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Heat-current correlation loss induced by finite-size effects in a one-dimensional nonlinear lattice

Lei Wang (��),* Lubo Xu (���), and Huizhu Zhao (���)
Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices,

Renmin University of China, Beijing 100872, People’s Republic of China
(Received 22 August 2014; revised manuscript received 13 October 2014; published 7 January 2015)

The Green-Kubo formula provides a mathematical expression for heat conductivity in terms of integrals of the
heat-current correlation function, which should be calculated in the thermodynamic limit. In finite systems this
function generally decreases, i.e., it decays faster than it does in infinite systems. We compared the values of the
correlation function in a one-dimensional purely quartic lattice with various lengths, and found that this loss is
much smaller than is conventionally estimated. By studying the heat diffusion process in this lattice, we found
that, in contrast to the conventional belief, the collisions between sound modes do not noticeably affect the current
correlation function. Therefore, its loss being surprisingly small can be well understood. This finding allows one
to calculate the heat conductivity in a very large system with desirable accuracy by performing simulations in a
system with much smaller size, and thus greatly broadens the application of the Green-Kubo method.
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I. INTRODUCTION

Anomalous heat conduction in low-dimensional systems
has attracted rapidly increasing interest recently [1,2]. It has
been generally accepted for many years, with only very few
exceptions such as the coupled rotator lattice [3,4], that heat
conduction in one-dimensional (1D) momentum-conserving
nonlinear lattices is anomalous [1,2,5]. The heat conductivity
κ in those lattices is length dependent and diverges with
lattice length L as Lα with a positive α in the thermodynamic
limit. The universality and detailed value of this power
exponent α are still open questions, however [6–11]. Two
different methods, the nonequilibrium heat-bath method and
the equilibrium Green-Kubo method, are commonly applied
to calculate the heat conductivity. The latter methodprovides
a mathematical expression for heat conductivity in terms of
integrals of the heat-current correlation function in equilibrium
states [12]. It is theoretically simple since only the lattices
themselves need to be studied. As a comparison, in the
nonequilibrium heat-bath method, the heat baths must be
considered as a part of the whole system, which generally
makes enormous difficulties.

Practically, however, the correlation function needs to be
calculated in the thermodynamic limit but any numerical
simulation can be performed only in finite systems. The current
correlation function in finite systems generally decays faster
than in infinite ones. This loss is conventionally attributed to
collisions between sound modes which occur only in finite
systems. As a consequence, one is able to correctly calculate
the correlation function in only a short time-lag range before
sound modes collide with each other. Such a requirement
seriously limits the usage of the Green-Kubo method.

II. MODEL AND SIMULATION

A. Lattice model

In this paper we numerically study the heat-current cor-
relation function in a one-dimensional nonlinear lattice. The
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main objective is to study the finite-size effects quantitatively
and reveal their true physical origin. The Hamiltonian of the
system reads

H =
∑

i

[
ẋ2

i

2
+ V (xi − xi+1)

]
. (1)

The mass of all the particles has been set to unity. We
focus on a purely quartic potential, i.e., V (x) = 1

4x4, due
to its simplicity and high nonlinearity, which enable its
asymptotic behaviors to be displayed in relatively short
time and space scales. The interaction between particles i

and i + 1 is fi = −∂V (xi − xi+1)/∂xi . The instantaneous
local heat current ji ≡ ẋi(fi−1 + fi)/2, and the instantaneous
global heat current J (t) ≡ ∑

i ji(t). A periodic boundary
condition, which provides the best convergence to properties
in the thermodynamic limit, is applied in all the simulations.
Microcanonical simulations are performed with zero total
momentum and identical energy density ε which corresponds
to temperature T = 1. ε equals 0.75 for this purely quartic
lattice. An embedded Runge-Kutta-Nystrom algorithm of
orders 8(6) [13] is applied for this deterministic Hamiltonian
system. This high-order algorithm enables us to calculate very
long-time correlations with considerable good accuracy and
acceptable computational resource cost.

