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Asymptotic behavior of the isotropic-nematic and nematic-columnar phase boundaries
for the system of hard rectangles on a square lattice
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A system of hard rectangles of size m × mk on a square lattice undergoes three entropy-driven phase transitions
with increasing density for large-enough aspect ratio k: first from a low-density isotropic to an intermediate-density
nematic phase, second from the nematic to a columnar phase, and third from the columnar to a high-density
sublattice phase. In this paper we show, from extensive Monte Carlo simulations of systems with m = 1,2, and 3,
that the transition density for the isotropic-nematic transition is ≈ A1/k when k � 1, where A1 is independent
of m. We estimate A1 = 4.80 ± 0.05. Within a Bethe approximation and virial expansion truncated at the second
virial coefficient, we obtain A1 = 2. The critical density for the nematic-columnar transition when m = 2 is
numerically shown to tend to a value less than the full packing density as k−1 when k → ∞. We find that the
critical Binder cumulant for this transition is nonuniversal and decreases as k−1 for k � 1. However, the transition
is shown to be in the Ising universality class.
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I. INTRODUCTION

Hard-core lattice gas models of particles interacting only
through excluded volume interaction continue to be of interest
in statistical physics. They are minimal models to study
entropy-driven phase transitions, have direct realizations in
adsorption of gas particles on metal surfaces [1–6], and are
closely related to the freezing transition [7,8], directed and
undirected animals [9–11], and the Yang-Lee singularity [12].
Systems of differently shaped particles on different lattices
have been studied both analytically and numerically. Examples
include squares [13–18], hexagons [19,20], dimers with near-
est neighbor exclusion [21], triangles [22], tetrominoes [23],
rods [24,25], rectangles [26], lattice models for disks [27,28],
and mixtures [29].

In this paper, we focus on the system of hard rectangles
of size m × mk on the square lattice, where each rectangle
occupies m sites along the short axis and mk sites along
the long axis, where k is the aspect ratio and m, k are
integers. In recent times, there has been renewed interest in
this problem when, even though both the low-density and
the maximal-density phases are known to be disordered [30],
the existence of a nematic phase for the hard-rod (m = 1)
system was convincingly demonstrated in simulations for
k � 7 [24] and thereafter proven rigorously for k � 1 [31].
The maximal-density phase being disordered implies the
existence of a second entropy-driven transition with in-
creasing density. This has been established in simulations
using an algorithm that involves cluster moves [25]. The
first transition from the isotropic phase to the nematic
phase has been shown to be in the Ising universality
class numerically in two dimensions [32,33] and through
an exact solution in large dimensions. [34]. However, the
universality class of the second transition from the nematic
phase to the high-density disordered phase is not that
clear [25,35]. Though the numerically obtained exponents
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differ from those of the Ising model, it is not possible
to rule out a crossover to Ising exponents at larger length
scales [25].

The phase diagram for rectangles with m > 1 is even richer
and was recently determined using Monte Carlo simulations
for m = 2,3 and k � 7 and generalized to larger m,k using
arguments based on estimates of entropy for the different
phases [26]. When the aspect ratio k = 1 and m � 2, the model
reduces to the well-studied hard-square model which under-
goes a single density-driven transition from from a low-density
isotropic phase to a high-density columnar phase [14,18]. The
transition is continuous for m = 2 [17,27,36] and first order for
m = 3 [27]. For k � 7 and m � 2, with increasing density, the
system transits successively from isotropic (I) to nematic (N)
to columnar (C) to solidlike sublattice (S) phases (see Sec. II
for a precise define of the phases). When k < 7, the N phase is
absent. For 2 � k < 7 when m � 3, and for 4 � k < 7 when
m = 2, the system undergoes two transitions with increasing
density: first from the I phase to the C phase and, second, from
the C phase to the S phase. The C phase does not exist for
k = 2,3 when m = 2, and the system makes a direct transition
from the I phase to the S phase. A detailed study of the nature
of the transitions may be found in Ref. [26].

In this paper, we focus on the asymptotic behavior of the
isotropic-nematic (I-N) and nematic-columnar (N-C) phase
boundaries for large aspect ratio k. It was heuristically argued
in Ref. [26] that the limit k → ∞, keeping m fixed, should
correspond to the limit of oriented lines in the continuum,
and thus the critical density should be independent of m. For
this limiting case in three dimensions, the virial expansion
truncated at the second virial coefficient becomes exact and
the critical density for the I-N transition ρI−N

c ≈ A1k
−1

[37–39]. A1 for oriented long rectangles in the two-
dimensional continuum can be directly estimated by simu-
lating oriented lines of length �, for which it is straightforward
to show that the critical number density ≈ A1�

−2. From the
simulations of this system with � = 1, it can be inferred that
A1 ≈ 4.84 [33]. For m = 1, by simulating systems with k up
to 12 on the lattice, it has been shown that ρI−N

c ∝ k−1 [40].
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From the value of the critical density for k = 10 [40], it can be
estimated that A1 ≈ 5.02, which differs from that for oriented
lines [33]. There are no such similar studies for m > 1.

For the N-C transition, the limit k → ∞, keeping m

fixed, corresponds to asking whether oriented long rectangles
in the continuum exhibit a C phase. The N-C transition
has been studied using a Bethe approximation that predicts
the critical density to be ρN−C

c ≈ A2(m) + A3(m)k−1 when
k → ∞, where A2(m) � 1 [26]. These results are consistent
with those obtained from truncated high-activity expan-
sions [41]. The approximations being ad hoc, it is important to
have numerical confirmation of these results, but none exists.
The other limit m → ∞, keeping k fixed, corresponds to the
continuum problem of oriented rectangles of aspect ratio k, a
model that was introduced and studied by Zwanzig using virial
expansion [38]. This limit is difficult to study numerically on
the square lattice.

