ
,

√
μ

2D
x0

)
= c3H

(
− r

μ
,

√
μ

2D
x0

)

+ c41F1

(
r

2μ
;

1

2
;

μ

2D
x2

0

)
, (15)

and

c1√
μ

H

(
−1 − r

μ
,

√
μ

2D
x0

)

= c3√
μ

H

(
−1 − r

μ
,

√
μ

2D
x0

)

− c4x0√
2D

1F1

(
1 + r

2μ
;

3

2
;

μ

2D
x2

0

)
+ 1√

2D
e

μ

2D
x2

0 . (16)

For further analysis, let us choose D = 1/2, without loss of
generality. It is convenient to define the following quantities:

z1(r,μ,x0) ≡ √
μx0H

(
− r

μ
,
√

μx0

)
1F1

(
1 + r

2μ
;

3

2
; μx2

0

)

+H

(
−1 − r

μ
,
√

μx0

)
1F1

(
r

2μ
;

1

2
; μx2

0

)
,

(17)

a1(r,μ,x0) ≡ √
μeμx2

0 1F1

(
r

2μ
;

1

2
; μx2

0

)
, (18)

b1(r,μ,x0) ≡ √
μeμx2

0 H

(
− r

μ
,
√

μx0

)
. (19)

Using these definitions and from Eqs. (15) and (16), we obtain

c3 = c1 − a1(r,μ,x0)

z1(r,μ,x0)
, (20)

c4 = b1(r,μ,x0)

z1(r,μ,x0)
. (21)

Thus, c4 is independent of c1, while c3 depends on c1 and can be
evaluated once c1 is found from the normalization condition,∫ x0

−∞
dxP II

st (x|x0) +
∫ ∞

x0

dxP I
st (x|x0) = 1. (22)

That said, one obtains the full steady state solutions from
Eq. (14).

Figure 3 shows a comparison between simulations, as
described in Sec. III A 3, and theory for the steady state (14),
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FIG. 3. (Color online) Stationary distribution Pst(x) for the potential V (x) = (μ/2)x2, with μ > 0. We choose D = 0.5, x0 = 1.0, μ = 1.0,
while r varies. The (red) dashed line plots the analytical result for Pst(x), while the (blue) points are numerical simulation results. The vertical
solid and dashed lines indicate the location of the stable minimum of the bounded potential and the reset point x0, respectively. The motion of
the peak is also clear from the figure.
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demonstrating a very good agreement. We note that there is
only a cusp at the reset point x = x0. When r is large compared
to μ, the distribution is peaked around x = x0 with a non-
Gaussian form. However, when μ is much greater than r , we
get a distribution peaked around the minimum of the potential.
In between, the peak moves between x0 and the minimum.
This generic feature of the distribution is clear from Fig. 3.

2. Unbounded potential: V (x) = −(μ/2)x2

We proceed further with a similar analysis in the case of the
unbounded harmonic potential and the solutions are given by

P I
st (x|x0) = d1H

(
−1 − r

μ
,

√
μ

2D
x

)
,

P II
st (x|x0) = d3H

(
−1 − r

μ
,

√
μ

2D
x

)
(23)

+ d41F1

(
1

2
+ r

2μ
;

1

2
;

μ

2D
x2

)
,

where H (−n,x) is the Hermite polynomial of negative order
n, and 1F1(a; b; x) is the Kummer confluent hypergeometric
function, which is the same as before. Using the matching
conditions given by Eq. (13) in this case, we obtain

d1H

(
−1 − r

μ
,

√
μ

2D
x0

)
= d3H

(
−1 − r

μ
,

√
μ

2D
x0

)

+ d41F1

(
1

2
+ r

2μ
;

1

2
;

μ

2D
x2

0

)
,

(24)

and

d1H

(
−2 − r

μ
,

√
μ

2D
x0

)

= d3H

(
−2 − r

μ
,

√
μ

2D
x0

)

− d4

√
μ

2D
x01F1

(
3

2
+ r

2μ
;

3

2
;

μ

2D
x2

0

)

+ r√
2Dμ

(
1 + r

μ

)−1

. (25)

Choosing D = 1/2 and using Eqs. (24) and (25), one obtains

d3 = d1 − a2(r,μ,x0)

z2(r,μ,x0)
, (26)

d4 = b2(r,μ,x0)

z2(r,μ,x0)
, (27)

where

z2(r,μ,x0) ≡ (r+μ)

