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Two-dimensional Ising transition through a technique from two-state opinion-dynamics models
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The Ising ferromagnetic model on a square lattice is revisited using the Galam unifying frame (GUF), set
to investigate two-state opinion-dynamics models. When combined with Metropolis dynamics, an unexpected
intermediate “dis/order” regime is found with the coexistence of two attractors associated, respectively, to an
ordered and a disordered phases. The basin of attraction of initial conditions for the disordered phase attractor
starts from zero size at a first critical temperature Tc1 to embody the total landscape of initial conditions at a
second critical temperature Tc2, with Tc1 ≈ 1.59 and Tc2 ≈ 2.11 in J/kB units. It appears that Tc2 is close to the
Onsager result Tc ≈ 2.27. The transition, which is first-order-like, exhibits a vertical jump to the disorder phase
at Tc2, reminiscent of the rather abrupt vanishing of the corresponding Onsager second-order transition. However,
using Glauber dynamics combined with GUF does not yield the intermediate phase and instead the expected
classical mean-field transition is recovered at Tc ≈ 3.09. Accordingly, although the “dis/order” regime produced
by the GUF-Metropolis combination is not physical, it is an intriguing result to be understood. In particular
the fact that Glauber and Metropolis dynamics yield so different results using GUF needs an explanation. The
possibility of extending GUF to larger clusters is discussed.
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I. INTRODUCTION

The Ising model is a seminal model of statistical physics,
which has inspired thousands of scientific papers [1,2]. In
particular, the two-dimensional nearest-neighbor square lattice
ferromagnetic Ising model is a cornerstone to the under-
standing of collective phenomena being the unique case to
exhibit a second-order phase transition with an exact analytical
solution [3]. All its properties are considered to be known.
However, investigating the two-dimensional nearest-neighbor
ferromagnetic Ising model through a technique from two-
state opinion-dynamics models, is found to raise intriguing
questions, yet in lack of an explanation.

Indeed, applying Galam unifying frame (GUF), set to
embody most discrete two-state models of opinion dynam-
ics [4], combined with Metropolis dynamics for the probability
of a single spin flip [5,6], reveals an unexpected twofold
order-disorder Ising transition. The transition is no longer at
once from the ordered state into the disordered state but instead
goes through an intermediate phase denoted “dis/order” phase,
for which two attractors exist, each one being associated
to a different basin of attraction of initial conditions. Their
respective sizes are a function of the temperature.

The basin of initial conditions to the disordered phase starts
from zero size at a first critical temperature Tc1 ≈ 1.59 to
end up embodying the total landscape of initial conditions
at a second critical temperature Tc2 ≈ 2.11. Temperature
values are given in J/kB units where J is the positive
coupling constant and kB the Boltzmann constant. To make
the presentation lighter from now on we take J/kB = 1.
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For the Ising system, noting p the proportion of spins in
state +1 and (1 − p) the proportion of spins in state −1, three
different regimes are obtained for the dynamics as a function
of temperature.

(i) Starting at T = 0 the phase diagram contains two
attractors, p− = 0 and p+ = 1, with a separator, pc = 1

2 .
Increasing temperature moves the two attractors toward the
separator with p− > 0 and p+ < 1.

(ii) Then, at a temperature Tc1 the separator pc = 1
2 turns

to an attractor as expected for the continuous order-disorder
Ising transition. However, while in the classical scheme, the
change of status from separator to attractor is turned on
by the simultaneous merging of the two attractors p− and
p+ at pc = 1

2 , here an opposite process occurs. Two new
symmetrical separators, pc− < 1

2 and pc+ = 1 − pc− > 1
2 , are

expelled from pc = 1
2 , when its status shifts from separator to

attractor. That is an unexpected process. As shown in Fig. 2,
three attractors and two separators are found in the range
Tc1 < T < Tc2 where only two attractors and one separator
are expected.