B. Heat-current correlation loss

In a lattice with N particles, the rescaled heat-current
correlation function is defined as

cN (τ ) ≡ 1

kBT 2N
〈J (t)J (t + τ )〉t . (2)

The Boltzmann constant kB is set to unity throughout this
paper. Compared with cN (τ ) for finite N , its thermodynamic
limit is much more important, i.e.,

c(τ ) ≡ lim
N→∞

cN (τ ). (3)
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FIG. 1. (Color online) (a) Rescaled heat current correlation cN (τ )
for the purely quartic lattice versus time lag τ for various lattice
length N . Data binning over contiguous τ regimes has been performed
in order to reduce statistical fluctuations. Dashed and dotted lines
with slope −3/5 and −1/2, respectively, are drawn for comparision.
(b)τ γ cN (τ ) for various values of γ . Three groups of symbols from
the top down along the vertical axis correspond to γ = 2/3, 3/5,
and 1/2, respectively. Solid symbols correspond to N = 131072 and
the open ones correspond to N = 65536. In order to avoid confusion
only the data for those two longest N are plotted. Two horizontal
dashed lines are drawn for reference. It is clearly seen that the curve
in middle (γ = 3/5) is the most horizontal one in the wide range of
τ ∈ (102,105).

According to the Green-Kubo formula, the heat conductivity
can be determined as

κGK ≡
∫ ∞

0
c(τ )dτ. (4)

In the anomalous heat conduction case where the above inte-
gral does not converge, the length-dependent heat conductivity
is calculated by setting a cutoff time as the upper limit of the
integral, i.e.,

κGK (L) ≡
∫ L/vs

0
c(τ )dτ. (5)

vs is the speed of sound, which equals about 1.23 in this purely
quartic model [14].

In practice, only lattices with finite N can possibly be
simulated, and the rescaled heat-current correlation function
cN (τ ) generally varies with the lattice length N . Therefore,
the finite-size effect must be taken into careful consideration.
It is well known and can be observed in Fig. 1(a) that this
finite-size effect has the following effects: (1) cN (τ ) < c(τ );
(2) the shorter the N , the faster cN (τ ) decays; and (3) the longer

τ , the larger the effect. The conventional belief (hereinafter
referred to as “the belief”) is that cN (τ ) is acceptably close to
c(τ ) only when τ < τcol(N ) ≡ N

2vs
; see for example Ref. [15].

According to the belief and Eq. (5), in order to determine
κGK (L) one needs to simulate a lattice with twice the length
of L. This condition seriously limits the application of the
Green-Kubo method. That is why the Green-Kubo formula is
commonly deemed to be an inefficient way of determining the
heat conductivity, and thus has been rarely applied in numerical
simulations. We shall reveal that this belief is questionable in
this lattice.

To this end, we define �cN (τ ), the heat-current correlation
loss (CCL) induced by the finite-size effect, as

�cN (τ ) ≡ c(τ ) − cN (τ ). (6)

The relative CCL is defined as

λN (τ ) ≡ �cN (τ )

c(τ )
= 1 − cN (τ )

c(τ )
. (7)

We also define a characteristic time lag, the cutoff time lag
τc(N ), as the value at which the relative loss λN (τ ) approaches
a certain critical value η, namely,

λN (τc(N )) = η. (8)

We first need to determine the value of c(τ ) with a desired
accuracy in a certain range of τ before we are able to calculate
all the quantities �cN (τ ), λN (τ ), and τc(N ). We temporarily
accept the belief, based on which a lattice with N = 13 1072
is long enough to correctly determine c(τ ) when τ � 13 1072

2vs
≈

5 × 104. We will see that such a requirement is too conservative
and is not necessary indeed for the lattice that we studied. For
simplicity, c(τ ) refers to c13 1072(τ ) in the descriptions of our
numerical simulations hereafter.

The relative CCL λN (τ ) for various lattice lengths N is
plotted in Fig. 2(a). We see that λN (τ ) increases faster in
shorter lattices. Quite intriguingly, all the data of λN (τ ) for
various N fit the following universal relation very well:

λN (τ ) ≈ 3N−1.16τ 0.58. (9)

This relation indicates that the cutoff time lag τc(N ) follows a
square-law dependence on the lattice length N :

τc(N ) ≈
(

η

3

)1/0.58

N2. (10)

If we set η = 0.1, namely, cN (τ ) decreases to 90% of c(τ )
when τ = τc(N ), then

τc(N ) ≈ 2.84 × 10−3N2. (11)

In Fig. 2(b) we see that such an expectation agrees with the
numerical data very well.