In this paper, by simulating systems of rectangles with
aspect ratio k up to 60 (for m = 1), and k = 56 (for m = 2
and 3), we show that ρI−N

c is proportional to k−1 for m = 1,2,
and 3. Within numerical error, A1 is shown to be independent
of m and equal to 4.80 ± 0.05. To understand better the
limit of large k, we study the I-N transition using a Bethe
approximation, and a virial expansion truncated at the second
virial coefficient. The critical density ρI−N

c is obtained for
all m and k. When k is large, both the theories predict
that ρI−N

c ≈ A1/k, where A1 = 2. In particular, we find that
within the virial expansion truncated at the second virial
coefficient, ρI−N

c is independent of m, for all k. For the N-C
transition, we numerically determine ρN−C

c for m = 2 and k

up to 24. We show that for large k, ρN−C
c ≈ 0.73 + 0.23k−1,

consistent with the calculations in Ref. [26]. This shows that
a system of oriented rectangles with large aspect ratio in
the two-dimensional continuum should exhibit both nematic
and columnar phases. In addition, we find that the Binder
cumulant at the N-C transition is surprisingly dependent on
k and decreases as k−1 with increasing k. However, we
show that the transition remains in the Ising universality
class.

The rest of the paper is organized as follows. Section II
contains a definition of the model, a brief description of
the Monte Carlo algorithm, and a definition of the phases
and the relevant thermodynamic quantities of interest. In
Sec. III, we present the numerical results for the I-N transition
for m = 1,2, and 3. In Sec. IV, we numerically determine
the asymptotic behavior of the N-C phase boundary for
m = 2 and large k. The Binder cumulant is shown to be
nonuniversal, though exponents continue to be universal.
Section V contains calculations of the I-N phase boundary
using an ad hoc Bethe approximation and a truncated virial
expansion. Section VI contains a summary and discussion of
results.

II. MODEL AND DEFINITIONS

We consider a system of monodispersed hard rectangles of
size m × mk on a square lattice of size L × L, with periodic
boundary conditions. Each rectangle occupies m sites along
the short axis and mk sites along the long axis, such that k

is the aspect ratio. A rectangle is called horizontal or vertical

depending on whether the long axis is along the x axis or y

axis. No two rectangles may overlap, or, equivalently, a lattice
site may be occupied by utmost one rectangle. We associate
an activity z = eμ to each rectangle, where μ is the chemical
potential.

We simulate the system in the constant μ grand-canonical
ensemble using an efficient algorithm that involves cluster
moves. The implementation of the algorithm for the system
of hard rectangles is described in detail in Ref. [26]. Here
we briefly review the algorithm. Starting with an arbitrary
configuration of rectangles, a row (or a column) is chosen at
random. First, all the horizontal (vertical) rectangles whose
bottom left corners are on that row (column) are evaporated,
keeping the remaining rectangles as they are. The row (column)
now consists of intervals of empty sites, separated by sites
which are either already occupied by rectangles or cannot
be occupied due to the hard-core constraint. Next, the empty
intervals of the row (column) are refilled by deposition of hor-
izontal (vertical) rectangles with the correct equilibrium grand
canonical probabilities. The calculation of these probabilities
reduces to a solvable one-dimensional problem. In addition
to the evaporation-deposition move, we also implement a flip
move. In this move, a site is picked up at random. If the
chosen site is occupied by the head of a horizontal (vertical)
rectangle, we look for a square plaquette of size mk × mk

consisting of k aligned horizontal (vertical) rectangles. If
such a plaquette exists, it is replaced by a similar plaquette
of k vertical (horizontal) rectangles. One Monte Carlo move
corresponds to 2L evaporation-deposition and L2 plaquette
flip moves. The algorithm has been shown to be very useful
in equilibrating hard-core systems of extended particles at
high densities. Other implementations of the algorithm include
lattice models of hard rods [25,42] and hard disks [28] and
mixtures of dimers and hard squares [29].

The data presented in the paper corresponds to systems
with aspect ratio up to 60 and system sizes up to L = 1680. In
the simulations, we ensured equilibration by confirming that
the final state is independent of the initial configuration. The
system is typically equilibrated for 107 Monte Carlo steps, and
the measurement is broken into 10 statistically independent
blocks, each of size 107 Monte Carlo steps.

The system of hard rectangles may exist in one of the
four different phases: isotropic (I), nematic (N), columnar
(C), and sublattice (S) [26]. In the low-density I phase
the system neither possess orientational order nor positional
order. The N phase breaks the orientational symmetry by
preferring a particular orientation, either horizontal or vertical.
However, the N phase has no positional order. In the C
phase, along with orientational order, the system possesses
partial positional order in the direction perpendicular to the
preferred orientation. In the C phase of 2 × 2k rectangles,
if most of the rectangles are horizontal (vertical), then the
heads (bottom left corner) of the rectangles mostly occupy
either even or odd rows (columns). The high-density S
phase has positional order along both horizontal and vertical
directions, but no orientational order. In this phase the
heads of the rectangles preferentially occupy one of m2

sublattices [26].
We now define the order parameters and relevant thermody-

namic quantities used to study the I-N and the N-C transitions.
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For the I-N transition, we define a order parameter