(iii) Keeping on increasing the temperature, on each side of
the attractor pc = 1

2 , the attractor p− (p+) and the new sepa-
rator pc− (pc+) move toward each other to eventually coalesce
at a second critical temperature Tc2 and then disappear. In the
range T > Tc2 only the attractor pc = 1

2 exists and corresponds
to the disordered phase. In addition, it happens that Tc2 ≈ 2.11
is very close to the Onsager exact result Tc ≈ 2.27. Moreover,
the transition being first-order-like, it exhibits a vertical jump
to the disorder phase at Tc2, which is reminiscent of the rather
abrupt vanishing of the corresponding Onsager magnetization
at the second-order transition.

However, and in contrast, performing the same calculations
as above using Glauber dynamics combined to GUF instead
of Metropolis dynamics, restores the expected phase diagram
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with one continuous transition from the ordered phase into the
disordered phase at Tc ≈ 3.09 against Tc = 4 for the classical
mean-field counterpart. It is worth noting that the formula
obtained for Tc ≈ 3.09 using Glauber dynamics is identical to
the one obtained by Mamada and Takamo [7], although the
associated polynomial equations have different coefficients.

Accordingly, although the “dis/order” regime produced
by the GUF-Metropolis combination is not physical, its
finding is an intriguing result to be understood theoretically.
Moreover, the fact that Glauber and Metropolis dynamics yield
such different results using GUF needs an explanation. The
possibility of extending GUF to larger clusters is also briefly
discussed.

II. WHAT IS GUF?

Among the numerous applications of the Ising model, a
large number has been devoted to study opinion dynamics
within the field of sociophysics [8], where two opinions are
competing among agents experiencing some local interactions.
However, up to today there exist no established first principles
that we are aware of to settle the selection of the local update
rule, which monitors the dynamics of opinion changes among
agents, making each peculiar ad hoc choice the seed of a
“new” model. Accordingly a large number of models have
been proposed in the literature leading to some confusion on
identifying which actual social mechanisms are behind the
making of a collective opinion [9–14].

To address the above difficulty, a unifying frame was
shown to embody most of the discrete binary models [4],
showing that the actual update rule is not the relevant feature
of those models. It thus happens that many different settings
of interactions among agents leads to the same phase diagram.
The unifying frame basic principle is usually referred to
in the literature as the Galam unifying frame or Galam
model [15–19]. Another proposal of opinion dynamics first
principles was also suggested recently [20].

Given a number of interacting agents, GUF enumerates all
possible corresponding groupings of agents. Then an update
of individual states is applied for each group according to the
specificity of the interactions. Then all agents are randomly
reshuffled to obtain a new distribution within the same setting
of local groups. The process is repeated until an equilibrium
state is obtained. A general sequential probabilistic frame is
thus built from which a phase diagram can be constructed.

For two-state variables two phases are found, one where
the collective opinion is broken along one opinion, thus
stabilizing it as the majority, which can eventually coexist
with a minority (ordered phase), and another phase with a
balanced coexistence of both opinions (disordered phase). Two
different regimes, monotonic and dampened oscillatory, are
found for the coexistence phase. At the phase transition, local
probabilities conserve the density of opinions and reproduce
the collective dynamics of the Voter model.

More precisely, consider a population of N two-state agents
(Si = ±1) with i = 1, . . . ,N and some local update rule that
involves a number r of agents. Given at time t a proportion
p(t) of agents in state Si = +1 and [1 − p(t)] in state Si = −1
the dynamics is implemented in three successive steps:

(i) all agents are randomly distributed in distinct groups of
size r ,

(ii) the update rule is applied separately within each group,
(iii) all agents are reshuffled,

which are then iterated a certain number of times.
To implement above steps all possible configurations of

agents in a group of size r are enumerated. Within each group
the number v of agents in state Si = +1 can vary from v = 0
up to v = r . For each value v there exist Cv

r ≡ r!
v!(r−v)! different

configurations denoted, respectively, t with t = 1, . . . ,Cv
r .