Since τc(N ) satisfies the square law so well in the range
of N that we have studied, it is reasonable to expect that
this relation remains valid in an even larger N range. In our
previous work [14], the longest lattice that we simulated was
N = 2 × 104. Since τc(2 × 104) = 1.14 × 106 is longer than
the longest τ (=1 × 106) that we studied in that reference, the
relative CCL induced by the finite size effect is therefore no
more than 10%. How much the calculation of the decay power
exponent γ ≡ d ln c(τ )

d ln τ
is affected by the 10% CCL depends
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FIG. 2. (Color online) (a) λN (τ ) as a function of τ for various
lattice length N . Oblique solid lines from the top down stand for the
fittings of λN (τ ), 3N−1.16τ 0.58, for N ranging from 128 to 4096. The
horizontal dashed line refers to λN (τ ) = 0.1. The functions of λN (τ )
cross this line at the cut-off time lag τc(N ). (b) The cut-off time lag
τc(N ) as a function of the lattice length N . The blue dashed line
stands for 2.84 × 10−3N 2.

on the regime of τ in which the data is fitted. Given the
fact that γ was fitted over four orders of magnitude of τ

[see Fig. 2(a) in Ref. [14]], the underestimate of γ induced
therefrom must be lower than | log10 0.9|/4 ≈ 0.01. Because
such an error is much smaller than the difference between
−2/3 and −3/5, it would not affect the main conclusion in the
Ref. [14]. We expect that the cases in two-dimensional [16] and
three-dimensional [17] purely quartic lattices are also similar.

In order to observe the asymptotic decay exponent of c(τ ),
we have plotted tγ cN (τ ) in Fig. 1(b) for γ = 2/3, 3/5, and
1/2, respectively. The relative CCL for N = 13 1072 and
τ = 105 is no more than 0.28%, which is negligible. Clearly the
curve in the middle, which corresponds to γ = 3/5, is the
flattest one. This reconfirms our conclusion in Ref. [14] that
the asymptotic decay of c(τ ) follows τ−3/5 [1] better than
τ−2/3 [6] and τ−1/2 [8,11,18]. The numerical calculation
was mainly performed on one or more Nvidia Tesla-2075
graphics processing units (GPUs), each of which has 448
Cuda processing cores on board. The part of the calculation for
N = 13 1072 alone costs more than half a year of wall-clock
time on four GPUs. The huge cost enables us to reduce
the statistical uncertainty to a much lower level, compared
with that in other existing studies. Since this purely quartic
lattice can be regarded as the high-nonlinearity limit of the
Fermi-Pasta-Ulam (FPU)-β lattice, we expect that the decay
of c(τ ) in the latter lattice should asymptotically tend to the
same exponent, although probably on much longer time scales.

Now we go back to reconsider the above-mentioned
conventional belief that cN (τ ) is sufficiently close to c(τ ) only
when τ < τcol(N ) ≡ N

2vs
. The physical origin of this belief can

be understood by studying the energy diffusion process in an
initially thermalized lattice that undergoes a δ-function-type
heat pulse [19,20]. The local energy-density spreading profile
in such a 1D nonlinear momentum-conserving lattice consists
of a central peak (heat mode) and two side peaks (sound modes)
that move with the constant speed of sound vs . The quite dif-
ferent behaviors of the two kinds of modes have been recently
studied by nonlinear hydrodynamic fluctuation analysis [21].
In a lattice with length N and periodic boundaries, the two
sound modes approach the boundaries and collide with each
other at the time τcol(N ) = N

2vs
. At first glance, such a collision,

which does not exist in a lattice with infinite length, affects the
diffusion process badly and thus should be responsible for the
CCL that is observed in Fig. 2(a).

However, if such a picture is correct, then one would expect
that (1) the CCL at τ < τcol(N ) should not be noticeable;
(2) the change of the CCL at the time point τcol(N ) should
be discontinuous; and (3) the cutoff time lag τc(N ) should
be proportional to the lattice length N . However, we see in
Figs. 2(a) and 2(b) that (1) CCL can be distinctly observed
even when τ < τcol(N ); and (2) everything goes on smoothly
at the time point τcol(N ), i.e., no discontinuity in the curves
cN (τ ), �cN (τ ), and λN (τ ) can be observed—λN (τ ) depends
on τ in the same way before and after the time point
τcol(N ); and (3) τc(N ) is proportional not to N but to N2.
Those observations violate the expectations completely, thus
indicating that the role of the collision is not so important as
was commonly expected.

