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Explicit expression for the Stokes-Einstein relation for pure Lennard-Jones liquids
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An explicit expression of the Stokes-Einstein (SE) relation in molecular scale has been determined for pure
Lennard-Jones (LJ) liquids on the saturated vapor line using a molecular dynamics calculation with the Green-
Kubo formula, as Dηsv = kT ξ−1(N/V )1/3, where D is the self-diffusion coefficient, ηsv the shear viscosity, k the
Boltzmann constant, T the temperature, ξ the constant, and N the particle number included in the system volume
V . To this end, the dependence of D and ηsv on packing fraction, η, and T has been determined so as to complete
their scaling equations. The equations for D and ηsv in these states are m−1/2 (N/V )−1/3 (1 − η)4 ε−1/2T and
m1/2 (N/V )2/3 (1 − η)−4 ε1/2T 0, respectively, where m and ε are the atomic mass and characteristic parameter of
energy used in the LJ potentials, respectively. The equations can well describe the behaviors of D and ηsv for both
the LJ and the real rare-gas liquids. The obtained SE relation justifies the theoretical equation proposed by Eyring
and Ree, although the value of ξ is slightly different from that given by them. The difference of the obtained
expression from the original SE relation, Dηsv = (kT /2π )σ−1, where σ means the particle size, is the presence of
the η1/3 term, since (N/V )1/3 = (6/π )1/3 σ−1η1/3. Since the original SE relation is based on the fluid mechanics
for continuum media, allowing the presence of voids in liquids is the origin of the η1/3 term. Therefore, also from
this viewpoint, the present expression is more justifiable in molecular scale than the original SE relation. As a
result, the η1/3 term cancels out the σ dependence from the original SE relation. The present result clearly shows
that it is not necessary to attribute the deviation from the original SE relation to any temperature dependence of
particle size or to introduce the fractional SE relation for pure LJ liquids. It turned out that the η dependence of
both D and ηsv is similar to that in the corresponding equations by the Enskog theory for hard sphere (HS) fluids,
although the T dependence is very different, which means that the difference in the behaviors of D and ηsv between
the LJ and HS fluids are traceable simply to their temperature dependence. Although the SE relation for the HS
fluids also follows Dηsv = kT ξ−1(N/V )1/3, the value of ξ is significantly different from that for the LJ liquids.
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I. INTRODUCTION

Since the Stokes-Einstein (SE) relation has been derived for
macromolecule in Brownian motion in a dilute solution [1], the
applicability has been discussed to various kinds of molecules
and liquid states over a century [2,3]. Even in a recent decade,
breakdown of the relation has become one of the topics in
studies of nanoparticles [4,5]. Also in molecular scale, many
studies regarding the applicability have been reported from the
viewpoints of theory [6,7], simulation [8–15], and experiment
[16–22]. However, mainly from the theoretical work side,
the inapplicability of the relation had already been pointed
out to liquids with finite concentrations in molecular scale
[23,24], and several modified equations have been devised.
The representative ones for simple liquids in molecular scale
are those derived by Eyring and Ree [25] and Zwanzig [26],
independently. Applying the vacancy theory to the evaluation
of self-diffusion coefficient, D, and shear viscosity, ηsv, with
some geometrical approximations, the former derived the
equation

Dηsv = kT

ξ
(N/V )1/3, (1)

where k is the Boltzmann constant, T the absolute temperature,
N/V the number density, and ξ is the number of nearest-
neighbors lying in the same plane as the diffusing atom: ξ = 6
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is given for close-packed systems [25] and 5.6 for real liquids
[24]. The latter related D directly with ηsv using normal mode
analysis [26] and derived

Dηsv = kT C(N/V )1/3, (2)

where C = 0.0658 (2 + ηsv/ηlv). The longitudinal viscosity
ηlv is defined as 4ηsv/3 + ηbv, where ηbv is the bulk viscosity.
If we use a typical relation of ηbv = ηsv/3, C = 0.171 which
corresponds to ξ = 5.85. In addition to these coefficients, the
term of N/V in these equations differs from that of particle
radius in the original SE relation,

Dηsv = kT

4πrS
(slip condition) , (3)

where rS the Stokes radius [27]. The difference is crucial,
since any breakdown in Eq. (3) might lead to the introduction
of temperature dependence of atomic size or the fractional
SE equation, but not so in Eqs. (1) or (2). However, many
subsequent works [6–22] in the molecular scale have not paid
much attention to the differences, and have simply compared
their numerical results with the relations. Therefore, both the
original and modified expressions have still not been justified
in the molecular scale.