For each configuration t the specific update rule denoted
T r

vt→wt
yields a number wt of agents in state Si = +1 with

0 � wt � r . Therefore, the probability to have a group of
r agents with v agents in state Si = +1 and (r − v) agents
in state Si = −1 ending with w ≡ ∑Cv

r

t=1 wt agents in state
Si = +1 and (r − w) agents in state Si = −1 writes,

Cv
r∑

t=1

p(t)v[1 − p(t)]r−vT r
vt→wt

. (1)

Summing from v = 0 up to v = r yields the new proportion
p(t + 1) of agents in state Si = +1 starting from p(t) after one
cycle of update with,

p(t + 1) =
r∑

v=0

p(t)v[1 − p(t)]r−v

Cv
r∑

t=1

T r
vt→wt

wt

r
, (2)

where wt

r
accounts for the contribution to the Si = +1 state

from the updated group.
In addition, the topology of the network may involve groups

of different sizes r for the update. Denoting ar the proportion
of groups of size r and L the size of the larger group involved,
we have the constraint,

L∑
r=1

ar = 1, (3)

which allows us to generalize Eq. (2) to obtain,

p(t + 1) =
L∑

r=1

ar

r∑
v=0

p(t)v[1 − p(t)]r−v

Cv
r∑

t=1

T r
vt→wt

wt

r
,

(4)

However, in case T r
vt→wt

is a probability distribution T r
vt→wt,z

yielding Z different values wt,z (0 � wt,z � r), Eq. (4)
becomes

p(t + 1) =
L∑

r=1

ar

r∑
v=0

p(t)v[1−p(t)]r−v

×
Cv

r∑
t=1

Z∑
z=1

T r
vt→wt,z

wt,z

r
, (5)

with
∑Z

z=1 T r
vt→wt,z

= 1, which is the general GUF update
equation.

After the first update, items (i) and (ii), agents are reshuffled,
item (iii). Then above scheme is repeated redistributing the
agents randomly among the various groups to be updated
again. A new proportion of p(t + 2) of agents in state Si = +1
is thus obtained from p(t + 1) using Eq. (5). The same process
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is iterated a number k of times till a fixed point is reached where
no change occurs with p(t + k) = p(t + k + 1). Indeed, to
build the complete flow diagram of the dynamics, the fixed
point equation p(t) = p(t) is solved to extract the separators
and attractors of the dynamics.

Using Eq. (4) allows us to recover all existing discrete
two-state models [11,21–29], which are shown to depart from
each other only in the setting of their local rule T r

v→w, which
nevertheless leads to the same attractors. Accordingly, one
cannot conclude on the validity of the psychosociological
assumptions used in a model as a function of the validity
of its results since what matters is the symmetry of the update
rule and not the corresponding values of the local probabilities
of shift.

At this stage it is worth emphasizing that GUF requires
neither the use of thermodynamics nor the knowledge of a
Hamiltonian. Only the update rule is required making GUF
a robust scheme to implement to any kind of problem. Such
a feature prompts us to apply it to the classical 2D Ising model.

III. APPLYING GUF TO THE ISING MODEL

A. The 2D Ising model

With no external field, the Hamiltonian for the square lattice
ferromagnetic Ising system is given by

H = −J

2

∑
[ij ]

σiσv, (6)

where [ij ] a sum over all nearest neighbors i and j and σi =
±1. The associated magnetization is M = 1

N

∑N
i σi = 2p −

1, where N is the total number of spins.
The problem has been solved exactly with Tc =

2/arcsinh(1) ≈ 2.27. In contrast, the classical mean-field
approach yields Tc = 4.

However, in higher dimensions or with an external field,
Monte Carlo (MC) simulations are required. They are im-
plemented using a dynamics that respects detailed balance.
The most common ones are the Glauber and Metropolis
dynamics [5,6]. In the Glauber dynamics, all spins are
investigated in a sequential manner for each MC step. Given a
spin σi in a configuration μi with energy Eμi

, the flip σi → −σi

creates the new configuration ηi with energy Eηi
= −Eμi

. The
actual flip is implemented with the probability

Gμi→ηi
= 1

1 + exp(−2Eμi
/kBT )

. (7)

In the Metropolis scheme, the spin is selected randomly and a
MC step corresponds to N updates. The flip probability to the
new configuration is given by

Mμi→ηi
= min{1, exp[2Eμi

/kBT ]}. (8)