[√
μx0H

(
−1 − r

μ
,
√

μx0

)

×1F1

(
3

2
+ r

2μ
;

3

2
; μx2

0

)

+H

(
−2− r

μ
,
√

μx0

)
1F1

(
1

2
+ r

2μ
;

1

2
; μx2

0

)]
,

(28)

a2(r,μ,x0) ≡ r
√

μ1F1

(
1

2
+ r

2μ
;

1

2
; μx2

0

)
, (29)

b2(r,μ,x0) ≡ r
√

μH

(
−1 − r

μ
,
√

μx0

)
. (30)

Then d1 can be found using the normalization condition given
by Eq. (22) as before and the solutions are deduced from
Eq. (23).

Figure 4 shows a comparison between simulations and
theory for the steady state given by Eq. (23), demonstrating
a very good agreement. We note that there is only a cusp at
the reset point x = x0. When r is large compared to μ, the
distribution is peaked around x = x0 with a non-Gaussian
form. However, when μ is much greater than r , the peak
does not move, unlike the case of the bounded potential.
Nevertheless, in this limit, the system takes longer time to
reach the steady state with a peak well set at x = x0, indicating
a fat tailed distribution at large x [17]. We refer to Fig. 4 which
characterizes this generic feature.

C. General V (x): Possible steady states

We generalize our discussion for arbitrary potential that
has a form V (x) = μ|x|δ . When μ > 0, that is, the potential is
stable with minimum at x = xmin, one will always achieve
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FIG. 4. (Color online) Stationary distribution Pst(x) for the potential V (x) = (μ/2)x2, with μ < 0. We choose D = 0.5, x0 = 1.0,μ = −1.0
while r varies. The (red) dashed line plots the analytical result for Pst(x), while the (blue) points are numerical simulation results. The vertical
solid and dashed lines indicate the location of the unstable maximum of the unbounded potential and the reset point x0, respectively.
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the steady state around xmin, irrespective of the resetting.
Nevertheless, resetting will invoke the nondifferentiability in
the steady state, resulting in a cusp at the reset point x0 �= xmin.
Here one can talk about two extreme limits: one is when the
strength of the potential is much greater than the reset rate and
one expects a steady state solution of form ∼ e−V (x) centered
around xmin with a small but nonvanishing cusp at x0, given by
Eq. (6). In the other limit, when the reset rate dominates the
potential strength, one finds a non-Gaussian form around x0.
However, in between, the peak of the steady state moves from
xmin to x0 as one varies r but keeps μ fixed. This is a generic
feature that can be seen for any δ.

Now consider the case when μ < 0. There is no stable
minimum of the potential, hence no steady state since the
particle escapes to infinity in the absence of stochastic
resetting. However, we notice that one can have a steady state
when resetting is introduced under certain conditions, which
we discuss in the following. We can find a steady state if
and only if V (x) is such that the particle starting from x0

does not escape to infinity at a finite time in the absence
of resetting. Note that the escape time is given by tesc =
− ∫ ∞

x0
[V ′(x)]−1dx = [xδ−2

0 (δ − 2)δμ]−1 for δ > 2. On the
other hand, the waiting time distribution for resetting is given
by Poisson distribution, namely, re−rτ , where the average time
between two resets is simply given by treset = 1/r , which is
always finite. It is then obvious that if tesc < treset, the particle
always escapes and there is no steady state. However, one
indeed achieves a steady state if tesc > treset, even for δ > 2.
This can be realized by increasing the reset rate so that it gets
reset promptly before escaping. On the contrary, for δ � 2, one
finds tesc → ∞, thus always maintaining a steady state through
resetting. We have discussed the cases of δ = 2 (harmonic) and
δ = 1 (mod) for both positive and negative μ in great detail.
For positive μ, the steady states and the motion of the peak as
well follow from Figs. 1(b) and 1(c) and Figs. 3(b) and 1(c).
But for negative μ, the peak is always set at x0, indicating the
fact that the steady state is solely due to the reset mechanism.
This is realized from Figs. 2 and 4.