Q1 = 〈|Nh − Nv|〉
〈Nh + Nv〉 , (1)

where Nh and Nv are the number of horizontal and vertical
rectangles respectively. Q1 is zero in the I phase and nonzero
in the N and C phases. For the N-C transition, we define
an order parameter only for m = 2 as our simulations are
restricted to this value of m. Generalization to larger m is
straightforward [26]. Let

Q2 = 〈||Nre − Nro| − |Nce − Nco||〉
〈Nh + Nv〉 , (2)

where Nre (Nro) is the number of rectangles whose heads are in
the even (odd) rows, and Nce (Nco) is the number of rectangles
whose heads are in the even (odd) columns. In the I and N
phases, Nre ≈ Nro, and Nce ≈ Nco, and hence Q2 is zero. In
the C phase, either Nre 	= Nro and Nce ≈ Nco, or Nre ≈ Nro

and Nce 	= Nco, such that Q2 is nonzero.
The second moment of the order parameter χi and the

Binder cumulant Ui are defined as

χi = 〈
Q2

i

〉
L2, (3a)

Ui = 1 −
〈
Q4

i

〉
3
〈
Q2

i

〉2 , (3b)

where i = 1,2. The thermodynamic quantities become sin-
gular at the transition. Let ε = (μ − μc)/μc, where μc is
the critical chemical potential. The singular behavior is
characterized by the critical exponents β, γ , ν defined by
Qi ∼ (−ε)β , ε < 0, χi ∼ |ε|−γ , and ξi ∼ |ε|−ν , where ξi is
the correlation length, |ε| → 0, and i = 1,2. The critical
exponents may be obtained numerically through finite-size
scaling near the critical point:

Ui � fu(εL1/ν), (4a)

Qi � L−β/νfq(εL1/ν), (4b)

χi � Lγ/νfχ (εL1/ν), (4c)

where fu, fq , and fχ are scaling functions.

III. ASYMPTOTIC BEHAVIOR OF THE
ISOTROPIC-NEMATIC PHASE BOUNDARY:

NUMERICAL STUDY

In this section we investigate the asymptotic behavior of
the I-N phase boundary for m = 1, 2, and 3 by numerical
simulations and show that ρI−N

c = A1k
−1 when k � 1, where

A1 is independent of m. Since there are two symmetric N
phases (horizontal and vertical), the I-N transition for the
system of hard rectangles is continuous and belongs to the
Ising universality class for all m [26]. We determine the critical
density ρI−N

c from the point of intersection of the curves of
Binder cumulant with density for different system sizes. A
typical example is shown in Fig. 1, where the variation of
U1 with density ρ is shown for three different system sizes
when m = 1 and k = 32. The Binder cumulant data are fitted
to a cubic spline to obtain a smooth and continuous curve for
each L. This allows us to determine the point of intersection
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U
1

ρ

L=320

L=480

L=640
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FIG. 1. (Color online) The variation of the Binder cumulant U1

with density ρ for three different system sizes. The lines are cubic
splines, fitted to the data. The value of U at ρ = ρc is ≈ 0.61. The
data are for m = 1 and k = 32.

or ρI−N
c more accurately. In the example shown in Fig. 1,

the curves for Binder cumulants for three different system
sizes crosses at ρ = ρI−N

c ≈ 0.152 and the value of the critical
Binder cumulant Uc

1 ≈ 0.61. We find Uc
1 ≈ 0.61 for all values

of m and k that we have studied, consistent with the value for
the two-dimensional Ising model [43].

We simulate systems with aspect ratio up to k = 60 for
m = 1 and k = 56 for m = 2 and 3. The critical density ρI−N

c

obtained from the Binder cumulants are shown in Fig. 2. The
data are clearly linear in k−1 for large k, confirming that
ρI−N

c = A1k
−1, k � 1. In addition, the data for m = 1,2,3

asymptotically lie on the same straight line, showing that A1

is independent of m. We estimate A1 = 4.80 ± 0.05.

IV. ASYMPTOTIC BEHAVIOR OF THE
NEMATIC-COLUMNAR PHASE BOUNDARY:

NUMERICAL STUDY

In this section, we numerically study the N-C phase
transition for m = 2 and determine the asymptotic behavior

 0

 0.1

 0.2

 0.3

 0.4

 0  0.02  0.04  0.06  0.08

ρ c
I-

N

1/k
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FIG. 2. (Color online) The variation of the critical density for the
I-N transition ρI−N

c with k−1 for m = 1,2, and 3. The straight line is
4.80k−1.
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FIG. 3. (Color online) The variation of the critical density for the
N-C transition ρN−C

c with k−1 for m = 2. The straight line is a linear
fit to the data: 0.727 + 0.226k−1.

of the critical density ρN−C
c for large k. When m = 2, the N-C

transition belongs to the Ising universality class for all k and
the corresponding critical densities are determined from the
intersection of Binder cumulant curves for different system
sizes as discussed in Sec. III.

The critical density ρN−C
c decreases to a constant with

increasing k (see Fig. 3). We obtain ρN−C
c ≈ 0.727 +

0.226k−1, k � 1 when m = 2. These results are in qualitative
agreement with the predictions of the Bethe approximation:
ρN−C

c ≈ A2(m) + B2(m)k−1, for k � 1. Within the Bethe
approximation A2 ≈ 0.59 and B2 ≈ 0.15 for m = 2 [26]. As
ρN−C

c asymptotically approaches a constant value, it becomes
increasingly difficult to get reliable data for large k.