B. GUF update equation

Applying GUF to the classical nearest-neighbor ferromag-
netic Ising model on a square lattice requires to use only groups
of size r = 5 since each spin update involves its four nearest
neighbors. Therefore, the associated polynomial development

FIG. 1. (Color online) Configurations with three spins (+) and
two spins (−). The associated C3

5 = 10 configurations split in two
subgroups with respect to the update, one with six configurations
t+ ≡ t1, . . . ,t6 having a central spin (+) (upper left part) and one
with four configurations t− ≡ t7, . . . ,t10 having a central spin (−)
(lower left part). In each case, right side shows the corresponding
configurations with the central spin shifted (upper part) and the central
spin unchanged (lower part).

for the update function is of degree 5 yielding for Eq. (5),

p(t + 1) =
5∑

v=0

p(t)v[1 − p(t)]5−v

Cv
5∑

t=1

5∑
wt=0

T 5
vt→wt

wt

5
, (9)

where going from time t to time t + 1 corresponds to one
MC step. However, here, only the central spin is updated with
a probability given by either Glauber or Metropolis schemes
(Z = 2) keeping the other four spins unchanged.

For instance, in the case r = 5 and v = 3 the associated
C3

5 = 10 configurations split in two subgroups with respect to
the update, one with six configurations t+ ≡ t1, . . . ,t6 having
a central spin (+) (upper part of Fig. 1) and one with four
configurations t− ≡ t7, . . . ,t10 having a central spin (−) (lower
part of Fig. 1).

When the central spin is flipped the associated energies
changes are, respectively, Eμ = 0 → Eη = 0 (upper part) and
Eμ = 2J → Eη = −2J (lower part). Writing b ≡ e−4/T and
noticing that wt+,1 = 2 and wt+,2 = 3, the Glauber associated
transition rates are T 5

3→2 = T 5
3→3 = 1/2 for both + → − and

+ → + (upper part). For the lower part wt−,1 = 4 and wt+,2 =
3 T 5

3→4 = 1
1+b

for − → + and T 5
3→3 = b

1+b
for − → +.

For the same cases of Fig. 1 using Metropolis the upper part
leads to T 5

3→2 = 1 for + → − and T 5
3→3 = 0 for + → +. For

the lower part T 5
3→4 =1 for − → + and T 5

3→3 =0 for − → +.
Accordingly, rescaling with the respective values of wt/5,
Glauber contributions from the r = 5 and v = 3 to the σi = +1
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proportion are 6 × ( 1
2 × 2

5 + 1
2 × 3

5 ) + 4 × ( 1
1+b

× 4
5 + b

1+b
×

3
5 ), yielding

31 + 27b

5(1 + b)
p3(1 − p)2, (10)

Similarly, Metropolis yields 6 × (1 × 2
5 + 0 × 3

5 ) + 4 × (1 ×
4
5 + 0 × 3

5 ), with

28

5
p3(1 − p)2. (11)

Repeating above calculations for all values of v and w from
0 to 5 and using the up-down symmetry yields for Eq. (9) leads
for Metropolis,

pM = 1
5 [(5 − b2)p5 + (21 − 4b)p4(1 − p)

+ 28p3(1 − p)2 + 22p2(1 − p)3

+ 4(1 + b)p(1 − p)4 + b2(1 − p)5], (12)

while Glauber produces,

pG = 1

5

[
5 + 4b2

1 + b2
p5 +

(
5 + 4b2

1 + b2
+ 16 + 12b

1 + b

)
p4(1 − p)

+ p3(1 − p)2 31 + 27b

1 + b
+ p2(1 − p)3

(
19 + 23b

1 + b

)

+
(

20 + 21b2

1 + b2
− 16 + 12b

1 + b

)
p(1 − p)4

+ b2

1 + b2
(1 − p)5

]
. (13)

While Eq. (13) seems to be more complicated than Eq. (12),
expanding it in powers of p exhibits a reduction of the
polynomial degree from 5 down to 3, with

pG = (−2p3+3p2)(1−b)3 + 4p(1 + 2b + b3) + b2(1 + b)

5(1 + b)(1 + b2)
,

(14)

which is not the case for Metropolis.