Here we focus on the Lennard-Jones (LJ) liquids. Such
simple liquids, i.e., rare gases or the LJ liquids, are the extreme
opposites to dilute solutions containing macromolecules in
the hydrodynamic region. Nonetheless, even the breakdown
has been discussed extensively in supercooled states [10,14]
and even in normal liquid states [12]. The LJ potential at an
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interatomic distance of r is given as

φ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6
]

, (4)

where ε and σ are the parameters characterizing potential
depth and atomic size, respectively. In many studies, σ is
assumed to correspond to the Stokes radius in Eq. (3). Since the
LJ potential as well as the soft-core potential can be scaled with
ε and σ [28,29], transport properties may be expressed with the
necessary and sufficient independent variables. Furthermore,
the LJ model can well express the realistic behaviors of them
for rare-gas liquids. Therefore, the model is suitable for the
study to elucidate the above-mentioned questions on the SE
relation in molecular scale.

In this paper, we demonstrate that we can determine the
explicit expression of the SE relation justifiable for the LJ
liquids using the molecular dynamics calculation, and that
number density is an appropriate variable for the expression
in the pure states. Our approach for this purpose is to
determine the explicit expressions of D and ηsv, respectively,
using the necessary and sufficient independent variables. MD
calculation is expected to give numerically exact solutions for
a given model such as the LJ model. Furthermore, the present
method is easy to apply to the mixtures. In a subsequent
paper, we will present the results of mixtures, and suggest
the expressions unified from molecular scale to hydrodynamic
region.

II. CALCULATION

First, under the microcanonical ensemble, we express D
and ηsv as dimensionless quantities in terms of appropriate
units, i.e., σ for length, m for mass, ε/k for temperature, and
(mσ 2/ε)1/2 for time [28,29], so that we obtain dimensionless
quantities as

D(σ,ε,m,N,V,E) = m−1/2σε1/2D∗(N,V ∗,E∗) (5)

and

ηsv(σ,ε,m,N,V,E) = m1/2σ−2ε1/2η∗
sv(N,V ∗,E∗), (6)

where E is the internal energy, V ∗ = V/σ 3, E∗ = E/ε, and
D∗ and η∗

sv are the dimensionless self-diffusion coefficient
and shear viscosity, respectively. These show directly the mass
dependence of m−1/2 for D and m1/2 for ηsv. Note that the prod-
uct of Eqs. (5) and (6) apparently suggests σ−1 dependence.
We will discuss this in detail later. Since packing fraction, η,
is defined as (π/6)σ 3(N/V ), dimensionless number density,
N/V ∗, means η, and we can choose two variables among σ ,
N/V , and η to express D and ηsv, respectively. If we select
N/V and η, as σ = (6/π )1/3(N/V )−1/3η1/3, we obtain

D ∝ m−1/2(N/V )−1/3η1/3ε1/2D∗(N,V ∗,E∗) (7)

and

ηsv ∝ m1/2(N/V )2/3η−2/3ε1/2η∗
sv(N,V ∗,E∗). (8)

In summary, for the LJ liquids, the diffusion coefficient and
shear viscosity can be expressed as

D(d,T ) = D(m,N/V,η,T ) = m−1/2(N/V )−1/3f (η,T )

(9)

TABLE I. Parameters for the LJ potential, σ and ε, in the rare gas
systems [30].