Surprisingly, we find that the value of the critical Binder
cumulant at the N-C transition point depends on the aspect ratio
k. When m = 2, the critical Binder cumulant Uc

2 decreases
monotonically as a power law with k, from 0.50 when k = 7 to
0.18 when k = 24 (see Fig. 4). The data is fitted best with Uc

2 ≈
4.45k−1. Usually, for the Ising universality class, the value
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FIG. 4. (Color online) The variation of the critical Binder cumu-
lant Uc

2 at the N-C transition with k−1. The straight line 4.446k−1 is
a linear fit to the data. The data are for m = 2.

 0

 0.2

 0.4

 0.6

 0.8  0.9  1  1.1  1.2  1.3

U
2

μ L0/ν

L=364
L=520
L=728

 0

 0.2

 0.4

 0.6

-1  0  1  2  3  4  5

U
2

ln |ε L1/ν|

L=364
L=520
L=728

 0.4

 0.8

 1.2

 1.6

-1  0  1  2  3  4  5

Q
2 L

β/
ν

ln |ε L1/ν|

L=364
L=520
L=728

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1  0  1  2  3  4  5

χ 2
 L

-γ
/ν

ln |ε L1/ν|

L=364
L=520
L=728

(a) (b)

(c) (d)

FIG. 5. (Color online) The critical behavior near the N-C transi-
tion for rectangles of size 2 × 26 (k = 13). (a) The data for Binder
cumulant for different system sizes intersect at μc ≈ 1.00. The data
for different L near the N-C transition for (b) Binder cumulant,
(c) order parameter, and (d) second moment of the order parameter
collapse onto a single curve when scaled as in Eq. (4) with the Ising
exponents β/ν = 1/8, γ /ν = 7/4, and ν = 1.

critical Binder cumulant at the transition point is expected
to be universal (≈0.61). However, there are a few examples
of systems that exhibit such nonuniversal behavior [43–45].
These include the anisotropic Ising model where the critical
Binder cumulant depends on the ratio of the coupling constants
along the x and y directions [44], and the isotropic Ising model
on rectangular lattice, where the critical Binder cumulant is a
function of the aspect ratio of the underlying lattice [43]. In
the latter case, Uc

2 ≈ 2.46α−1, where α is the aspect ratio of
the lattice [43]. Thus, nominally, k ≈ 1.8α.

Although Uc
2 varies with k, we confirm that the critical

exponents for the N-C transition remains the same as those
of the two-dimensional Ising model. To do so, we determine
the critical exponents for the system with m = 2 and k =
13 using finite-size scaling. For this example, critical Binder
cumulant is ≈0.35, noticeably differs from that for the Ising
universality class. The data for the Binder cumulant U2 for
different system sizes intersect at μc ≈ 1.00 [see Fig. 5(a)].
We find that the data for U2, Q2, and χ2 for different system
sizes collapse onto a single curve when scaled as in Eq. (4)
with Ising exponents β/ν = 1/8, γ /ν = 7/4, and ν = 1 [see
Fig. 5(b)–5(d)]. We thus conclude that, though the critical
Binder cumulant is nonuniversal, the transition is in the Ising
universality class.

V. ESTIMATION OF THE I-N PHASE BOUNDARY
USING ANALYTICAL METHODS

In this section we obtain the asymptotic behavior of the
isotropic-nematic phase boundary for large k using analytical
methods. In the absence of an exact solution, we present
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two approximate calculations: first, a Bethe approximation
and, second, a virial expansion truncated at the second virial
coefficient.

A. Bethe approximation

The Bethe approximation becomes exact on treelike lat-
tices. For m = 1, the model was solved exactly on the four-
coordinated random locally treelike layered lattice (RLTL)
to obtain ρI−N

c = 2/(k − 1) [34] or A1 = 2. The RLTL also
allows an exact solution to be obtained for more complicated
systems like repulsive rods [35]. However, a convenient
formulation of the problem of hard rectangles on the RLTL is
lacking. Therefore, we resort to an ad hoc Bethe approximation
introduced by DiMarzio to estimate the entropy of hard
rods on a cubic lattice [46] and later used for studying the
statistics of hard rods on different lattices [40,47,48]. However,
a straightforward extension of this method to a system of
rectangles suffers from the enumeration result depending on
the order in which the rectangles are placed. A scheme that
overcomes this shortcoming was suggested in Ref. [49] and
was implemented by us to study the N-C transition [26]. Here,
we adapt the calculations to study the I-N transition.

The I-N phase boundary can be determined if the entropy
as a function of the densities of the horizontal and vertical
rectangles is known. We estimate the entropy by computing
the number of ways of placing Nx horizontal and Ny vertical
rectangles on the lattice.