C. Collision between sound modes

Now we quantitatively study the role of the collision. We
have simulated the energy diffusion process for t = 100, 150,
200, and 300 in a lattice with length N = 451 and periodic
boundary conditions [22]. The energy distribution profiles
p451(i,t) at different time points are plotted in Fig. 3 (the
solid symbols). The sound modes approach the boundaries i =
±225 at t = τcol(451) = 451

2×1.23 ≈ 180. Around this time point
the sound modes meet, collide with each other, move out of one
end of the lattice, and then move in through the other end of the
lattice. In order to study the effect of the collision, we hope to
build a virtual lattice with the same length N = 451, in which
the sound modes do not interact with each other, however.

To this end, we have simulated a longer lattice with length
N = 901. The dashed lines in Fig. 3 stand for its energy profile
p901(i,t). In the whole time range t � 300, the sound modes do
not arrive at the lattice boundaries i = ±450 and thus p901(i,t)
tells us how the energy is distributed if the sound modes do not
meet and collide. The dashed lines overlap the solid symbols
very well when t < τcol(451) because in both the long and
short lattices the sounds have not met. The next step is easy; we
simply imagine that in the long lattice the energy that moves
out through i = 225 moves back through i = −225, and vice
versa. Namely, p′

451(−225,t) ≡ p901(−225,t) + p901(226,t),
p′

451(−224,t) ≡ p901(−224,t) + p901(227,t), and so on.
Based on this we are able to predict the energy profile in the
virtual lattice with a short length N = 451, p′

451(i,t) from the

012110-3



LEI WANG, LUBO XU, AND HUIZHU ZHAO PHYSICAL REVIEW E 91, 012110 (2015)

FIG. 3. (Color online) The energy diffusion profile in the real
lattice p451(i,t) (solid blue symbols) and in the virtual lattice p′

451(i,t)
(open red symbols). p(t) and p′(t) always overlap with each other
very well, both before and after the time of collision τcol(451) ≈ 180.
It is hard to distinguish them by eye. The two vertical dotted lines
indicate the boundaries of the lattice with N = 451.

energy profile in the real lattice with a longer length N = 901,
p901(i,t).

The comparison of the energy diffusion profiles in the real
lattice p451(i,t) and in the virtual one p′

451(i,t) at various time
points is plotted in Figs. 3(a) to 3(d). The collision between the
sound modes happens at about t ≈ 180, i.e., the time points
100 and 150 are before the collision while the other two time
points are after the collision. In all cases the discrepancy
between p451(i,t) and p′

451(i,t) is so small that we are not
able to distinguish it from statistical fluctuation by eye. The
effect of the collision between the sound modes is negligible
indeed. After such a collision, no phase shift can even be
observed. Compared with solitons, which undergo phase shifts
after collisions, the sound modes in this 1D lattice act more
like phonons rather than solitons [24].

In order to measure the small difference between p451(i,t)
and p′

451(i,t) quantitatively, we have calculated their root mean
square deviation (RMSD),

σ (t) ≡
√

1

N

∑
i

[p(i,t) − p′(i,t)]2. (12)

It is observed in Fig. 4 that σ (t) always stays very small, and
even more importantly (1) at the time of collision, t ≈ 180,
which is indicated by the vertical dashed line, nothing unusual
happens; and (2) σ (t) for t > 180 is not evidently greater than
that for t < 180. Those observations indicate strongly that
the collisions between the sound modes affect the diffusion
profile only very slightly. As a consequence, the heat-current
correlation function is not affected noticeably, just as we have
observed in Fig. 2. The relatively large values of σ (t) at the
early time can be understood by the fact that at those times
p and p′ are both concentrated on the central particles, and
therefore the very small relative deviation between them can
contribute largely to σ (t).

Since the CCL is not mainly induced by the collision of the
sound modes, it should be largely attributed to the interaction

FIG. 4. The root mean square deviation σ (t) between p451(t) and
p′

451(t). We do not observe anything unusual happens at the time point
τcol(451).

between the tails of the central peak. It has been presented
that the decay of this peak satisfies the following rescaling law
very well: p(x,μt) ≈ μ−γ p(μ−γ x,t) [25,26], where γ ≈ 0.6.
Interestingly the relative heat-current correlation loss λN (τ )
depends on the time lag τ with a quite similar power exponent
0.58; see Eq. (9). More studies are necessary to understand
their physical relation.