Atom σ (nm) εk−1 (K)

Ar 0.3405 119.8
Kr 0.3670 167.0
Xe 0.3924 257.4

and

ηsv(d,T ) = ηsv(m,N/V,η,T ) = m1/2(N/V )2/3g(η,T ),

(10)

where d is the density defined as mN/V .
MD calculations were carried out for Ar, Kr, and Xe using

the NV E conditions. The particle number N was 864 and the
cell volume V was determined from the experimental density
[31,32] at each temperature. The parameters used in the LJ
potentials are given in Table I [30]. The equations of motion
were integrated using the velocity Verlet algorithm [33] with
a time step of 10 fs and each run consisted of 200 000 steps:
2 ns. At each state, we have performed calculations of five runs
to evaluate D, and 10 or 20 runs for ηsv, and then obtained
the averages and the standard deviations, σSD, for them from
the results. For all the present calculation results shown from
Figs. 2 to 6, error bars are indicated as ±σSD behind plotted
symbols. The self-diffusion coefficient was evaluated using the
Einstein equation [33] and corrected for the effect of the finite
system size used in the periodic boundary condition, using the
equation [34],

D = DPBC + 2.837297
kT

6πηsv

(
N

V

)1/3

N−1/3, (11)

where DPBC means the self-diffusion coefficient obtained
under the present periodic boundary condition used. The shear
viscosity was evaluated using the Green-Kubo formula [33]
and uncorrected since the system size dependence is relatively
weak [34].

Figure 1 shows the thermodynamic states calculated on the
phase diagram of Ar which is based on the results of Ref. [35].

FIG. 1. (Color online) Thermodynamic states studied in this
work, shown by blue closed circles, on the phase diagram of Ar [35].
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In this work, in order to focus on the density dependence, we
have sampled a range of states along the saturated vapor line
which shows weak temperature dependence of ηsv. In these
states, we have evaluated D and ηsv in order to compare them
with the experimental results and the scaling equations to be
determined in this study.

The calculations to determine the functional forms of
f (η,T ) and g(η,T ) were performed for liquid Ar at a reference
state of 1124.9 kg m−3 and/or 124 K. In these calculations,
only one variable was changed, keeping all the other variables
as constants. Changing the packing fraction can be achieved
by scaling the atomic size σ . A more detailed description of
the scaling method is given in Ref. [36].

III. RESULTS AND DISCUSSION

Figure 2 shows comparisons between the calculated and
the experimental [32,37] results for Ar in the liquid states
shown in Fig. 1. They are in good agreement with each other
in ηsv, whereas some tendency of overestimation in D is found
compared with the experimental results. Hard-sphere (HS)
fluids based on the Enskog theory show the different behaviors
from those in the LJ liquids mainly in the high- and low-mobile
regions, respectively. The origin of these differences will be
discussed later.

FIG. 2. (a) Self-diffusion coefficient and (b) shear viscosity of Ar
in the liquid states on the saturated vapor line shown in Fig. 1. HS
means the plots of calculated values using the Enskog formula in the
same temperature and density.

FIG. 3. (Color online) Temperature dependence of self-diffusion
coefficient and shear viscosity calculated for liquid Ar at the constant
density of 1124.9 kg m−3.

Figure 3 shows the temperature dependence of D and ηsv,
respectively, at the constant density of 1124.9 kg m−3. It is
very weak in ηsv and approximately linear in D. Figure 4(a)
shows the obtained packing-fraction dependence under the

FIG. 4. (Color online) Packing-fraction dependence of self-
diffusion coefficient and shear viscosity for (a) the LJ and (b) HS
fluids under the constant density of 1124.9 kg m−3 and temperature
of 124 K. HS means the results calculated using the Enskog formula
in the same states as LJ.
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constant density of 1124.9 kg m−3 and temperature of 124 K,
which can be fitted to a simple equation as (1 − η)4 for
D and (1 − η)−4 for ηsv, respectively. Although there still
remains a little room to improve the fit using more complicated
polynomial equations, the obtained results are enough for
the present purpose. Whereas the temperature dependence
of ηsv becomes noticeable near the triple point as shown in
Fig. 3, except for this, we have confirmed the same variable
dependence as stated above at all the states shown in Fig. 1. In
addition, calculations to evaluate single-variable dependence
on mass and number density of D and ηsv were also performed,
and the same dependence as shown in Eqs. (9) and (10) was
confirmed, respectively.

In summary, the self-diffusion coefficient and shear viscos-
ity of simple LJ liquids should follow

D ∝ m−1/2(N/V )−1/3(1 − η)4ε−1/2T (12)

and

ηsv ∝ m1/2(N/V )2/3(1 − η)−4ε1/2T 0, (13)

respectively. Figures 5(a) and 5(b) shows plots of all the
calculated and the experimental results for liquids Ar [32,37],

FIG. 5. (Color online) The calculated and experimental self-
diffusion coefficient and shear viscosity of liquid Ar, Kr, and Xe
on the saturated vapor lines as a function of mass, number density,
packing fraction, and temperature. The solid straight lines are guides
to the eye.