First, we place the horizontal rectangles on the lattice one by
one. Given that jx horizontal rectangles have been placed, the
number of ways of placing the (jx + 1)th horizontal rectangle
may be estimated as follows. The head of the rectangle may
be placed in one of the (M − m2kjx) empty sites, where M

is the total number of lattice sites. We denote this site by A

(see Fig. 6). For this new configuration to be valid, all sites in
the m × mk rectangle with head at A should be empty. Given
A is empty, we divide the remaining (m2k − 1) sites in three
groups: (mk − 1) sites along the line AB, (m − 1) sites along
the line AC, and the remaining (m − 1)(mk − 1) sites (D is
an example). Let Px(B|A) be the conditional probability that
B is empty given that A is empty. Then the probability that
(mk − 1) sites along the line AB are empty is [Px(B|A)]mk−1,

A B

C D

FIG. 6. Schematic of a square lattice showing the position of the
sites A-B to explain the calculation of the isotropic-nematic phase
boundary.

where the subscript x denotes the direction AB. In writing
this, we ignore all correlations beyond the nearest neighbor.
Likewise, the probability that (m − 1) sites along the line AC

are empty is given by [Py(C|A)]m−1, where Py(C|A) is the
conditional probability that C is empty given A is empty.
Let P (D|B ∩ C) denote the conditional probability that D is
empty given that B and C are both empty. Then the probability
that the remaining (m − 1)(mk − 1) sites are empty may be
approximated by [P (D|B ∩ C)](m−1)(mk−1). Collecting these
different terms together, we obtain the number of ways to
place the (jx + 1)th horizontal rectangle

νjx+1 = (M − m2kjx) × [Px(B|A)]mk−1[Py(C|A)]m−1

× [P (D|B ∩ C)](m−1)(mk−1). (5)

It is not possible to determine these conditional probabilities
exactly. However, they may be estimated by assuming that the
rectangles are placed randomly. Given A is empty, either B

might be empty or occupied by a horizontal rectangle (as no
vertical rectangles have been placed yet) in m ways. Thus,
given A is empty, the probability that B is also empty, is

Px(B|A) = M − m2kjx

M − m2kjx + mjx

. (6)

Similarly, if A is empty, C might be empty or it might be
occupied by any of the mk sites on the longer axis (passing
through C) of a horizontal rectangle. Thus the probability that
C is empty, given A empty is given by

Py(C|A) = M − m2kjx

M − m2kjx + mkjx

. (7)

Next we estimate P (D|B ∩ C). If we follow a similar
approach to calculate P (D|B ∩ C), the resultant entropy
becomes dependent on the order of placement of the horizontal
and vertical rectangles and thus asymmetric with respect to Nx

and Ny . To overcome this shortcoming, we follow the Bethe
approximation proposed in Ref. [49] and assume

P (D|B ∩ C) ≈ Px(C|D)Py(B|D)

Pxy(C|B)
, (8)

where

Pxy(B|C) = M − m2kjx

M − m(m − 1)kjx + (m − 1)jx

, (9)

is the probability that C is empty given B is empty. It can be
easily seen that

Px(C|D) = Px(B|A), (10a)

Py(B|D) = Py(C|A). (10b)

As all the horizontal rectangles are indistinguishable, the
total number of ways to place Nx of them is

�x = 1

Nx!

Nx−1∏
jx=0

νjx+1. (11)

012105-5



JOYJIT KUNDU AND R. RAJESH PHYSICAL REVIEW E 91, 012105 (2015)

Substituting Eqs. (6)–(10) into Eq. (5), we obtain νjx+1. �x is given by

�x = 1

Nx!

Nx−1∏
jx=0

[M − m2kjx]m
2k[M − (m − 1)(mk − 1)jx](m−1)(mk−1)

[M − m(mk − 1)jx]m(mk−1)[M − mk(m − 1)jx]mk(m−1)
. (12)

After placing Nx horizontal rectangles we would like to
determine the number of ways in which Ny vertical rectangles
may be placed on the lattice. Given Nx horizontal rectangles
and jy vertical rectangles have already been placed, we
estimate νjy+1, the number of ways to place the (jy + 1)th

vertical rectangle, using the same procedure as above. Now,
we may choose an empty site A (see Fig. 6) randomly in
(M − m2kNx − m2kjy) ways to place the head of the (jy + 1)th

vertical rectangle. As the vertical rectangles have their longer
axis along y direction, it can be easily seen that

νjy+1 = (M − m2kNx − m2kjy)[Py(C|A)]mk−1

× [Px(B|A)]m−1[P (D|B ∩ C)](m−1)(mk−1). (13)

The expressions for the conditional probabilities will now
be modified due to the presence of both horizontal and vertical
rectangles. If A is empty, C may be empty or occupied by
one of the mk sites on the long axis (passing through C) of a

horizontal rectangle or by one of the m sites on the short axis
(passing through C) of a vertical rectangle. Hence, given A is
empty, the probability that C is also empty is

Py(C|A) = M − m2kNx − m2kjy

M − mk(m − 1)Nx − m(mk − 1)jy

. (14)

Similarly, the probability of B being empty, given A is empty,
is

Px(B|A) = M − m2kNx − m2kjy

M − m(mk − 1)Nx − mk(m − 1)jy

. (15)

Now the probability that B is empty, given C is empty, is

Pxy(B|C) = M − m2kNx − m2kjy

M − (mk − 1)(m − 1)(Nx + jy)
. (16)

P (D|B ∩ C) is determined using Eqs. (8) and (10). Substitut-
ing Eqs. (14)–(16) into Eq. (13), we obtain νjy+1. The total
number of ways to place Ny vertical rectangles, given that Nx

horizontal rectangles have already been placed, is then

�y = 1

Ny!

Ny−1∏
jy=0

νjy+1 = 1

Ny!