IV. UNCOVERING A TWOFOLD TRANSITION

To investigate the dynamics and phase transitions produced
by Eqs. (12) and (14) we need to solve the fixed-point equation
p(t + 1) = p(t) for each case. The attractors correspond to
the equilibrium states while the separator determines the flow
direction when implementing the dynamical update.

A. GUF-Metropolis

From pM = p we get always the solution pc = 1/2 with
3 different regimes. One with pc = 1/2 being the unique
attractor. The second and third ones have, respectively, two
and four symmetrical solutions beyond and below p = 1/2 as
shown in Fig. 2. In the second case pc = 1/2 is a separator

FIG. 2. (Color online) Landscape of the attractors and separators
as a function of temperature. The first top corresponds to T = 0 with
two attractors p=0, p+ = 1, and a separator pc = 1/2. Second from
top corresponds to 0 � T < Tc1 ≈ 1.59: same as before with p− � 0
and p+ � 1. Third from top: at T = Tc1 the separator is about to turn
into an attractor giving rise to two symmetrical moving separators
on each side. Third from bottom: for Tc1 < T < Tc2 three attractors
p−, p+, pc separated by two the separators pc−, pc+. Second from
bottom: at T = Tc2 the two separators pc− and pc+ coalesce with the
two attractors p−, p+ to suppress them. Bottom: only one attractor at
pc = 1/2 for T > Tc2 ≈ 2.11, which is close to the exact result 2.27.

while it is an attractor in the third case. More precisely, above

bc2 = 1

5

[
1 − 16

(
2

15
√

249 − 27

) 1
3

+
(

2

3

) 2
3

(5
√

249 − 9)
1
3

]

≈ 0.150, (15)

we observe only the zero-magnetization solution p = 1/2.
However, below bc2 , in the region defined by 0 � b � bc1 with

bc1 = 1
5 (

√
41 − 6) ≈ 0.081, (16)

we have two solutions for p given by

p± = 1

2C
[C ±

√
C2 − 4C(D − E)], (17)

where C ≡ (2b2 − 8b + 6), D ≡ (3b2 − 4b + 1) and E ≡√
5b4 − 8b3 + 10b2 − 8b + 1. These solutions are attractors.

They start from the values p− = 0 and p+ = 1 at b = 0
and move toward pc = 1/2, which behaves as a separator.
However, they do not reach the zero magnetization as b → bc2 .
Instead, they meet another pair of solutions,

pc± = 1

2C
[C ±

√
C2 − 4C(D + E)], (18)

which exist only in the interval

bc1 � b � bc2 . (19)
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FIG. 3. (Color online) The variation of all the five GUF fixed
points as a function of b = exp(−4/T ) using Metropolis dynamics.
The arrows show the flow direction while iterating the local updates.
Dark solid lines correspond to attractors, i.e., p+,p− and pc for b �
bc1. Dashed lines are separators, i.e., pc+,pc− and pc for b < bc1.

As soon as those two solutions pc± appear, they behave as
separators and move toward pc = 1/2, which turns at once to
an attractor. The values bc1 and bc2 yield the critical temper-
atures of Tc1 ≈ 1.59 and Tc2 ≈ 2.11 using T ≡ −4/ ln b. In
addition, the fact that for b < bc2 , pc = 1/2 is no longer the
only solution, could be interpreted as the signature of the actual
phase transition occurring at Tc2 . This hypothesis provides a
much better estimate for the critical temperature than that of
mean-field theory, since the correct value is Tc ≈ 2.27. Notice
that Tc1 ≈ 1.59 had been previously observed for another
attempt of estimating the critical temperature in the context
of the GUF framework [30], however missing the existence
of Tc2 .