III. DISCUSSION

In summary, we have studied the heat-current correlation
function and energy diffusion process in a 1D purely quartic
lattice, and found that the collisions between the sound modes
affect the energy distribution only negligibly. Consequently,
their contribution to the heat-current correlation loss �cN (τ )
is hardly noticeable. This finding allows us to calculate the
correlation functions in a very long time-lag τ range with
desirable accuracy by simulating a relatively much smaller
system, and thus greatly broadens the application of the Green-
Kubo method.

Based on this finding, we have confirmed, with a quite
high accuracy, that the heat-current correlation function c(τ )
in this 1D purely quartic lattice decays asymptotically as τ−0.6.
This agrees with some theoretical analyses [1,2] and also our
previous numerical simulation [14]. Since this model is the
high-nonlinearity limit of a series of 1D lattice models, it is
expected that the asymptotic decay power exponent is also the
same in those models.

The situation is probably different in the FPU-αβ lattice,
because the side peaks in that model are much bigger than
those in the purely quartic lattice, and they decay much more
slowly. The contribution of their collisions to the CCL might
be much more considerable. Furthermore, one needs to extend
the measure of correlation c(τ ) to a very large time lag τ in
order to see the asymptotic decay of c(τ ) [14,27–30].
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[3] C. Giardiná, R. Livi, A. Politi, and M. Vassalli, Phys. Rev. Lett.

84, 2144 (2000).
[4] O. V. Gendelman and A. V. Savin, Phys. Rev. Lett. 84, 2381

(2000).
[5] T. Prosen and D. K. Campbell, Phys. Rev. Lett. 84, 2857 (2000).
[6] O. Narayan and S. Ramaswamy, Phys. Rev. Lett. 89, 200601

(2002).
[7] T. Mai and O. Narayan, Phys. Rev. E 73, 061202 (2006).
[8] L. Delfini, S. Lepri, R. Livi, and A. Politi, Phys. Rev. E 73,

060201 (2006).
[9] S. Lepri, R. Livi, and A. Politi, Europhys. Lett. 43, 271 (1998).

[10] S. Lepri, R. Livi, and A. Politi, Phys. Rev. E 68, 067102
(2003).

[11] G. Basile, C. Bernardin, and S. Olla, Phys. Rev. Lett. 96, 204303
(2006); H. van Beijeren, ibid. 108, 180601 (2012).

[12] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II,
Springer Series in Solid State Sciences Vol. 31 (Springer, Berlin,
1991).

[13] J. R. Dormand, M. E. A. El-Mikkawy, and P. J. Prince, IMA J.
Numer. Anal. 7, 423 (1987); ,11, 297 (1991).

[14] L. Wang and T. Wang, Europhys. Lett. 93, 54002 (2011).
[15] S. Chen, Y. Zhang, J. Wang, and H. Zhao, Phys. Rev. E 89,

022111 (2014).
[16] L. Wang, B. Hu, and B. Li, Phys. Rev. E 86, 040101 (2012).
[17] L. Wang, D. He, and B. Hu, Phys. Rev. Lett. 105, 160601 (2010).

[18] L. Delfini, S. Lepri, R. Livi, and A. Politi, J. Stat. Mech.: Theory
Exp. (2007) P02007.

[19] B. Li, J. Wang, L. Wang, and G. Zhang, Chaos 15, 015121
(2005).

[20] S. Chen, Y. Zhang, J. Wang, and H. Zhao, Phys. Rev. E 87,
032153 (2013).

[21] C. B. Mendl and H. Spohn, Phys. Rev. Lett. 111, 230601 (2013);
H. Spohn, J. Stat. Phys. 154, 1191 (2014); S. G. Das, A. Dhar,
K. Saito, C. B. Mendl, and H. Spohn, Phys. Rev. E 90, 012124
(2014); C. B. Mendl and H. Spohn, ibid. 90, 012147 (2014).

[22] It has been proposed in Ref. [23] that the energy spatiotemporal
correlation function characterizes the diffusion processes much
more efficiently than does the direct diffusion simulation [19].
Therefore, what we have actually calculated are the energy
spatiotemporal correlations. Please refer to Refs. [23,20] for
detail.