Ny−1∏
jy=0

[M − m2k(Nx + jy)]m
2k

[M − m(mk − 1)Nx + mk(m − 1)jy]mk(m−1)

× [M − (m − 1)(mk − 1)Nx − (m − 1)(mk − 1)jy](m−1)(mk−1)

[M − mk(m − 1)Nx − m(mk − 1)jy]m(mk−1)
. (17)

The total number of ways to place Nx horizontal and Ny vertical rectangles on the lattice is given by

� = �x�y. (18)

Let ρx and ρy be the fraction of the sites occupied by the horizontal and the vertical rectangles, given by

ρi = m2kNi

M
, i = x,y. (19)

Using Eqs. (12) and (17), the entropy of the system per site in the thermodynamic limit may be expressed in terms of ρx and ρy

as

s(ρx,ρy) = lim
M→∞

1

M
ln(�x�y)

= −
∑
i=x,y

ρi

m2k
ln

ρi

m2k
− [1 − ρ] ln[1 − ρ] −

[
1 − (m − 1)(mk − 1)

m2k
ρ

]
ln

[
1 − (m − 1)(mk − 1)

m2k
ρ

]

+
∑
i=x,y

[
1 − (mk − 1)

mk
ρ + (k − 1)

mk
ρi

]
ln

[
1 − (mk − 1)

mk
ρ + (k − 1)

mk
ρi

]
, (20)

where ρ = ρx + ρy is the fraction of occupied sites.
The entropy s(ρx,ρy) is not concave everywhere. The true

entropy s̄(ρx,ρy) is obtained by the Maxwell construction such
that

s̄(ρx,ρy) = CE[s(ρx,ρy)], (21)

where CE denotes the concave envelope.

The entropy may also be expressed in terms of the total
density ρ = ρx + ρy and the nematic order parameter ψ ,
defined as

ψ = ρx − ρy

ρ
. (22)
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FIG. 7. (Color online) Entropy s as a function of the nematic
order parameter ψ near the I-N transition (ρI−N

c ≈ 0.552). The data
are for k = 4 and m = 2. The dotted line denotes the concave envelope

ψ is zero in the isotropic phase and nonzero in the nematic
phase. At a fixed density ρ, the preferred phase is obtained
by maximizing s(ψ) with respect to ψ . The transition density
for the I-N transition is denoted by ρI−N

c . In Fig. 7 we show
the plot of entropy s(ψ) as a function of ψ , for three different
densities near the I-N transition. For ρ < ρI−N

c the entropy
s(ψ) is maximum at ψ = 0 i.e., ρx = ρy , corresponding to
the isotropic phase. Beyond ρI−N

c the entropy develops two
symmetric maxima at ψ = ±ψ0, where ψ0 = 0 at ρ = ρI−N

c .
ψ0 	= 0 i.e., ρx 	= ρy corresponds to the nematic phase. The
order parameter ψ grows continuously with density ρ. This
is a typical signature of a continuous transition with two
equivalent broken symmetry phases. The entropy s(ρ,ψ) is
invariant under the transformation ψ ↔ −ψ and contains only
even powers of ψ , when expanded about ψ = 0. The critical
density ρI−N

c may be obtained by solving d2s/dψ2|ψ=0 = 0
and is given by

ρI−N
c = 2km

mk2 + m − k − 1
. (23)

Asymptotic behavior of ρI−N
c is given by

ρI−N
c =

{
2
k

+ 2
mk2 + O(k−3), k → ∞, m fixed,

2k
1+k2 + 2k(1+k)

(1+k2)2m
+ O(m−2), m → ∞, k fixed.

(24)

Thus, A1 = 2.
When m = 1, the critical density ρI−N

c = 2/(k − 1), which
matches with the exact calculation of ρI−N

c for the system
of hard rods of length k on the RLTL [34]. It reflects that
the Bethe approximations becomes exact on the RLTL. For
m = 1, the nematic phase and hence the I-N transition exists
for k � kmin = 4. While for m = 2 and 3, kmin = 3, for m � 4
the nematic phase exists even for k = 2.

B. Virial expansion

In this subsection we determine ρI−N
c using a standard

virial expansion truncated at the second virial coefficient. We
closely follow the calculations of Zwanzig for oriented hard

rectangles in the continuum [38]. The excess free energy of
the system of hard rectangles (relative to the ideal gas) may
be expressed in terms of the virial coefficients and the density.
We truncate the series at the second virial coefficient and study
the I-N transition in the limit k → ∞.

Consider a system of N rectangles on the square lattice
of volume V . Each rectangle may be oriented along two
possible directions. Setting β = 1, the configurational sum
of the system is given by

QN = 1

N !2N

∑
u

∑
R

exp(−UN ), (25)

where the sum over all possible positions and directions are
denoted by

∑
R and

∑
u, respectively, and UN is the total

interaction energy of all rectangles. The excess free energy
(relative to the ideal gas) φN of the system of rectangles having
fixed orientations is defined by

exp[−φN (u)] = 1

V N

∑
R

exp(−βUN ). (26)

As the rectangles having same orientation are indistinguish-
able, φN depends only on the fractions of the rectangles
pointing along the two possible directions. If the number of
rectangles oriented along direction i is denoted by Ni , we may
rewrite the Eq. (25) using Eq. (26) as

QN = V N

N !2N

N∑
N1,N2=0

N !