Kr [38], and Xe [38] on the saturated vapor lines as functions
of Eqs. (12) and (13), respectively. Although, unfortunately,
there are only little available experimental data for both Kr
and Xe liquids, all the results shown in the figures are well
expressed with the equations. Note that some deviations from
the equation shown in Fig. 5(b) are traceable only to changes
in temperature dependence near the triple point, as mentioned
above.

These scaling equations immediately give the SE relation
for pure LJ liquids as a product between Eqs. (12) and
(13): Dηsv ∝ (N/V )1/3 T . Figures 6(a) and 6(b) clearly show
Dηsv/T can well be expressed not by σ−1 but by (N/V )1/3.
It should be noted that even near the triple point where the
deviation of plot from the equation in abscissa in Fig. 5(b)
becomes large, the obtained SE relation holds. Furthermore,
we can see no significant dependence of Dηsv/T on the
packing fraction which contains the particle size σ in Fig. 6(c).
Since weak curvatures on the equations fitted to the packing-
fraction dependence of D and ηsv, respectively, remain in
Fig. 4(a), the direct products between the calculation results
of D and ηsv are also shown as a function of η in the inset of
Fig. 4(a). This also clearly shows that there is no significant
dependence on η under these conditions.

If we would interpret these results on the basis of the
original SE relation of Eq. (3), we might introduce any
temperature dependence of atomic size or the fractional SE
equations. However, clearly they are superfluous on the basis
of the SE relation clarified in this work. It should also be noted
that the expressions of the SE relation for the LJ liquids have
nothing to do with the definition of particle size. Instead of
σ as a scaling unit for length in the dimensional analysis, if
we use a different unit, e.g., σ/2, it does not affect the present
results. Therefore, in the study of applying the SE relation
to pure LJ liquids, it does not make sense to discuss particle
size and furthermore its temperature dependence. This idea is
also supported by the fact that even near the triple point the
obtained SE relation holds.

Here we recall that the product between Eqs. (5) and (6)
suggests the σ−1 dependence in the SE relation. However,
besides σ and T , the other variables does not cancel out,
and the term of η1/3 remains, which results in σ−1η1/3, i.e.,
(N/V )1/3, dependence. It is worth considering the difference
of the physical meanings between the present expression
and the original SE relation, via the relation of (N/V )1/3 =
σ−1(6/π )1/3η1/3,since, to our knowledge, no one has ever
done it. There are two points to be made clear. The first
is that the presence of the η1/3 term in the molecular scale
converts the concept of particle size in the original SE relation
to number density. The second point is really important and is
that the presence or absence of the η1/3 term characterizes the
solvents which are treated as ensembles of particles or simply
continuum media, respectively. That is, the expression of
viscosity in the original SE relation is based on fluid mechanics
for continuum media. Therefore, allowing the presence of
voids in liquids means the departure from the original SE
relation. As a result, the η1/3 term cancels out the σ dependence
from the original SE relation.

In order to reveal the significance of the η1/3 term, though
it may sound paradoxical, we apply the present expression to
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FIG. 6. (Color online) The Stokes-Einstein relation, Dηsv/T ,
based on the calculated self-diffusion coefficient and viscosity for
Ar, Kr, and Xe on the saturated vapor lines as a function of
(a) number density and (b) particle size, and (c) (Dηsv/T ) (N/V )−1/3

as a function of packing fraction. Closed symbols (HS) show the
results from the Enskog formula with σ used in the present work
instead of the hard-sphere diameters: σAr, σKr, and σXe mean σ for
Ar, Kr, and Xe, respectively.

the fractional SE equation [12]:

D

T
∝ η−t

sv , (14)

where t is a constant, 0 � t � 1, which can be determined
from the slopes of log-log plots. In the case where the original

FIG. 7. (Color online) The fractional Stokes-Einstein relation
based on all the calculated self-diffusion coefficient for Ar, Kr, and Xe
on the saturated vapor lines as a function of the calculated viscosity.
Closed and open circles show the plots with and without η−1/3,
respectively. The values of slope indicated were obtained by fit of
all the data to the linear lines, respectively.