[23] H. Zhao, Phys. Rev. Lett. 96, 140602 (2006).
[24] N. Li, B. Li, and S. Flach, Phys. Rev. Lett. 105, 054102 (2010).
[25] P. Cipriani, S. Denisov, and A. Politi, Phys. Rev. Lett. 94, 244301

(2005).
[26] V. Zaburdaev, S. Denisov, and P. Hänggi, Phys. Rev. Lett. 106,

180601 (2011).
[27] S. Chen, Y. Zhang, J. Wang, and H. Zhao, arXiv:1204.5933.
[28] L. Wang, B. Hu, and B. Li, Phys. Rev. E 88, 052112 (2013).
[29] S. G. Das, A. Dhar, and O. Narayan, J. Stat. Phys 154, 204

(2014).
[30] A. V. Savin and Y. A. Kosevich, Phys. Rev. E 89, 032102 (2014).

012110-5

http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1080/00018730802538522
http://dx.doi.org/10.1080/00018730802538522
http://dx.doi.org/10.1080/00018730802538522
http://dx.doi.org/10.1080/00018730802538522
http://dx.doi.org/10.1103/PhysRevLett.84.2144
http://dx.doi.org/10.1103/PhysRevLett.84.2144
http://dx.doi.org/10.1103/PhysRevLett.84.2144
http://dx.doi.org/10.1103/PhysRevLett.84.2144
http://dx.doi.org/10.1103/PhysRevLett.84.2381
http://dx.doi.org/10.1103/PhysRevLett.84.2381
http://dx.doi.org/10.1103/PhysRevLett.84.2381
http://dx.doi.org/10.1103/PhysRevLett.84.2381
http://dx.doi.org/10.1103/PhysRevLett.84.2857
http://dx.doi.org/10.1103/PhysRevLett.84.2857
http://dx.doi.org/10.1103/PhysRevLett.84.2857
http://dx.doi.org/10.1103/PhysRevLett.84.2857
http://dx.doi.org/10.1103/PhysRevLett.89.200601
http://dx.doi.org/10.1103/PhysRevLett.89.200601
http://dx.doi.org/10.1103/PhysRevLett.89.200601
http://dx.doi.org/10.1103/PhysRevLett.89.200601
http://dx.doi.org/10.1103/PhysRevE.73.061202
http://dx.doi.org/10.1103/PhysRevE.73.061202
http://dx.doi.org/10.1103/PhysRevE.73.061202
http://dx.doi.org/10.1103/PhysRevE.73.061202
http://dx.doi.org/10.1103/PhysRevE.73.060201
http://dx.doi.org/10.1103/PhysRevE.73.060201
http://dx.doi.org/10.1103/PhysRevE.73.060201
http://dx.doi.org/10.1103/PhysRevE.73.060201
http://dx.doi.org/10.1209/epl/i1998-00352-3
http://dx.doi.org/10.1209/epl/i1998-00352-3
http://dx.doi.org/10.1209/epl/i1998-00352-3
http://dx.doi.org/10.1209/epl/i1998-00352-3
http://dx.doi.org/10.1103/PhysRevE.68.067102
http://dx.doi.org/10.1103/PhysRevE.68.067102
http://dx.doi.org/10.1103/PhysRevE.68.067102
http://dx.doi.org/10.1103/PhysRevE.68.067102
http://dx.doi.org/10.1103/PhysRevLett.96.204303
http://dx.doi.org/10.1103/PhysRevLett.96.204303
http://dx.doi.org/10.1103/PhysRevLett.96.204303
http://dx.doi.org/10.1103/PhysRevLett.96.204303
http://dx.doi.org/10.1103/PhysRevLett.108.180601
http://dx.doi.org/10.1103/PhysRevLett.108.180601
http://dx.doi.org/10.1103/PhysRevLett.108.180601
http://dx.doi.org/10.1103/PhysRevLett.108.180601
http://dx.doi.org/10.1093/imanum/7.4.423
http://dx.doi.org/10.1093/imanum/7.4.423
http://dx.doi.org/10.1093/imanum/7.4.423
http://dx.doi.org/10.1093/imanum/7.4.423
http://dx.doi.org/10.1093/imanum/11.2.297
http://dx.doi.org/10.1093/imanum/11.2.297
http://dx.doi.org/10.1093/imanum/11.2.297
http://dx.doi.org/10.1209/0295-5075/93/54002
http://dx.doi.org/10.1209/0295-5075/93/54002
http://dx.doi.org/10.1209/0295-5075/93/54002
http://dx.doi.org/10.1209/0295-5075/93/54002