N1!N2!
e−φN (N1,N2)δN1+N2,N

=
N∑

N1=0

N∑
N2=0

W (N1,N2), (27)

where δN1+N2,N takes care of the constraint that the total
number of rectangles is N and W is given by

W (N1,N2) = V N

2NN1!N2!
exp[−φN (N1,N2)]. (28)

In the thermodynamic limit N → ∞ and V → ∞, the above
summation may be replaced by the largest summand Wmax

with negligible error. Thus the configurational free energy per
particle is given by

F = − lim
N,V →∞

1

N
ln QN = − lim

N,V →∞
1

N
Wmax. (29)

The fractions of rectangles pointing in the i direction is denoted
by xi = Ni/N , such that (x1 + x2) = 1, and the number
density of the rectangles is given by N/V = ρ/m2k, where
ρ is the total fraction of occupied sites. Equation (29) for the
free energy may be expressed in terms of x1 and x2 as

F (x1,x2) = −1 + ln 2 + ln
ρ

m2k
+

2∑
i=1

xi ln xi

+ 1

N
φN (ρ,x1,x2). (30)
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The virial expansion of the excess free energy φN , for a
composition x = (x1,x2) of the rectangles is given by

− 1

N
φN (ρ,x) =

∑
n=2

Bn(x)
( ρ

m2k

)n−1
, (31)

where

Bn(x) = 1

V n!

∫ ∑ ∏
f

= 1

V n!

n∑
j=0

(
n

j

)
x

n−j

1 x
j

2 B(n − j,j )

= 1

V

n∑
j=0

B(n − j,j )

(n − j )!j !
x

n−j

1 x
j

2 , (32)

where
∫ ∑∏

f is the standard abbreviation for the cluster
integrals over the irreducible graphs consisting of n rectangles
with composition x and f denotes the Mayer functions, defined
as

f = exp(−U ) − 1, (33)

where U is the interaction energy. Due to the hard-core
exclusion, we have U = ∞ for any intersection or overlap
among the rectangles, otherwise U = 0. Hence

f =
{−1, for any intersection

0, otherwise (34)

B(n − j,j ) denotes the sum of the irreducible n-particle
graphs for the composition where (n − j ) rectangles are
oriented along the x direction and j rectangles are along the y

direction.
As the total fraction x1 + x2 = 1, we set

x1 = x,
(35)

x2 = 1 − x.

We consider up to the second virial coefficient and truncate the
expansion in Eq. (31) at first order in ρ. From the definition of
the virial coefficients in Eq. (32), we can easily infer that they
are symmetric in the following way:

B(n1,n2) = B(n2,n1). (36)

Using Eq. (32) and the above symmetry property of B(n1,n2),
we can rewrite Eq. (31) as

− 1

N
φN ≈ 1

2V
B(2,0)

( ρ

m2k

)
(2x2 − 2x + 1)

+ 1

V
B(1,1)

( ρ

m2k

)
(x − x2) + O(ρ2). (37)

Now we evaluate the virial coefficients. From Eq. (34) we
can see that f has nonzero contributions only when the rods
intersect. Thus the calculation of the virial coefficients on a
lattice turns out as the problem of counting the number of
disallowed configurations. By definition

B(2,0) = B(0,2) =
∫

d2R1

∫
d2R2 f12(2,0)

= −V × (2mk − 1) × (2m − 1), (38)

(a) (b)

FIG. 8. (Color online) Schematic diagram showing the orienta-
tions of two rectangles in the calculation of (a) B(2,0) and (b) B(1,1).

where (2mk − 1) × (2m − 1) is the number of disallowed
configurations when both the rectangles are oriented along
the same direction [see Fig. 8(a)]. Similarly,

B(1,1) =
∫

d2R1

∫
d2R2 f12(1,1)

= −V × (m + mk − 1)2, (39)

where (m + mk − 1)2 is the number of disallowed configu-
rations when the two rectangles are oriented along different
directions [see Fig. 8(b)].

Substituting Eqs. (38) and (39) into Eq. (37), we find

− 1

N
φN ≈ −1

2
(2x2 − 2x + 1)

( ρ

m2k

)
(2m − 1)(2mk − 1)

− (x − x2)
( ρ

m2k

)
(m + mk − 1)2 + O(ρ2). (40)

Now substituting Eq. (40) in Eq. (30), the expression for the
free energy reduces to

F (x) = −1 + ln 2 + ln
ρ

m2k
+ x ln x + (1 − x) ln(1 − x)

+ (x − x2)
( ρ

m2k

)
(m + mk − 1)2 +

(
x2 − x + 1

2

)

×
( ρ

m2k

)
(2m − 1)(2mk − 1) + O(ρ2). (41)

The preferred state at any fixed density is obtained by
minimizing the free energy F (x) with respect to x. For
ρ < ρI−N

c , F (x) is minimized for x = 1/2, corresponding to
the isotropic phase, and beyond ρI−N

c , F (x) is minimized for
x 	= 1/2, corresponding to the nematic phase. Thus the system
undergoes a transition from an isotropic phase to a nematic
phase with increasing density. The I-N transition is found to
be continuous with the critical density ρI−N

c .The expansion
of the free energy F (x) as a power series in x about x = 1/2
contains only even powers, and thus the critical density ρI−N

c

may be determined by solving

d2

dx2
F (x)|x= 1

2
= 0. (42)

By solving Eq. (42) for ρ, we find

ρI−N
c = 2k

(k − 1)2
, (43)

which independent of m for all k. The asymptotic behavior of
ρI−N

c is given by

ρI−N
c = 2

k
+ 4

k2
+ O(k−2), when k → ∞. (44)
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Comparing Eq. (24) and Eq. (44), we see that both the Bethe
approximation and the virial theory predicts ρI−N

c ≈ A1/k for
k � 1, where A1 = 2.