IV. RELAXATION TO THE STEADY STATE

In this section, we investigate the transient behavior of
the stochastic resetting mechanism. We recall that the particle
starts at x = x0 at t = 0 and finally attains a steady state
either at x = x0 or x = xmin as t → ∞, depending on
the potential landscape. In between, the position distribution
function shows rich behavior which can be quantified by
studying the relaxation dynamics of the propagator. We first
recall Eq. (4),

∂P

∂t
= D

∂2P

∂x2
+ ∂[V ′(x)P ]

∂x
− rP + rδ(x − x0), (31)

with the boundary conditions P (x → ±∞,t) = 0 and the
initial condition P (x,t = 0) = δ(x − x0). Now to characterize
the transient states, one has to solve Eq. (4) for the time
dependent propagator. To do this, we first separate P (x,t) =
f (x) + b(t,x), where f (x) gives the steady state solution and
b(t,x) describes the relaxation towards it. As a representative
case, we choose the free diffusion with no potential. The steady
state solution f (x) then satisfies the simple equation (5) with

the boundary conditions f (x → ±∞) = 0,

Df ′′(x) − rf (x) + rδ(x − x0) = 0, (32)

and this gives rise to the solution

f (x) = α

2
exp[−α|x − x0|], (33)

where α = √
r
D

is an inverse length scale denoting the typical
distance diffused by the particle between the resets [10]. The
time dependent part is given by

∂tb(t,x) = D∂2
x b(t,x) − rb(t,x), (34)

with the boundary conditions b(t,x → ±∞) = 0 and b(t →
∞,x) → 0. The initial condition is given by b0(x) ≡ b(t =
0,x) = P (x,0) − f (x). This results in the complete form of
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FIG. 5. (Color online) The time dependent propagator for the
free and forced diffusion case in the presence of stochastic resetting
has been plotted. It depicts the transient of the propagator from time
zero to its steady state. Figures 5(a) and 5(b) represent the free and
the forced diffusion cases respectively. The parameters are chosen to
be r = 0.6, μ = 1.0, and D = 0.5. The vertical dashed line marks
the reset position x0. In the free case (a), we consider x0 = 0, but
for the case (b), we set x0 = 1.0, which is different from the stable
minimum xmin = 0.
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the relaxation term given by

b(t,x) = e−rt
exp

[ − (x−x0)2

4Dt

]
√

4πDt
− α

2
cosh[−α(x0 − x)]

+ α

4
exp[−α(x0 − x)]erf

[
x − x0 + 2Dtα√

4πDt

]

+ α

4
exp[α(x0 − x)]erf

[−x + x0 + 2Dtα√
4πDt

]
. (35)

Now, Eqs. (33) and (35) constitute the full propagator. We refer
to Fig. 5(a), which specifies the relaxation for this particular
case. A similar analysis can also be made for a Brownian
particle diffusing in a potential in the presence of resetting.
For instance, we analyze the case of a bounded harmonic
potential V (x) = (μ/2)x2 with minimum xmin = 0, while the
reset point is at x0 �= 0. This gives rise to a competition between
the potential and the reset mechanism, thus reaching a steady
state as discussed in Sec. III C. Figure 5(b) characterizes the
transient behavior with respect to t for μ = 1.0,r = 0.6. We
also notice that the steady state achieved at the end is identical
to that obtained in Fig. 3(c).

V. SUMMARY

In this work, we have considered a Brownian particle
diffusing in an arbitrary potential landscape in the presence
of the stochastic resetting mechanism. We have investigated
the steady state properties of the position distribution of the
particle for two representative choices of the potential, namely,
the mod and the harmonic potential. It has been shown that
the steady states have distinct differences depending on the
nature of the potential. We also derive the conditions for the

existence of the steady state for any potential landscape of
higher order. Also we have realized the transient behavior of
the propagator approaching the steady state. We have studied
two representative cases in this context, though the extension
to higher order potential does not offer more physical insight.

Furthermore, resetting has been found to have a profound
consequence on the first passage properties of a diffusing
particle. In recent times, there have been extensive studies on
this to have a discreet idea not only restricted to one dimension
but to higher dimensions as well [18]. Consequently, the
study of two observables, namely, the local time and the
occupation time, turns out to be very useful to understand
the mechanism near the reset point. Local time measures
the time that the process visits a reference point (which is
basically the reset point), while the residence time or the
occupation time measures the time that the process stays
above that point [19,20]. These observables show rich behavior
when the resetting dynamics is combined [17]. There are
many open questions in the context of the stochastic resetting
mechanism. One can generalize resetting to the systems where
the resetting takes place to a region instead of a reference point
at a constant rate. Also, exploring the span or the extremum
(namely, maximum or minimum) of a dynamics under the
resetting paradigm will be very interesting in connection with
the extreme value statistics [21].
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