http://dx.doi.org/10.1103/PhysRevE.89.022111
http://dx.doi.org/10.1103/PhysRevE.89.022111
http://dx.doi.org/10.1103/PhysRevE.89.022111
http://dx.doi.org/10.1103/PhysRevE.89.022111
http://dx.doi.org/10.1103/PhysRevE.86.040101
http://dx.doi.org/10.1103/PhysRevE.86.040101
http://dx.doi.org/10.1103/PhysRevE.86.040101
http://dx.doi.org/10.1103/PhysRevE.86.040101
http://dx.doi.org/10.1103/PhysRevLett.105.160601
http://dx.doi.org/10.1103/PhysRevLett.105.160601
http://dx.doi.org/10.1103/PhysRevLett.105.160601
http://dx.doi.org/10.1103/PhysRevLett.105.160601
http://dx.doi.org/10.1088/1742-5468/2007/02/P02007
http://dx.doi.org/10.1088/1742-5468/2007/02/P02007
http://dx.doi.org/10.1088/1742-5468/2007/02/P02007
http://dx.doi.org/10.1063/1.1832791
http://dx.doi.org/10.1063/1.1832791
http://dx.doi.org/10.1063/1.1832791
http://dx.doi.org/10.1063/1.1832791
http://dx.doi.org/10.1103/PhysRevE.87.032153
http://dx.doi.org/10.1103/PhysRevE.87.032153
http://dx.doi.org/10.1103/PhysRevE.87.032153
http://dx.doi.org/10.1103/PhysRevE.87.032153
http://dx.doi.org/10.1103/PhysRevLett.111.230601
http://dx.doi.org/10.1103/PhysRevLett.111.230601
http://dx.doi.org/10.1103/PhysRevLett.111.230601
http://dx.doi.org/10.1103/PhysRevLett.111.230601
http://dx.doi.org/10.1007/s10955-014-0933-y
http://dx.doi.org/10.1007/s10955-014-0933-y
http://dx.doi.org/10.1007/s10955-014-0933-y
http://dx.doi.org/10.1007/s10955-014-0933-y
http://dx.doi.org/10.1103/PhysRevE.90.012124
http://dx.doi.org/10.1103/PhysRevE.90.012124
http://dx.doi.org/10.1103/PhysRevE.90.012124
http://dx.doi.org/10.1103/PhysRevE.90.012124
http://dx.doi.org/10.1103/PhysRevE.90.012147
http://dx.doi.org/10.1103/PhysRevE.90.012147
http://dx.doi.org/10.1103/PhysRevE.90.012147
http://dx.doi.org/10.1103/PhysRevE.90.012147
http://dx.doi.org/10.1103/PhysRevLett.96.140602
http://dx.doi.org/10.1103/PhysRevLett.96.140602
http://dx.doi.org/10.1103/PhysRevLett.96.140602
http://dx.doi.org/10.1103/PhysRevLett.96.140602
http://dx.doi.org/10.1103/PhysRevLett.105.054102
http://dx.doi.org/10.1103/PhysRevLett.105.054102
http://dx.doi.org/10.1103/PhysRevLett.105.054102
http://dx.doi.org/10.1103/PhysRevLett.105.054102
http://dx.doi.org/10.1103/PhysRevLett.94.244301
http://dx.doi.org/10.1103/PhysRevLett.94.244301
http://dx.doi.org/10.1103/PhysRevLett.94.244301
http://dx.doi.org/10.1103/PhysRevLett.94.244301
http://dx.doi.org/10.1103/PhysRevLett.106.180601
http://dx.doi.org/10.1103/PhysRevLett.106.180601
http://dx.doi.org/10.1103/PhysRevLett.106.180601
http://dx.doi.org/10.1103/PhysRevLett.106.180601
http://arxiv.org/abs/arXiv:1204.5933
http://dx.doi.org/10.1103/PhysRevE.88.052112
http://dx.doi.org/10.1103/PhysRevE.88.052112
http://dx.doi.org/10.1103/PhysRevE.88.052112
http://dx.doi.org/10.1103/PhysRevE.88.052112
http://dx.doi.org/10.1007/s10955-013-0871-0
http://dx.doi.org/10.1007/s10955-013-0871-0
http://dx.doi.org/10.1007/s10955-013-0871-0
http://dx.doi.org/10.1007/s10955-013-0871-0
http://dx.doi.org/10.1103/PhysRevE.89.032102
http://dx.doi.org/10.1103/PhysRevE.89.032102
http://dx.doi.org/10.1103/PhysRevE.89.032102
http://dx.doi.org/10.1103/PhysRevE.89.032102