The series of diagrams of Fig. 2 shows the moving
landscape of attractors and separators as a function of varying
the temperature. Two attractors p− = 0 and p+ = 1 with a
separator pc = 1

2 are found at T = 0 as expected. Increasing
temperature the two attractors move toward the separator
with p− > 0 and p+ < 1 also as expected. However, at a
temperature Tc1 ≈ 1.59 the separator turns to an attractor
pc = 1

2 with the simultaneous appearance of two new sym-
metrical separators pc− < 1

2 and pc+ = 1 − pc− > 1
2 . That is

an unexpected result.
Increasing still the temperature, on each side of the attractor

pc = 1
2 , the attractor and the new separator move toward each

other to eventually coalesce at Tc1 ≈ 2.11 and then disappear.
At T > Tc2 only the attractor pc = 1

2 exists.
Figure 3 shows the variation of all five fixed points as a

function of b = exp− 4
T . The arrows show the flow direction

while iterating the local updates. Dark solid lines correspond
to attractors, i.e., p+,p− and pc for b � bc1. Dashed lines are
separators, i.e., pc+,pc− and pc for b < bc1

Figures 4 and 5 show the two kinds of dynamics obtained
to describe the Metropolis-driven GUF Ising transition. In the
first case, Fig. 4 shows the known twofold regimes typical of
the Ising transition. At b = 0.05 < bc1 all initial configurations
end up at an ordered phase with either a positive (p0 > 0.50) or
negative (p0 < 0.50) magnetization, while for b = 0.16 > bc2

all initial configurations end up at the disordered phase with
zero magnetization.

FIG. 4. (Color online) Variation of p under 300 successive it-
erations of update rule pG using Eq. (12) for initial condition
p0 = 0.10 + n 0.025 with n = 0,1,2,...,32. Upper part exhibits the
dynamics to the ordered phase at temperature b = 0.05 < bc1. Any
initial condition leads to the same nonzero value of the magnetiza-
tion: p0 > 1/2 (p0 < 1/2) → positive (negative) magnetization. At
contrast, in lower part at b = 0.16 > bc2 any initial condition leads to
zero magnetization. Both cases correspond to the usual ordered and
disordered Ising phases. The number of iterations are labeled along
the abscise.

However, the second case exhibits an unexpected dynamics
as shown in Fig. 5. At b = 0.10 and b = 0.13, the equilibrium
state at a fixed temperature depends on the initial conditions.
Depending on p0, two possible states are reached, one with a
nonzero magnetization and one with zero magnetization.

B. GUF-Glauber

We now repeat the above calculations using the Glauber
scheme [Eq. (7)] instead of Metropolis [Eq. (8)]. From Eq. (14)
solving pG = p yields only three solutions, pc = 1/2 and

p± = 1

2S

(
S ± (−1 + b)

3
2

√
T

)
, (20)

where S ≡ −1 + 3b − 3b2 + b3 and T ≡ −1 + 3b + b2 +
5b3. The separators pc± obtained in the preceding subsection
do not exist any longer making the phase diagram shown
in Fig. 6 very different from the one from Fig. 2. Indeed,
it is more like what is expected for the two-dimensional
nearest-neighbor ferromagnetic Ising model with a single
order-disorder transition.

012108-5
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FIG. 5. (Color online) Variation of p under 30 successive itera-
tions of update rule pG using Eq. (12) for p0 = 0.10 + n 0.025 with
n = 0,1,2,...,32 at b = 0.10 (upper part) and b = 0.13 (lower part).
Both cases satisfy bc1 < 0.10,0.13 < bc2 and show that at the same
fixed temperature, depending on the initial condition, i.e., the value
of p0, the dynamics leads to either the same nonzero value of the
magnetization or zero magnetization, which is in total contradiction
to what is expected for the second-order Ising transition as exhibited
in Fig. 4. The number of iterations are labeled along the abscise.

FIG. 6. (Color online) Landscape of the attractors and separators
as a function of temperature. The top corresponds to T = 0 with
two attractors p=0, p+ = 1 and a separator pc = 1/2. Second from
top corresponds to 0 � T < Tc ≈ 3.09: same as before with p− � 0
and p+ � 1. Third from top: at T = Tc, p− and p+ merge with the
separator pc, which in turn becomes an attractor. Bottom: only one
attractor at pc = 1/2 for T > Tc.

The associated critical temperature is obtained when p+ =
p− = pc = 1/2 yielding bc ≈ 0.274, which gives Tc ≈ 3.09,
whose value is in between the mean-field result Tc = 4 and the
exact result Tc ≈ 2.27.