VI. SUMMARY AND DISCUSSION

For k � 7, the system of long, hard rectangles of size
m × mk on the square lattice undergoes three entropy-driven
phase transitions with density: first, from a low-density I
phase to an intermediate-density N phase; second, from the
N phase to a C phase; and, third, from the C phase to a
high-density S phase [26]. In this paper we study the I-N and
the N-C transition when k � 1. From extensive Monte Carlo
simulations of systems with m = 1, 2, and 3, we establish
that ρI−N

c ≈ A1/k, for k � 1, where A1 is independent of
m and is estimated to be 4.80 ± 0.05, the numerical value
being consistent with that obtained from simulation of oriented
lines [33]. The maximum value of k studied in the paper is 60,
earlier simulations having been restricted up to m = 1 and
k = 12 [40]. The I-N transition was also studied analytically
using an ad hoc Bethe approximation and a truncated virial
expansion. Both these theories support the numerical result
ρI−N

c ≈ A1/k, for k � 1, where A1 is independent of m.
Within both these theories, we obtain A1 = 2.

The Bethe approximation, while taking into account
nearest-neighbor correlations, ignores other correlations and
there appears to be no systematic way of improving the
calculations to obtain better estimates of A1. On the other hand,
the virial expansion truncated at the second virial coefficient is
known to become exact in three dimensions when k → ∞. But
in two dimensions, higher-order virial coefficients contributes
significantly. To confirm this, we computed the higher-order
virial coefficients. As B2 ∼ k2 [see Eqs. (39)], in the limit
k → ∞, B2 × ρ/k ∼ O(1). We can rewrite Eq. (31) as

− 1

N
φN (x) ≈ B2(x)

ρ

m2k
+ B3(x)

[B2(x)]2

[
B2(x)

ρ

m2k

]2

+ B4(x)

[B2(x)]3

[
B2(x)

ρ

m2k

]3
+ O(ρ4). (45)

When k � 1, it can be verified that B3 ∼ O(k3) and hence
B3/[B2]2 ∼ O(1/k). Quite interestingly, we find B4 ∼ O(k6)
and B4/[B2]3 ∼ O(1). Thus B4 will have non-negligible con-
tribution to ρI−N

c . In general, B2n ∼ O(k4n−2), implying all the
even virial coefficients will have non-negligible contributions.
Usually, the number of diagrams required to compute higher-
order virial coefficients increase rapidly with order. However,
here the number of diagrams are of order 1. Hence, it may be
possible to determine A1 exactly by taking into account all the
even virial coefficients.

We also numerically investigated the asymptotic behavior
of ρN−C

c for m = 2 and found ρN−C
c ≈ 0.73 + 0.23k−1 when

k � 1, which is in qualitative agreement with the prediction
of the Bethe approximation: ρN−C

c ≈ A2 + A3/k, for k � 1,
presented in Ref. [26]. For larger m, we expect the transition
to become first order; however, the asymptotic result is likely
to be qualitatively the same. Taking the limit k → ∞, keeping
m fixed, corresponds to a system of thin, long hard rectangles
in the continuum. Thus, we expect the N-C transition to persist
in continuum models.

Density-functional theory calculations for a system of
hard rectangles with restricted orientation in the continuum,
confined in a two-dimensional square nanocavity, predicts
that the system will exhibit nematic, smectic, columnar,
and solidlike phases, where the solidlike phase has both
orientational and complete positional order [50]. In contrast,
we do not find any evidence of smectic or solidlike phases
when m or k tend to ∞, the continuum limit. In particular, on
lattices the maximal density phase of a monodispersed system
does not have orientational order [24,30]. Though we have
considered only cases where the aspect ratio is an integer, most
of the results will be also be true for the case when the aspect
ratio is a rational number. In such a case, we expect that if
the length and width are mutually prime, then the maximal
density phase would be both spatially and orientationally
disordered (not a sublattice phase). In the continuum, the
aspect ratio could be irrational, too. In this case, it has been
conjectured that there could be more transitions at densities
close to 1 when the disordered phase will become unstable to a
nematic or columnar phase [24]. For these reasons, it would be
important to verify the phase diagram of hard rectangles with
restricted orientation in a two-dimensional continuum through
direct numerical simulations, similarly to the simulations for
rectangles with continuous orientation [51–54].

We showed that the critical Binder cumulant for the N-C
transition decreases as k−1 with increasing the aspect ratio k

of the rectangles. The critical Binder cumulant in the Ising
model on rectangular geometry decreases as α−1, where α is
the aspect ratio of the lattice [43]. Whether a mapping between
k and α exists is an open question. Curiously, the critical Binder
cumulant is zero when k → ∞ (or α → ∞). In the Ising
model, this has been interpreted as the absence of transition on
one-dimensional geometries [43]. However, the hard-rectangle
system shows a transition at k → ∞. It is possible that in this
limit, the fluctuations at the transition become Gaussian.

The critical density for the high-density C-S transition was
argued to be of the form 1 − a/(mk2) for k � 1, where a is
a constant [26]. However, we could not numerically verify
this claim as it becomes difficult to equilibrate the system at
densities close to 1 due to the presence of long-lived metastable
states. Thus, the Monte Carlo algorithm needs further improve-
ment. One possible direction is the modification suggested in
Ref. [29], where fully packed configurations are simulated
using transfer matrices.

The hard-rectangle model may be generalized in different
directions. Including attractive interaction results in phases
with broken orientational and transitional symmetry even for
dimers [55,56]. Such phases may also be seen in mixtures
of hard particles, for example, dimers and squares [29].
Another generalization is to study polydispersed systems. In
the continuum, polydispersity may result in reentrant nematic
phase or two distinct nematic phases [57,58]. It would be
interesting to see which features persist in the lattice version
of rods [59,60] or rectangles. These are promising areas for
further study.
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