SE relation holds, obviously t = 1. Following the manner by
Harris [12] using the dimensionless quantities, whereas the
original SE relation can be expressed as

D∗

T ∗ ∝ η∗
sv

−1
, (15)

where T ∗ = kT /ε, the present expression can be written as

D∗

T ∗ η−1/3 ∝ η∗
sv

−1
. (16)

Figure 7 clearly shows that the analysis based on the original
SE relation may lead to the introduction of the fractional SE
relation even for pure LJ liquids [12] but that based on the
present expression will not need its help for them.

As shown in Fig. 6(a), the slope, 1/ξ , is close to 1/2π or
1/6 in the plot of Dηsv/kT vs. number density. Therefore, the
coefficient in the SE relation is not in entire agreement with
those in the theoretical equations [24–26] given by Eqs. (1)
and (2).

Lastly, we discuss the differences in the behaviors between
the LJ liquids and the HS fluids based on the Enskog theory.
The equations by the theory for self-diffusion coefficient, DE

[39], and shear viscosity, ηE
sv [40], in HS fluids are given, using

the Carnahan-Starling approximation [41], as

DE = 1.01896
4ηHS

y
D0 (17)

and

ηE
sv = 4ηHS

[
1.016

y
+ 0.8128 + 0.7835y

]
η0

sv, (18)

respectively, where ηHS is the packing fraction with hard-
sphere diameter σHS, D0 and η0

sv are the values of self-
diffusion coefficient and shear viscosity at the low-density
limit, respectively [27], given as

D0 = 3

8σHS
2

(
N

V

)−1 (
kT

mπ

)1/2

, (19)
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η0
sv = 5

16σHS
2

(
mkT

π

)1/2

, (20)

and

y ≈ 4ηHS
(
1 − 1

2ηHS
)
/(1 − ηHS)3. (21)

Using the relation, σHS = (6/π )1/3(N/V )−1/3η
1/3
HS , DE and

ηE
sv have the dependence on mass and number density as

m−1/2(N/V )−1/3 and m1/2(N/V )2/3, respectively, which is the
same as those for the LJ liquids as shown in Eqs. (9) and (10).
However, the same dependence on packing fraction between
them, as shown in Figs. 4(a) and 4(b), is rather remarkable,
since it suggests that not only doesn’t the attractive part of
the potential affect the behavior but also not the softness in
the repulsive part. This is very different from the case of the
thermal conductivity of simple liquids [42]. As a result, the
difference between the LJ and HS fluids in the self-diffusion
coefficient and viscosity shown in Fig. 2 can be attributed only
to the differences in the temperature dependence shown in
Fig. 3 and Eqs. (19) and (20).

In spite of the differences in temperature dependence, the
expression for the SE relation for the HS fluids is quite similar
to that for the LJ liquids: DEηE

sv ∝ (N/V )1/3 T . Figure 6 shows
the same behaviors as those of the LJ liquids except for their
coefficients: DEηE

sv/T can also well be expressed not by σ−1
HS

but by (N/V )1/3. On the other hand, the coefficient in the
SE relation is significantly different between the LJ liquids
and the HS fluids. As the difference should be attributed to
the softness of the repulsive part and/or the attractive part in

the potential, the origin might be discussed using the Weeks-
Chandler-Andersen potentials [42].

IV. CONCLUSIONS

We have successfully determined the expression of the
SE relation justifiable for pure LJ liquids on the saturated
vapor line using MD calculations with the GK formula. The
expression clearly shows that N/V should be used instead of
σ used in the original SE relation. It holds not only for the LJ
liquids but also for the real rare-gas liquids, and furthermore
for HS fluids. Therefore, the present results support the
assumptions used in the theoretical work by Eyring and Ree.
The expression can also be interpreted so that σ is converted
to N/V in the molecular scale by the addition of η1/3 into
the original SE relation. As a result, the η1/3 term cancels out
the σ dependence from the original SE relation. It is worth
noting that the presence of the η1/3 term characterizes the
solvent which is treated here not as continuum media but as
ensembles of particles. In a subsequent paper, the importance
of this additional factor will be shown again in the SE relation
for the LJ-liquid mixtures. Allowing the presence of voids in
liquids means the departure from the original SE relation.
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