Interestingly, this result is identical to an approximation
obtained by Mamada and Tamako [7]. Using a mean-field
treatment, the authors calculate a self-consistent equation for
the magnetization 〈σi〉, adding an average over the distribution
of the field exerted by the four nearest neighbors on the
central single spin. The distribution is thus determined by the
possible configurations obtained with four spins (σi = ±1).
For each one, the associated density matrix ρ(σi = ±1)
reduces to the probability of having ±1 with ρ(σi = +1) = p

and ρ(σi = −1) = (1 − p). From 〈σi〉 = 2p − 1 their self-
consistent equation [7] rewrites

p = (−2p3 + 3p2)(1 − b)3 − 4pb(b − 1) + b2(1 + b)

(1 + b)(1 + b2)
.

(21)

On the above basis, Mamada and Tamako calculate the
associated dynamics using Glauber and recover the same
critical temperature as obtained from Eq. (21).

It is worth noting that Eq. (21) is a self-content equation
p = f (p), while Eq. (14) is a dynamical equation pG ≡ p(t +
1) = g{p(t)}. Comparing the right-hand side of both equations
shows that they differ only from the coefficient of p and a
division by 5 for the latter. And it happens that

−4b(b − 1)p − (1 + b)(1 + b2)p

= 4(1 + 2b + b3)p − 5(1 + b)(1 + b2)p, (22)

which explains why both approaches yields the same fixed
points.

At this point GUF combined to Glauber becomes quasi-
identical to the Mamada and Tamako approach but turns very
different when combined with Metropolis. This puzzling fact
has yet to find an explanation.

C. GUF-Glauber-Onsager-MF

To compare the results obtained with, respectively,
Metropolis and Glauber, associated attractor and separator
curves are exhibited in Fig. 7 as a function of temperature
via the variable b in abscise together with the Onsager exact
solution for the magnetization [31],

mO = (1 − sinh(2/T )−4)
1
8 , (23)

where 2/T = −1/(2 ln b) and the mean-field formula

mMF = tanh

(
4mMF

T

)
, (24)

using p = (m + 1)/2 with M, G, O, MF, denoting, respec-
tively, Metropolis, Glauber, Onsager, and mean field. Five
critical values bc are obtained with labels (1, 2) for Metropolis,
label (3) for Onsager, label (4) for Glauber, and label (5) for
mean field.

From Fig. 7 it is worth to notice that Metropolis yields a
first-order like transition with two critical temperatures bc1 ≈
0.081 and bc2 ≈ 0.150. However, some discrepancies with
a regular first-order transition exist since here. Accordingly,
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FIG. 7. (Color online) Landscape of the attractors and separators
for p as a function of temperature via the variable b = exp(−4/T )
in the abscise with Metropolis (M), Glauber (G), Onsager (O), and
mean field (MF). Solid lines represent attractors while dashed lines
are separators. However, the line pc = 1/2 is a separator for M, G,
O, and MF only when b < bc1 (1). For bc1(1) < b < bc2(2), pc is an
attractor for M and a separator for O, G, and MF. However, for M other
attractors coexist. When bc2(2) < b < bc(3), pc is the unique attractor
for M and still a separator for O, G, and MF. For bc(3) < b < bc(4),
pc is an attractor for M, O, but still a separator for G, MF. When
bc(4) < b < bc(5), pc is an attractor for M, O, G, but still a separator
for MF. Only when b > bc(5), pc = 1/2 is the unique attractor
for M, O, G, and MF. We have bc1 ≈ 0.081, bc2 ≈ 0.150, bc(3) ≈
0.171, bc(4) ≈ 0.274, bc(5) ≈ 0.368 yielding, respectively, Tc1 ≈
1.59, Tc2 ≈ 2.11, Tc(3) ≈ 2.27, Tc(4) ≈ 3.09, Tc(5) = 4.

we do not use the Maxwell construction since GUF does not
involve the energy. Therefore, we cannot state that we have a
first-order transition but only that the various attractors obey a
first-order-like transition.

Moreover, while for a first-order transition, within the range
of metastability, the system has a nonzero probability to get
trapped into the metastable state as well as the complementary
probability to get into the absolute minimum, here given the
initial condition, i.e., the value of p0, the system reaches either
the ordered or the disordered phase with certainty. Given a
fixed temperature, within some fixed range of temperature,
although two attractors exist, they do not coexist. The outcome
is not probabilistic. Each attractor has a well-defined basin of
attraction depending on the value p0 between 0 and 1 as shown
in Figs. 3 and 4.

It turns out that critical temperature bc2 ≈ 0.150 is close
to Onsager exact result bc(3) ≈ 0.171, in addition to exhibit a
vertical jump to the disorder phase at bc2, reminiscent of the
rather abrupt vanishing of the corresponding Onsager second-
order transition. On the other hand, Glauber is more like MF
with an improvement in the value of the critical temperature
at bc(4) ≈ 0.274 instead of bc(5) ≈ 0.368 for mean field.

Solid lines represent attractors while dashed lines are
separators. However, the line pc = 1/2 is a separator for M, G,
O, and MF only when b < bc1 (1). For bc1(1) < b < bc2 (2),
pc is an attractor for M and a separator for O, G, and MF. But
for M other attractors coexist. When bc2(2) < b < bc(3), pc is
the unique attractor for M and still a separator for O, G, and
MF. For bc(3) < b < bc(4), pc is an attractor for M, O, but still

a separator for G, MF. When bc(4) < b < bc(5), pc is an at-
tractor for M, O, G, but still a separator for MF. Only when b >

bc(5), pc = 1/2 is the unique attractor for M, O, G, and MF.
We have bc1 ≈ 0.081, bc2 ≈ 0.150, bc(3) ≈ 0.171, bc(4) ≈
0.274, bc(5) ≈ 0.368 yielding, respectively, Tc1 ≈ 1.59, Tc2 ≈
2.11, Tc(3) ≈ 2.27, Tc(4) ≈ 3.09, Tc(5) = 4.

V. DISCUSSION

A coherent and complete picture about the effect of various
approximations on departing from the exact treatment of the
2D Ising model is shown in Fig. 7 with, respectively, GUF-
Metropolis, GUF-Glauber, Onsager, and mean field.

Metropolis leads to an unexpected intermediate “dis/order”
regime between the ordered and disordered phases, turning
first-order like the associated transition. It happens that
the corresponding critical temperature Tc2 ≈ 2.11 is rather
accurate with respect to the exact Onsager value Tc ≈ 2.27.
In addition, the transition exhibits a vertical jump to the
disorder phase reminiscent of the rather abrupt vanishing
of the corresponding Onsager second-order transition. Ac-
cordingly, although the “dis/order” regime produced by the
GUF-Metropolis combination is not physical, it is an intriguing
result worth understanding.

In contrast, combining Glauber dynamics to GUF restores
the usual mean-field-like Ising single transition at Tc ≈ 3.09,
which asks the question as to why Glauber and Metropolis
dynamics lead to different equilibrium states when combined
with GUF in the case of the 2D Ising model.

Therefore, GUF needs more investigation to understand its
nature and find the origin of those discrepancies with both
the classical mean field and the exact result. The question
has been evoked in a series of works [16,30,32–34]. One
promising direction is to extend the cluster size to which GUF
has been applied. Instead of a cluster of five spins limited
to the nearest neighbors, it should be interesting to consider
both the inclusion of next-nearest neighbors with a nine-spin
cluster and also the extension to 3D with a seven-spin cluster,
noticing that the respective topologies are instrumental in the
calculation of the various GUF coefficients.

Detailed balance is a general principle for systems in
thermodynamic equilibrium within Boltzmann statistics. Both
Metropolis and Glauber update rules obey detailed balance and
yield the equilibrium state when implemented in Monte Carlo
simulations. However, when these updated rules are applied
with GUF our results show that there exists no guarantee to
reach the equilibrium state.

At this stage, the puzzle is twofold: why GUF-metropolis
yields an intermediate nonphysical regime and why Metropolis
and Glauber combined with GUF yield different physics for
the same system while both update schemes are not supposed
to produce different physical results?
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